[1] |
陈胜发, 顾国强. 红枣多糖不同组分理化性质及抗氧化活性分析[J]. 家畜生态学报, 2018, 39(11): 67-70. |
[2] |
师仁丽, 翟龙飞, 于文龙, 等. 利用DAD-HPLC和LC-MS法检测金丝小枣中黄酮类化合物[J]. 食品科学, 2016, 37(16): 123-127. |
[3] |
高娅, 杨洁, 杨迎春, 等. 不同品种红枣中三萜酸及环核苷酸的测定[J]. 中成药, 2012, 34(10): 1961-1965. |
[4] |
杨璐, 程平, 曹苑, 等. 新疆不同红枣品种的总酚含量和抗氧化能力比较[J]. 生命科学研究, 2015, 19(1): 24-28. |
[5] |
徐迎涛, 吴君. 遗传算法优化超声-复合酶辅助提取红枣多酚工艺及其组分分析[J]. 中国食品添加剂, 2021, 32(11): 183-192. |
[6] |
杨利军. 金丝小枣三萜类化合物的提取和鉴定以及抗前列腺癌活性研究[D]: [硕士学位论文]. 济南: 山东大学, 2019. |
[7] |
Kou, X., Chen, Q., Li, X., Li, M., Kan, C., Chen, B., et al. (2015) Quantitative Assessment of Bioactive Compounds and the Antioxidant Activity of 15 Jujube Cultivars. Food Chemistry, 173, 1037-1044. https://doi.org/10.1016/j.foodchem.2014.10.110 |
[8] |
Guo, S., Duan, J., Qian, D., Tang, Y., Wu, D., Su, S., et al. (2015) Content Variations of Triterpenic Acid, Nucleoside, Nucleobase, and Sugar in Jujube (Ziziphus jujuba) Fruit during Ripening. Food Chemistry, 167, 468-474. https://doi.org/10.1016/j.foodchem.2014.07.013 |
[9] |
Wang, B., Liu, L., Huang, Q. and Luo, Y. (2020) Quantitative Assessment of Phenolic Acids, Flavonoids and Antioxidant Activities of Sixteen Jujube Cultivars from China. Plant Foods for Human Nutrition, 75, 154-160. https://doi.org/10.1007/s11130-020-00796-1 |
[10] |
Pan, F., Zhao, X., Liu, F., Luo, Z., Chen, S., Liu, Z., et al. (2023) Triterpenoids in Jujube: A Review of Composition, Content Diversity, Pharmacological Effects, Synthetic Pathway, and Variation during Domestication. Plants, 12, Article 1501. https://doi.org/10.3390/plants12071501 |
[11] |
Miklavčič Višnjevec, A., Baruca Arbeiter, A., Poklar Ulrih, N., Bandelj, D., Hladnik, M., Ota, A., et al. (2019) An Integrated Characterization of Jujube (Ziziphus jujuba Mill.) Grown in the North Adriatic Region. Food technology and biotechnology, 57, 17-28. https://doi.org/10.17113/ftb.57.01.19.5910 |
[12] |
龚频, 王佩佩, 同美霖, 等. 红枣多糖的提取工艺及药理活性研究[J]. 食品工业科技, 2022, 43(13): 198-207. |
[13] |
谢雨彤, 罗依扎∙瓦哈甫, 杨洁. 红枣多糖对链脲佐菌素诱导的糖尿病小鼠的降血糖作用[J]. 食品科技, 2018, 43(9): 244-250. |
[14] |
黄凤玲, 邢珂慧, 谢惠, 等. 红枣色素对四氧嘧啶糖尿病小鼠的降血糖作用[J]. 食品科技, 2020, 45(7): 293-297. |
[15] |
鲁倩茹, 黄凤玲, 邵佩兰, 等. 红枣色素对高脂饮食小鼠的降血脂作用[J]. 中国食品添加剂, 2020, 31(2): 89-94. |
[16] |
杨燕敏, 郑振佳, 高琳, 等. 红枣多糖超声波提取、结构表征及抗氧化活性评价[J]. 食品与发酵工业, 2021, 47(5): 120-126. |
[17] |
付亚玲, 姚俊修, 张仁堂. 响应面法优化黑化红枣三萜酸提取工艺及抗氧化活性研究[J]. 食品工业科技, 2021, 42(12): 176-183. |
[18] |
Zhang, Z., Li, J., Li, F., Wang, T., Luo, X., Li, B., et al. (2024) Jujubae fructus Extract Prolongs Lifespan and Improves Stress Tolerance in Caenorhabditis elegans Dependent on DAF-16/SOD-3. Scientific Reports, 14, Article No. 13713. https://doi.org/10.1038/s41598-024-64045-0 |
[19] |
Han, S., Hu, F., Ji, X., Liu, Y., Zhang, S., Wang, Z., et al. (2024) Polysaccharides from Ziziphus Jujuba Prolong Lifespan and Attenuate Oxidative Stress in Caenorhabditis Elegans via DAF-16 and SKN-1. International Journal of Biological Macromolecules, 282, Article ID: 137482. https://doi.org/10.1016/j.ijbiomac.2024.137482 |
[20] |
马妮, 刘慧燕, 方海田, 等. 红枣多酚提取工艺优化、成分及抗氧化活性分析[J]. 食品工业科技, 2022, 43(16): 246-254. |
[21] |
范艳丽, 张博, 李梓溢, 等. 红枣核总黄酮的提取工艺及抗氧化活性研究[J]. 食品研究与开发, 2017, 38(3): 95-100. |
[22] |
张丽芬, 韩娅婷, 邵佩兰, 等. 红枣可溶性膳食纤维的抗脂质过氧化作用[J]. 北方园艺, 2017(21): 50-56. |
[23] |
谢惠, 韩娅婷, 邵佩兰, 等. 红枣可溶性膳食纤维的抗氧化活性研究[J]. 食品工业科技, 2017, 38(22): 37-41. |
[24] |
Ramar, M.K., Henry, L.J.K., Ramachandran, S., Chidambaram, K. and Kandasamy, R. (2022) Ziziphus mauritiana Lam Attenuates Inflammation via Downregulating NFκB Pathway in LPS-Stimulated RAW 264.7 Macrophages & OVA-Induced Airway Inflammation in Mice Models. Journal of Ethnopharmacology, 295, Article ID: 115445. https://doi.org/10.1016/j.jep.2022.115445 |
[25] |
Chen, J., Du, C.Y.Q., Lam, K.Y.C., Zhang, W.L., Lam, C.T.W., Yan, A.L., et al. (2014) The Standardized Extract of Ziziphus jujuba Fruit (jujube) Regulates Pro‐Inflammatory Cytokine Expression in Cultured Murine Macrophages: Suppression of Lipopolysaccharide‐Stimulated NF‐κB Activity. Phytotherapy Research, 28, 1527-1532. https://doi.org/10.1002/ptr.5160 |
[26] |
Shen, D., Wu, C., Fan, G., Li, T., Dou, J., Zhu, J., et al. (2022) Jujube Peel Polyphenols Synergistically Inhibit Lipopolysaccharide-Induced Inflammation through Multiple Signaling Pathways in RAW 264.7 Cells. Food and Chemical Toxicology, 164, Article ID: 113062. https://doi.org/10.1016/j.fct.2022.113062 |
[27] |
Zhou, H., Guo, C., Yu, W., Yan, X., Long, J., Liu, Z., et al. (2021) Zizyphus Jujuba Cv. Muzao Polysaccharides Enhance Intestinal Barrier Function and Improve the Survival of Septic Mice. Journal of Food Biochemistry, 45, e13722. https://doi.org/10.1111/jfbc.13722 |
[28] |
贾丽娜, 马倩, 王新月, 等. 基于体外发酵模型分析植物多糖对T2DM患者肠道菌群及代谢的影响[J]. 食品科学, 2023, 44(2): 248-261. |
[29] |
白冰瑶, 刘新愚, 周茜, 等. 红枣膳食纤维改善小鼠功能性便秘及调节肠道菌群功能[J]. 食品科学, 2016, 37(23): 254-259. |
[30] |
Wei, X., Ma, N., Yang, W., Tian, J., Liu, H. and Fang, H. (2024) Polyphenol Extracts from Ziziphus jujuba Mill. “Junzao” Attenuates Ulcerative Colitis by Inhibiting the NLRP3 and MAPKs Signaling Pathways and Regulating Gut Microbiota Homeostasis in Mice. Molecular Nutrition & Food Research, 68, Article ID: 2300643. https://doi.org/10.1002/mnfr.202300643 |
[31] |
Hu, C., Zhang, Z., Song, G., et al. (2022) Jujuboside A Ameliorates Myocardial Apoptosis and Inflammation in Rats with Coronary Heart Disease by Inhibiting PPAR-α Signaling Pathway. Evidence-Based Complementary and Alternative Medicine, 2022, Article ID: 2285728. |
[32] |
Marino, M., Del Bo′, C., Tucci, M., Venturi, S., Mantegazza, G., Taverniti, V., et al. (2021) A Mix of Chlorogenic and Caffeic Acid Reduces C/EBPß and Ppar-γ1 Levels and Counteracts Lipid Accumulation in Macrophages. European Journal of Nutrition, 61, 1003-1014. https://doi.org/10.1007/s00394-021-02714-w |
[33] |
Chekalina, N., Burmak, Y., Petrov, Y., Borisova, Z., Manusha, Y., Kazakov, Y., et al. (2018) Quercetin Reduces the Transcriptional Activity of NF-κB in Stable Coronary Artery Disease. Indian Heart Journal, 70, 593-597. https://doi.org/10.1016/j.ihj.2018.04.006 |
[34] |
Cao, H., Jia, Q., Yan, L., Chen, C., Xing, S. and Shen, D. (2019) Quercetin Suppresses the Progression of Atherosclerosis by Regulating Mst1-Mediated Autophagy in ox-LDL-Induced RAW264.7 Macrophage Foam Cells. International Journal of Molecular Sciences, 20, Article 6093. https://doi.org/10.3390/ijms20236093 |
[35] |
Wang, D., Ali, F., Liu, H., Cheng, Y., Wu, M., Saleem, M.Z., et al. (2022) Quercetin Inhibits Angiotensin II-Induced Vascular Smooth Muscle Cell Proliferation and Activation of JAK2/STAT3 Pathway: A Target Based Networking Pharmacology Approach. Frontiers in Pharmacology, 13, Article 1002363. https://doi.org/10.3389/fphar.2022.1002363 |
[36] |
Popiolek-Kalisz, J., Blaszczak, P. and Fornal, E. (2022) Dietary Isorhamnetin Intake Is Associated with Lower Blood Pressure in Coronary Artery Disease Patients. Nutrients, 14, Article 4586. https://doi.org/10.3390/nu14214586 |
[37] |
Zhu, Q., Zhu, Y., Liu, Y., Tao, Y., Lin, Y., Lai, S., et al. (2022) Moderation of Gut Microbiota and Bile Acid Metabolism by Chlorogenic Acid Improves High-Fructose-Induced Salt-Sensitive Hypertension in Mice. Food & Function, 13, 6987-6999. https://doi.org/10.1039/d2fo00038e |
[38] |
Li, D., Jiang, C., Mei, G., Zhao, Y., Chen, L., Liu, J., et al. (2020) Quercetin Alleviates Ferroptosis of Pancreatic Β Cells in Type 2 Diabetes. Nutrients, 12, Article 2954. https://doi.org/10.3390/nu12102954 |
[39] |
Abdelmageed, M.E., Shehatou, G.S.G., Suddek, G.M. and Salem, H.A. (2021) Protocatechuic Acid Improves Hepatic Insulin Resistance and Restores Vascular Oxidative Status in Type-2 Diabetic Rats. Environmental Toxicology and Pharmacology, 83, Article ID: 103577. https://doi.org/10.1016/j.etap.2020.103577 |
[40] |
Gamede, M., Mabuza, L., Ngubane, P. and Khathi, A. (2021) Preventing the Onset of Diabetes-Induced Chronic Kidney Disease during Prediabetes: The Effects of Oleanolic Acid on Selected Markers of Chronic Kidney Disease in a Diet-Induced Prediabetic Rat Model. Biomedicine & Pharmacotherapy, 139, Article ID: 111570. https://doi.org/10.1016/j.biopha.2021.111570 |
[41] |
Gamede, M., Mabuza, L., Ngubane, P. and Khathi, A. (2019) Plant-derived Oleanolic Acid (OA) Ameliorates Risk Factors of Cardiovascular Diseases in a Diet-Induced Pre-Diabetic Rat Model: Effects on Selected Cardiovascular Risk Factors. Molecules, 24, Article 340. https://doi.org/10.3390/molecules24020340 |
[42] |
Kim, C., Jeong, Y.H., Kim, N., Ryu, S.H. and Bae, J. (2022) Hepatoprotective Functions of Jujuboside B. Journal of Natural Medicines, 77, 87-95. https://doi.org/10.1007/s11418-022-01648-9 |
[43] |
Li, L., Liu, S., Tang, H., Song, S., Lu, L., Zhang, P., et al. (2020) Effects of Protocatechuic Acid on Ameliorating Lipid Profiles and Cardio-Protection against Coronary Artery Disease in High Fat and Fructose Diet Fed in Rats. Journal of Veterinary Medical Science, 82, 1387-1394. https://doi.org/10.1292/jvms.20-0245 |
[44] |
Ye, X., Li, J., Gao, Z., Wang, D., Wang, H. and Wu, J. (2022) Chlorogenic Acid Inhibits Lipid Deposition by Regulating the Enterohepatic FXR-FGF15 Pathway. BioMed Research International, 2022, Article ID: 4919153. https://doi.org/10.1155/2022/4919153 |
[45] |
Sun, R., Kang, X., Zhao, Y., Wang, Z., Wang, R., Fu, R., et al. (2020) Sirtuin 3‐Mediated Deacetylation of Acyl‐CoA Synthetase Family Member 3 by Protocatechuic Acid Attenuates Non‐alcoholic Fatty Liver Disease. British Journal of Pharmacology, 177, 4166-4180. https://doi.org/10.1111/bph.15159 |
[46] |
Zhang, W., Cheng, Q., Yin, L., Liu, Y., Chen, L., Jiang, Z., et al. (2024) Jujuboside a through YY1/CYP2E1 Signaling Alleviated Type 2 Diabetes-Associated Fatty Liver Disease by Ameliorating Hepatic Lipid Accumulation, Inflammation, and Oxidative Stress. Chemico-Biological Interactions, 400, Article ID: 111157. https://doi.org/10.1016/j.cbi.2024.111157 |
[47] |
Bai, L., Kee, H.J., Han, X., Zhao, T., Kee, S. and Jeong, M.H. (2021) Protocatechuic Acid Attenuates Isoproterenol-Induced Cardiac Hypertrophy via Downregulation of Rock1-SP1-PKCγ Axis. Scientific Reports, 11, Article No. 17343. https://doi.org/10.1038/s41598-021-96761-2 |
[48] |
Stainer, A.R., Sasikumar, P., Bye, A.P., et al. (2019) The Metabolites of the Dietary Flavonoid Quercetin Possess Potent Antithrombotic Activity, and Interact with Aspirin to Enhance Antiplatelet Effects. TH Open, 3, e244-e258. |
[49] |
Zou, C., Liu, L., Huang, C. and Hu, S. (2022) Baiying Qingmai Formulation Ameliorates Thromboangiitis Obliterans by Inhibiting HMGB1/RAGE/NF-κB Signaling Pathways. Frontiers in Pharmacology, 13, Article 1018438. https://doi.org/10.3389/fphar.2022.1018438 |