TMEM家族在肿瘤中的研究进展
Research Progress of TMEM Family in Tumour
DOI: 10.12677/wjcr.2025.151003, PDF, HTML, XML,   
作者: 谢 珣, 陈 勇, 黎 清, 宁思艺, 向 翼:长沙市口腔医院检验病理科,湖南 长沙
关键词: TMEM蛋白生物标志物肿瘤TMEM Protein Biomarker Tumour
摘要: TMEM (Transmembrane, TMEM)是一类整合性膜蛋白,其特点在于能够跨越整个脂质双分子层并永久地锚定其中,分布在线粒体、内质网、溶酶体以及高尔基体等细胞器的细胞膜上。在恶性肿瘤的形成、发展和扩散等关键生物学过程中,TMEM家族蛋白扮演着举足轻重的角色。这些蛋白质的作用不仅局限于肿瘤细胞的增殖、侵袭和迁移,而且还显示出成为新型肿瘤生物标记物和治疗目标的巨大潜力。本文将对TMEM蛋白在恶性肿瘤研究领域内的最新进展进行回顾和分析。
Abstract: TMEM (Transmembrane, TMEM) is a class of integrated membrane proteins that span and permanently anchor the entire lipid bilayer and are distributed on the cell membranes of organelles such as mitochondria, endoplasmic reticulum, lysosomes and Golgi apparatus. TMEM family proteins play an important role in the formation, development and spread of malignant tumors. The role of these proteins is not limited to the proliferation, invasion and migration of tumor cells, but also shows great potential as novel tumor biomarkers and therapeutic targets. This article will review and analyze the latest progress of TMEM protein in the field of malignant tumor research.
文章引用:谢珣, 陈勇, 黎清, 宁思艺, 向翼. TMEM家族在肿瘤中的研究进展[J]. 世界肿瘤研究, 2025, 15(1): 16-23. https://doi.org/10.12677/wjcr.2025.151003

1. 引言

癌症作为全球面临的一项主要健康挑战[1] [2],不可忽视其给人类带来的严重影响。根据国际癌症研究中心的GLOBOCAN数据库,2020年中国新确诊的癌症病例高达482万,而死亡病例亦达到了321万人次[3]。恶性肿瘤在早期阶段往往难以被察觉,常见的临床表现可能仅是轻微的不适或者疲劳,这些非特异性症状往往被忽视。但随着疾病的进展,患者会经历从渐进的疼痛到贫血,最终可能导致器官功能衰竭等严重症状,这不仅削弱了患者的生活质量,也给社会和经济发展带来了沉重的负担。

跨膜蛋白(Transmembrane, TMEM)是构成细胞膜脂质双层中的一种关键蛋白质,能够横跨细胞膜并发挥多种生理功能[4]。这些蛋白质在信号转导、离子运输以及细胞黏着等基本生物过程中起着至关重要的作用。最近,TMEM蛋白在肿瘤生物学中的功能已经引起了科研界的广泛关注[5]-[8],并迅速成为了该领域的研究热点。研究表明,TMEM蛋白在癌症的不同类型中扮演着多重角色——既可能促进肿瘤的发展,也可能抑制肿瘤的生长,进而为将TMEM蛋白作为未来治疗策略的潜在靶点及癌症诊断的生物标志物奠定了科学基础[8]-[10]。本综述将深入探讨TMEM家族蛋白在不同恶性肿瘤发展中的最新研究进展,为未来的临床研究和治疗提供参考。

2. TMEM家族概述

蛋白质与其他生物分子之间的互动是分子细胞生物学的核心[11],而膜蛋白质作为这种互动的重要组成部分,存在于所有的细胞膜中,占生物体基因组开放阅读框的30% [12]。这些膜蛋白基于它们与脂质双分子层的结合方式,可以被分类为外周膜蛋白或整体膜蛋白[13]。TMEM蛋白是一类典型的整体膜蛋白,它们贯穿整个脂质双分子层,以其特有的跨膜、细胞内和细胞外域在细胞膜上形成锚定点[14]。虽然人类体内存在超过5000种不同的跨膜蛋白,但提取和纯化这些蛋白由于其特殊的物理化学属性而面临着巨大挑战,从而导致许多跨膜蛋白的生物学功能尚不明确[13] [14]。TMEM蛋白的分类方法主要有三种。首先,基于跨膜结构的差异,可分为a-螺旋型和β-折叠型TMEM蛋白,这两者是所有跨膜蛋白的主要结构类型。其中,a-螺旋TMEM蛋白主要存在于细胞质和亚细胞隔膜中,而β-桶状TMEM蛋白主要存在于叶绿体、细菌和线粒体细胞膜中[15]。其次,TMEM蛋白可根据N端和C端结构域在膜中的位置进行分类[16]。最后,基于跨膜次数,TMEM蛋白可以被分为单次跨膜和多次跨膜两大类[17]。这些分类有助于我们理解TMEM蛋白的结构与其功能之间的联系。

具有跨膜结构域的TMEM蛋白在信号传导、物质运输、细胞识别等细胞膜功能中扮演着核心角色,它们在脂质双分子层内的定位是其功能的关键[18]。此外,作为多亚基复合物,TMEM蛋白的亚基排列和相互作用模式定义了它们独特的结构属性[19]。有些TMEM蛋白通常以二聚体的形式存在,而非单体,这种二聚化与酶活性调节、信号转导以及癌症免疫治疗等生理功能息息相关[20]。值得注意的是,在某些情况下,如与配体结合或在其他类型的刺激下,TMEM蛋白可能会发生构象变化,这种结构的改变对其功能是至关重要的。例如,G蛋白偶联受体在配体激活后会发生构象改变,进而触发细胞内信号传导途径的激活[21] [22]

TMEM蛋白是生物体内一系列关键生物学过程的参与者,其功能范畴广泛,涉及蛋白质糖基化、自噬调节、表皮形态发生以及心脏细胞发育等重要领域[14] [23] [24]。最新的研究通过综合运用转录组学和生物信息学技术,揭示了TMEM蛋白在多种肿瘤及其癌旁组织中的差异性表达模式[25] [26],这为深入探讨TMEM蛋白在肿瘤形成与进展中的作用提供了新的线索[27]。与此同时,其他研究指出TMEM蛋白与肿瘤抑制作用相关联[28],并且有些TMEM蛋白在不同癌症类型中显示出的双向作用特别引人关注[29] [30]

3. TMEM家族与结直肠癌

2020年大约有190多万新发结直肠癌病例和93.5万相关死亡病例,约占全球癌症病例和死亡人数的十分之一[3]。在全球范围内,结直肠癌的发病率居于第三位,而其死亡率位列第二[3]。鉴于此,早期发现和及时手术切除显得尤为关键,是降低结直肠癌死亡率的最有效策略。因此,亟需发掘新的生物标志物,以促进结直肠癌的诊断和治疗策略,从而提高患者的生存概率。

结直肠癌的形成是一个多阶段且复杂的过程,通常起始于遗传易感性的基础之上,例如家族性结直肠癌或其他遗传性疾病[31]。此过程牵扯到许多基因的突变,特别是那些控制细胞增殖和凋亡的核心基因,如腺瘤性息肉病基因(Adenomatous polyposis coli, APC)、克里斯汀鼠肉瘤病毒基因(Kirsten rat sarcoma viral oncogene, KRAS)和肿瘤蛋白53 (Tumor protein 53, TP53)基因,这些关键基因发生突变可能导致细胞周期的失控和细胞增殖信号的持续激活[32]。同时,表观遗传学的变化,如DNA甲基化和组蛋白的修饰,也参与调控基因表达,而持续的炎症状态则加速突变的累积,为肿瘤变性创造了一个充足的环境[33]。此外,肿瘤微环境和潜在的肿瘤干细胞对于疾病进程有着至关重要的影响,它们共同作用加速了肿瘤的局部扩展和通过血液及淋巴系统的远程转移,形成复杂的癌症进展全貌[34]。其中,Wnt信号通路的异常激活,在结直肠癌的早期形成和进展过程中发挥着核心角色[35]。Wnt/β-catenin通路是细胞内的一个重要信号传递系统。它由Wnt蛋白启动,通过细胞表面的卷曲蛋白(Frizzled, FZD)受体和低密度脂蛋白受体相关蛋白5/6 (Lipoprotein receptor associated protein 5/6, LRP5/6)受体,影响β-catenin的稳定性[36]。在无Wnt信号时,β-catenin在细胞质中被标记并降解[37] [38]。有Wnt信号时,β-catenin积累并进入核内,与TCF/LEF转录因子结合,激活与细胞增长相关的基因[38]。这个过程是影响结直肠癌等多种肿瘤发生发展的关键因素。

APC基因突变是激活Wnt信号通路的关键驱动因素,但结直肠癌的发展还涉及其他多个基因的突变[37]。最新研究利用CRISPR/Cas9技术进行全基因组敲除筛选,揭示了TMEM79作为Wnt/FZD信号传递的特异性负调节因子[39]。TMEM79通过与泛素特异性蛋白酶8 (Ubiquitin-specific protease 8, USP8)结合,而非依赖ZNRF3/RNF43泛素连接酶途径,抑制USP8的去泛素化作用,促进FZD的降解,从而抑制Wnt信号。之前的研究也表明TMEM79可能与结直肠癌的临床分期有关[40],暗示TMEM79可能通过调整Wnt信号通路活性来影响结直肠癌的进程。

已有研究表明,TMEM家族的其他成员在结直肠癌的发生与进展中扮演了关键角色。例如,TMEM158在结直肠癌组织和细胞系中的表达水平高于正常组织和细胞,研究显示TMEM158的沉默能够抑制结直肠癌细胞的增殖和迁移,并促进细胞凋亡,进而显著地阻止肿瘤细胞在体内生长[41]。Gao的研究发现,TMEM176A的表达受其启动子区域甲基化水平的调节,TMEM176A的甲基化状态可作为结直肠癌预后的标志,并可能在肿瘤中发挥抑制作用[42]。Li等人报告了TMEM100在结直肠癌中的低表达,它能通过影响TGF-β信号通路来抑制肿瘤细胞增长[43]。还有研究显示TMEM206可能通过调节蛋白激酶(Protein kinase B, Akt)信号来促进结直肠癌细胞的增殖和侵袭能力[44]。最后,Takuya等的研究强调了TMEM180作为结直肠癌患者预后的有效生物标志物的潜能,为未来针对TMEM180的基础和临床研究铺平了道路,期望有助于开发更为精确的结直肠癌治疗策略[45]

4. TMEM家族与肝癌

在2020年,原发性肝癌在全球癌症发病率中升至第六位,同时成为第三大致死性癌症。据统计,全球新确诊的肝癌病例接近90.6万例,死亡病例约为83万[3]。现行治疗原发性肝癌的主要手段包括手术切除和术后的放疗及化疗,尽管如此,这些治疗策略的疗效受到多种因素的影响,并且在杀灭癌细胞的同时,也可能对健康的细胞和组织造成伤害[46]

在这一背景下,Wang等人的研究揭示了TMEM79在肝细胞癌预后中扮演的重要角色[39],发现其在肝细胞癌中的高表达与患者的生存预后息息相关。研究指出TMEM79与SMG5的表达呈现正相关,两者可能共同参与调节免疫细胞的浸润。这一发现进一步揭示了TMEM79与肝细胞癌中的免疫检查点、药物敏感性以及免疫治疗策略的潜在联系。Duan等人利用生物信息学分析和实验验证的方法,深入研究了TMEM106C在肝细胞癌中的功能[47]。他们的研究结果显示了TMEM106C在肝细胞癌中过表达,并通过靶向着丝粒蛋白M和DLC-1推动了肝癌细胞的增殖和转移。值得注意的是,TMEM106C的表达水平与患者的性别、肿瘤分期、分级以及预后紧密相关,而其过度表达也与细胞器的分裂和细胞周期信号通路的功能网络有关[48]。同时,TMEM205的研究成果为我们提供了新的治疗途径,表明它可能通过降低肿瘤微环境中的免疫抑制细胞(如调节性T细胞和M2型巨噬细胞)的水平,并同时增加细胞毒性T细胞的活性,从而有望改善肝细胞癌患者的预后。最后,对于 TMEM106A,研究指出它可能通过抑制肝癌的上皮至间充质转化和转移来发挥作用[49],这些研究成果不仅深化了我们对TMEM蛋白家族在肝细胞癌中作用的理解,而且为未来研究与肝癌治疗的新策略提供了基础,特别是在精准医疗和免疫治疗领域。

5. TMEM家族与胃癌

胃癌作为一种重要的癌症,在全球范围内占据着重要地位。根据2020年的数据,全球新增超过一百万胃癌患者,预计造成约76.9万人死亡。在全球癌症的发病和死亡统计中,胃癌分别排在第五位和第四位[3]。虽然在胃癌的手术治疗和辅助放化疗方面取得了显著进步,但鉴于大多数患者在确诊时已处于晚期,这类患者的五年生存率仍然较低。

在胃癌的分子研究方面,TMEM45B的发现为我们提供了新的见解,研究表明TMEM45B在人胃癌组织及细胞系中呈现出过高的表达[50]。更为重要的是,通过基因干扰技术降低TMEM45B的表达能够显著抑制胃癌细胞的增殖、迁移/侵袭能力以及上皮间质转化。这种抑制作用,至少在一定程度上,是通过降低磷酸化信号转导与转录激活因子3 (Phosphorylated Signal Transducer and Activator of Transcription 3, p-STAT3)以及磷酸化Janus激酶2 (Phosphorylated Janus Kinase 2, p-JAK2)的活性来实现的,这揭示了TMEM45B与STAT3和JAK2信号转导途径之间的潜在联系。进一步的研究发现TMEM98也在胃癌的发展中起到促进作用,通过与核因子90蛋白相互作用,增强了胃癌细胞的生长和侵袭能力[51]。在另一项重要的研究中,TMEM100在胃癌组织中的表达显著降低,而提高其表达水平则能够抑制胃癌细胞的迁移和侵袭[10]。此外,TMEM200A的研究提供了一个新的生物标志物,可能有助于预测胃癌预后,并与肿瘤微环境中的免疫细胞浸润程度相关[52]。综上所述,TMEM蛋白家族成员在胃癌中的不同表达和功能揭示了它们在胃癌发生、发展过程中的复杂作用,为未来的治疗策略提供了多个潜在的靶点。这些发现为胃癌的诊断、治疗和预后评估提供了新的视角和可能性。

6. TMEM家族与其他恶性肿瘤

TMEM家族在其他恶性肿瘤中的功能同样引人注目,如肺癌、乳腺癌、卵巢癌等。在肺癌研究领域,TMEM196的表达降低与患者的不良预后相关[27]。无论是在体外实验中还是在动物模型中,TMEM196均能显著抑制肿瘤的转移和进展。更深入的机制研究揭示,TMEM196通过抑制β-catenin启动子的转录活性来阻断Wnt信号通路,进而发挥其抗肿瘤作用。转向乳腺癌,Zhao等研究者的工作表明[53],在乳腺癌组织中TMEM17的表达水平增高,并且该蛋白通过激活AKT/GSK3β信号通路,推动乳腺癌细胞的恶性进展。在卵巢癌的研究中,TMEM205的表现同样引起了科学家们的关注[54]。研究发现,TMEM205可能通过参与铂类药物的外泌体排泄,与卵巢癌的耐铂性发展有关。这项研究不仅提供了一种可能的耐铂生物标志物,还为结合使用TMEM205和铂类药物的治疗提供了临床前的证据,为卵巢癌的个性化治疗开辟了新途径。

7. 总结与展望

TMEM蛋白家族在肿瘤领域的研究已取得重要进展,其成员在肿瘤生物学中扮演着关键角色,涉及调节细胞膜通透性、信号传导等核心生物过程,这些过程对肿瘤的发生、发展及转移具有深远影响。在临床上,TMEM家族的蛋白质不仅是肿瘤的潜在生物标志物,还被视为新的治疗靶点,为肿瘤诊断和治疗提供新的策略。尽管我们对TMEM蛋白家族在肿瘤发展中的作用有了一定的了解,但其具体的分子机制和在肿瘤微环境中的作用仍然需要更为深入的研究。未来的研究方向预计将集中在揭示TMEM家族成员的详细分子机制以及它们在肿瘤中的相互作用网络,以期得到对其在肿瘤生物学中作用的更完整理解。此外,通过探索TMEM家族蛋白与各种肿瘤治疗手段之间的相互关系,可以为开发新的肿瘤治疗策略提供科学依据。随着对这一领域研究的不断深化,我们期望未来能实现针对TMEM蛋白家族的靶向治疗,为患者带来更加个性化和有效的治疗选择,从而在肿瘤治疗领域实现新的突破。

参考文献

[1] Feng, R., Zong, Y., Cao, S. and Xu, R. (2019) Current Cancer Situation in China: Good or Bad News from the 2018 Global Cancer Statistics? Cancer Communications, 39, 1-12.
https://doi.org/10.1186/s40880-019-0368-6
[2] Zhou, M., Wang, H., Zeng, X., Yin, P., Zhu, J., Chen, W., et al. (2019) Mortality, Morbidity, and Risk Factors in China and Its Provinces, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet, 394, 1145-1158.
https://doi.org/10.1016/s0140-6736(19)30427-1
[3] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[4] Jiang, X., Wang, L., Liu, Z., Song, W., Zhou, M. and Xi, L. (2020) TMEM48 Promotes Cell Proliferation and Invasion in Cervical Cancer via Activation of the Wnt/β-Catenin Pathway. Journal of Receptors and Signal Transduction, 41, 371-377.
https://doi.org/10.1080/10799893.2020.1813761
[5] Xu, J., Su, Z., Ding, Q., Shen, L., Nie, X., Pan, X., et al. (2019) Inhibition of Proliferation by Knockdown of Transmembrane (TMEM) 168 in Glioblastoma Cells via Suppression of Wnt/β-Catenin Pathway. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics, 27, 819-826.
https://doi.org/10.3727/096504018x15478559215014
[6] Chen, X., Li, X., Xu, S., Hu, S., Wang, T., Li, R., et al. (2023) TMEM11 Regulates Cardiomyocyte Proliferation and Cardiac Repair via Mettl1-Mediated m7G Methylation of ATF5 mRNA. Cell Death & Differentiation, 30, 1786-1798.
https://doi.org/10.1038/s41418-023-01179-0
[7] Ehrlich, K.C., Lacey, M. and Ehrlich, M. (2020) Epigenetics of Skeletal Muscle-Associated Genes in the ASB, LRRC, TMEM, and OSBPL Gene Families. Epigenomes, 4, Article 1.
https://doi.org/10.3390/epigenomes4010001
[8] Deng, H., Li, T., Wei, F., Han, W., Xu, X. and Zhang, Y. (2023) High Expression of TMEM200A Is Associated with a Poor Prognosis and Immune Infiltration in Gastric Cancer. Pathology and Oncology Research, 29, Article 1610893.
https://doi.org/10.3389/pore.2023.1610893
[9] Zhang, S., Dai, H., Li, W., Wang, R., Wu, H., Shen, M., et al. (2021) TMEM116 Is Required for Lung Cancer Cell Motility and Metastasis through PDK1 Signaling Pathway. Cell Death & Disease, 12, Article No. 1086.
https://doi.org/10.1038/s41419-021-04369-1
[10] Zhuang, J., Huang, Y., Zheng, W., Yang, S., Zhu, G., Wang, J., et al. (2019) TMEM100 Expression Suppresses Metastasis and Enhances Sensitivity to Chemotherapy in Gastric Cancer. Biological Chemistry, 401, 285-296.
https://doi.org/10.1515/hsz-2019-0161
[11] Levental, I. and Lyman, E. (2022) Regulation of Membrane Protein Structure and Function by Their Lipid Nano-Environment. Nature Reviews Molecular Cell Biology, 24, 107-122.
https://doi.org/10.1038/s41580-022-00524-4
[12] Babcock, J.J. and Li, M. (2013) Deorphanizing the Human Transmembrane Genome: A Landscape of Uncharacterized Membrane Proteins. Acta Pharmacologica Sinica, 35, 11-23.
https://doi.org/10.1038/aps.2013.142
[13] Smith, S.M. (2016) Strategies for the Purification of Membrane Proteins. In: Walls, D. and Loughran, S., Eds., Protein Chromatography, Springer, 389-400.
https://doi.org/10.1007/978-1-4939-6412-3_21
[14] Herrera-Quiterio, G.A. and Encarnación-Guevara, S. (2023) The Transmembrane Proteins (TMEM) and Their Role in Cell Proliferation, Migration, Invasion, and Epithelial-Mesenchymal Transition in Cancer. Frontiers in Oncology, 13, Article 1244740.
https://doi.org/10.3389/fonc.2023.1244740
[15] Vinothkumar, K.R. and Henderson, R. (2010) Structures of Membrane Proteins. Quarterly Reviews of Biophysics, 43, 65-158.
https://doi.org/10.1017/s0033583510000041
[16] Roterman, I., Stapor, K. and Konieczny, L. (2022) The Contribution of Hydrophobic Interactions to Conformational Changes of Inward/outward Transmembrane Transport Proteins. Membranes, 12, Article 1212.
https://doi.org/10.3390/membranes12121212
[17] Marx, S., Dal Maso, T., Chen, J., Bury, M., Wouters, J., Michiels, C., et al. (2020) Transmembrane (TMEM) Protein Family Members: Poorly Characterized Even If Essential for the Metastatic Process. Seminars in Cancer Biology, 60, 96-106.
https://doi.org/10.1016/j.semcancer.2019.08.018
[18] Hegde, R.S. (2022) The Function, Structure, and Origins of the ER Membrane Protein Complex. Annual Review of Biochemistry, 91, 651-678.
https://doi.org/10.1146/annurev-biochem-032620-104553
[19] Lei, H., Fang, F., Yang, C., Chen, X., Li, Q. and Shen, X. (2024) Lifting the Veils on Transmembrane Proteins: Potential Anticancer Targets. European Journal of Pharmacology, 963, Article 176225.
https://doi.org/10.1016/j.ejphar.2023.176225
[20] Li, L. and Li, J. (2023) Dimerization of Transmembrane Proteins in Cancer Immunotherapy. Membranes, 13, Article 393.
https://doi.org/10.3390/membranes13040393
[21] Beasley, H.K., Rodman, T.A., Collins, G.V., Hinton, A. and Exil, V. (2021) TMEM135 Is a Novel Regulator of Mitochondrial Dynamics and Physiology with Implications for Human Health Conditions. Cells, 10, Article 1750.
https://doi.org/10.3390/cells10071750
[22] Li, Q., Huo, A., Li, M., Wang, J., Yin, Q., Chen, L., et al. (2024) Structure, Ligands, and Roles of GPR126/ADGRG6 in the Development and Diseases. Genes & Diseases, 11, 294-305.
https://doi.org/10.1016/j.gendis.2023.02.016
[23] Moretti, F., Bergman, P., Dodgson, S., Marcellin, D., Claerr, I., Goodwin, J.M., et al. (2018) TMEM41B Is a Novel Regulator of Autophagy and Lipid Mobilization. EMBO reports, 19, e45889.
https://doi.org/10.15252/embr.201845889
[24] Ennishi, D., Healy, S., Bashashati, A., Saberi, S., Hother, C., Mottok, A., et al. (2020) TMEM30A Loss-of-Function Mutations Drive Lymphomagenesis and Confer Therapeutically Exploitable Vulnerability in B-Cell Lymphoma. Nature Medicine, 26, 577-588.
https://doi.org/10.1038/s41591-020-0757-z
[25] Durin, Z., Houdou, M., Morelle, W., Barré, L., Layotte, A., Legrand, D., et al. (2022) Differential Effects of D-Galactose Supplementation on Golgi Glycosylation Defects in TMEM165 Deficiency. Frontiers in Cell and Developmental Biology, 10, Article 903953.
https://doi.org/10.3389/fcell.2022.903953
[26] Ye, Y., Wang, M., Wang, B., et al. (2017) CD98, a Potential Diagnostic Cancer-Related Biomarker, and Its Prognostic Impact in Colorectal Cancer Patients. International Journal of Clinical and Experimental Pathology, 10, 5418-5429.
[27] Chen, J., Wang, D., Chen, H., Gu, J., Jiang, X., Han, F., et al. (2022) TMEM196 Inhibits Lung Cancer Metastasis by Regulating the Wnt/β-Catenin Signaling Pathway. Journal of Cancer Research and Clinical Oncology, 149, 653-667.
https://doi.org/10.1007/s00432-022-04363-w
[28] Liu, J. and Zhu, H. (2018) TMEM106A Inhibits Cell Proliferation, Migration, and Induces Apoptosis of Lung Cancer Cells. Journal of Cellular Biochemistry, 120, 7825-7833.
https://doi.org/10.1002/jcb.28057
[29] Anzai, T. and Matsumura, Y. (2019) Topological Analysis of TMEM180, a Newly Identified Membrane Protein That Is Highly Expressed in Colorectal Cancer Cells. Biochemical and Biophysical Research Communications, 520, 566-572.
https://doi.org/10.1016/j.bbrc.2019.10.070
[30] Mei, S., Ke, J., Tian, J., Ying, P., Yang, N., Wang, X., et al. (2019) A Functional Variant in the Boundary of a Topological Association Domain Is Associated with Pancreatic Cancer Risk. Molecular Carcinogenesis, 58, 1855-1862.
https://doi.org/10.1002/mc.23077
[31] Stoffel, E.M. and Murphy, C.C. (2020) Epidemiology and Mechanisms of the Increasing Incidence of Colon and Rectal Cancers in Young Adults. Gastroenterology, 158, 341-353.
https://doi.org/10.1053/j.gastro.2019.07.055
[32] Li, J., Ma, X., Chakravarti, D., Shalapour, S. and DePinho, R.A. (2021) Genetic and Biological Hallmarks of Colorectal Cancer. Genes & Development, 35, 787-820.
https://doi.org/10.1101/gad.348226.120
[33] Dariya, B., Aliya, S., Merchant, N., Alam, A. and Nagaraju, G.P. (2020) Colorectal Cancer Biology, Diagnosis, and Therapeutic Approaches. Critical Reviews™ in Oncogenesis, 25, 71-94.
https://doi.org/10.1615/critrevoncog.2020035067
[34] Raskov, H., Søby, J.H., Troelsen, J., Bojesen, R.D. and Gögenur, I. (2020) Driver Gene Mutations and Epigenetics in Colorectal Cancer. Annals of Surgery, 271, 75-85.
https://doi.org/10.1097/sla.0000000000003393
[35] Zhu, Y. and Li, X. (2023) Advances of Wnt Signalling Pathway in Colorectal Cancer. Cells, 12, Article 447.
https://doi.org/10.3390/cells12030447
[36] Liu, J., Xiao, Q., Xiao, J., Niu, C., Li, Y., Zhang, X., et al. (2022) Wnt/β-Catenin Signalling: Function, Biological Mechanisms, and Therapeutic Opportunities. Signal Transduction and Targeted Therapy, 7, Article No. 3.
https://doi.org/10.1038/s41392-021-00762-6
[37] Hayat, R., Manzoor, M. and Hussain, A. (2022) Wnt Signaling Pathway: A Comprehensive Review. Cell Biology International, 46, 863-877.
https://doi.org/10.1002/cbin.11797
[38] Zhao, H., Ming, T., Tang, S., Ren, S., Yang, H., Liu, M., et al. (2022) Wnt Signaling in Colorectal Cancer: Pathogenic Role and Therapeutic Target. Molecular Cancer, 21, Article No. 144.
https://doi.org/10.1186/s12943-022-01616-7
[39] Wang, Y., Jin, Q., Zhang, S. and Wang, Y. (2023) Overexpression of TMEM79 Combined with SMG5 Is Related to Prognosis, Tumor Immune Infiltration and Drug Sensitivity in Hepatocellular Carcinoma. European Journal of Medical Research, 28, Article No. 490.
https://doi.org/10.1186/s40001-023-01388-w
[40] Huo, T., Canepa, R., Sura, A., Modave, F. and Gong, Y. (2017) Colorectal Cancer Stages Transcriptome Analysis. PLOS ONE, 12, e0188697.
https://doi.org/10.1371/journal.pone.0188697
[41] Liu, L., Zhang, J., Li, S., Yin, L. and Tai, J. (2019) Silencing of TMEM158 Inhibits Tumorigenesis and Multidrug Resistance in Colorectal Cancer. Nutrition and Cancer, 72, 662-671.
https://doi.org/10.1080/01635581.2019.1650192
[42] Gao, D., Han, Y., Yang, Y., Herman, J.G., Linghu, E., Zhan, Q., et al. (2017) Methylation of TMEM176A Is an Independent Prognostic Marker and Is Involved in Human Colorectal Cancer Development. Epigenetics, 12, 575-583.
https://doi.org/10.1080/15592294.2017.1341027
[43] Li, H., Cheng, C., You, W., Zheng, J., Xu, J., Gao, P., et al. (2021) TMEM100 Modulates TGF-Β Signaling Pathway to Inhibit Colorectal Cancer Progression. Gastroenterology Research and Practice, 2021, Article 5552324.
https://doi.org/10.1155/2021/5552324
[44] Zhao, J., Zhu, D., Zhang, X., Zhang, Y., Zhou, J. and Dong, M. (2018) retracted: TMEM206 Promotes the Malignancy of Colorectal Cancer Cells by Interacting with AKT and Extracellular Signal‐Regulated Kinase Signaling Pathways. Journal of Cellular Physiology, 234, 10888-10898.
https://doi.org/10.1002/jcp.27751
[45] Shiraishi, T., Ikeda, K., Tsukada, Y., Nishizawa, Y., Sasaki, T., Ito, M., et al. (2021) High Expression of TMEM180, a Novel Tumour Marker, Is Associated with Poor Survival in Stage III Colorectal Cancer. BMC Cancer, 21, Article No. 302.
https://doi.org/10.1186/s12885-021-08046-6
[46] Anwanwan, D., Singh, S.K., Singh, S., Saikam, V. and Singh, R. (2020) Challenges in Liver Cancer and Possible Treatment Approaches. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1873, Article 188314.
https://doi.org/10.1016/j.bbcan.2019.188314
[47] Duan, J., Qian, Y., Fu, X., Chen, M., Liu, K., Liu, H., et al. (2021) TMEM106C Contributes to the Malignant Characteristics and Poor Prognosis of Hepatocellular Carcinoma. Aging, 13, 5585-5606.
https://doi.org/10.18632/aging.202487
[48] Chen, D., Lou, Y., Lu, J., Fan, X., Zhu, Q. and Sun, H. (2023) Characterization of the Clinical Significance and Immunological Landscapes of a Novel TMEMs Signature in Hepatocellular Carcinoma and the Contribution of TMEM201 to Hepatocarcinogenesis. International Journal of Molecular Sciences, 24, Article 10285.
https://doi.org/10.3390/ijms241210285
[49] Shi, S., Wang, B., Wan, J., Song, L., Zhu, G., Du, J., et al. (2022) TMEM106A Transcriptionally Regulated by Promoter Methylation Is Involved in Invasion and Metastasis of Hepatocellular Carcinoma. Acta Biochimica et Biophysica Sinica, 54, 1008-1020.
https://doi.org/10.3724/abbs.2022069
[50] Shen, K., Yu, W., Yu, Y., Liu, X. and Cui, X. (2018) Knockdown of TMEM45B Inhibits Cell Proliferation and Invasion in Gastric Cancer. Biomedicine & Pharmacotherapy, 104, 576-581.
https://doi.org/10.1016/j.biopha.2018.05.016
[51] Ao, X., Li, X., Chen, Y., Zang, Z., Guo, W. and Liang, J. (2020) TMEM98 mRNA Promotes Proliferation and Invasion of Gastric Cells by Directly Interacting with NF90 Protein. Cell Biology International, 44, 1820-1830.
https://doi.org/10.1002/cbin.11375
[52] Fang, F., Zhang, T., Lei, H. and Shen, X. (2023) TMEM200A Is a Potential Prognostic Biomarker and Correlated with Immune Infiltrates in Gastric Cancer. PeerJ, 11, e15613.
https://doi.org/10.7717/peerj.15613
[53] Zhao, Y., Song, K., Zhang, Y., Xu, H., Zhang, X., Wang, L., et al. (2018) TMEM17 Promotes Malignant Progression of Breast Cancer via AKT/GSK3β Signaling. Cancer Management and Research, 10, 2419-2428.
https://doi.org/10.2147/cmar.s168723
[54] Calo, C.A., Smith, B.Q., Dorayappan, K.D.P., Saini, U., Lightfoot, M., Wagner, V., et al. (2022) Aberrant Expression of TMEM205 Signaling Promotes Platinum Resistance in Ovarian Cancer: An Implication for the Antitumor Potential of DAP Compound. Gynecologic Oncology, 164, 136-145.
https://doi.org/10.1016/j.ygyno.2021.10.076

Baidu
map