老龄猫和犬营养研究进展
Research Progress of Nutrition of Aging Cats and Dogs
DOI: 10.12677/hjfns.2025.141005, PDF, HTML, XML,   
作者: 张赛赛:上海宠济生物科技有限公司,上海
关键词: 老龄营养免疫健康炎症Aging Nutrition Immunity Health Inflammation
摘要: 随着宠物相关科学研究的发展,猫和犬等宠物的寿命在不断延长,极端情况下可以活到30岁以上,但伴随宠物的衰老,其营养需求并没有明确的研究进展。伴随着衰老,猫和犬的许多潜在的生理过程(例如免疫功能减退)和与年龄相关的健康状况(例如认知能力下降)都在变化,如果采取合适的营养干预手段,可能有效减缓伴随着衰老产生的健康水平的下降,提高宠物的生活质量。本文综述了当前国际上猫和犬衰老及其过程的最新研究进展,提出了老年猫和犬对营养的需求,以及与衰老相关的常见疾病的相应营养调控手段,旨在为保持宠物的健康和延长其寿命提供参考。
Abstract: With the development of pet-related scientific research, pets such as cats and dogs are kept for an extended period of time. In extreme cases, they can live to be over 30 years old. However, as pets age, there is no clear research progress on their nutritional needs. Many underlying physiological processes (e.g., immunocompromised) and age-related health conditions (e.g., cognitive decline) are altered in cats and dogs that, with appropriate nutritional intervention, may effectively contribute to the development of inflammation decrease in health level and improve pet’s quality of life. This article reviews the latest international research progress on cat and canine dementia and its processes, proposes the nutritional needs of elderly cats and dogs, and the corresponding nutritional control methods for common diseases related to dementia, aiming to provide reference for keeping pets healthy and extending their lifespan.
文章引用:张赛赛. 老龄猫和犬营养研究进展[J]. 食品与营养科学, 2025, 14(1): 30-36. https://doi.org/10.12677/hjfns.2025.141005

1. 引言

随着兽医学科的粮食配方的改善,猫和犬等宠物的寿命也在不断延长,目前有20%~40%的宠物寿命能够超过11岁[1] [2]。然而,对于宠物如何衰老以及我们如何能够在延长它们寿命(即实际年龄)的同时还能够延长其保持健康的时间(即更健康的寿命),还缺少相关的研究。本综述总结了当前国际上猫和犬衰老及其过程的最新研究进展,提出了老年猫和犬对营养的需求,以及与衰老相关的常见疾病的相应营养调控手段,旨在为保持宠物的健康和延长其寿命提供参考。

2. 猫和犬在衰老过程中的生理变化

许多文献并未将衰老(Aging)划为疾病。事实上,衰老被定义为自然情况下“生命特定阶段”,是健康和生活质量的恶化的开始[3]。生命阶段的定义通常遵循基于生命年数的时间顺序,特别是对于猫来说,当猫的年龄超过8至10岁时,它们就被归类为“老年猫”[4] [5]。对于犬来说,体型和品种对生命阶段的分类有较大影响,较大的犬比较小的犬更早达到“老年”[6]。如表1所示,最近根据临床研究对猫和犬的生命阶段进行了重新分类[7]

猫消化营养和利用能量储存的能力通常可能会在7岁后开始下降[1] [12],但最近的研究表明粮食加工模式会影响这一能力[8]。例如,自由采食挤压或蒸煮粮食的猫能够保持健康的体重范围直到大约8岁,而此时继续食用蒸煮粮食的猫体重会下降。另有研究表明,猫的脂肪消化率和蛋白质消化率均随年龄的增长而降低,后者降低的幅度相对较小[9]。老年猫营养消化率的变化可能是由于肠道形态的变化造成的[10],因为衰老对年轻猫和老年猫/超老年猫的肠道转运时间和胃排空时间的影响有限[10] [11]。这表明存在一个明确的窗口期,在该窗口期中猫的新陈代谢和生理机能可能会发生重大变化,从而可能为营养干预提供了机会。

对于犬而言,研究表明从成年到老年甚至更年长的过程中,犬的肠道渗透性或吸收能力没有变化,但肠道形态的变化非常显著[12]-[14]。与猫类似,犬的年龄及其营养物质消化率也受到粮食加工形式和成分组成的影响[15]。例如,增加膳食纤维总量可能避免老年犬脂肪消化率的降低[16]。此外,有研究发现老年犬粮食中需要增加20%~30%的蛋白质以维持肌肉质量,避免肌肉流失[17]

3. 老年猫和犬的营养调控

从宠物食品监管的角度来看,虽然NRC [18]和FEDIAF [19]等概述了妊娠/哺乳/生长和成年等不同生命阶段的营养,但即使是在宏观营养素方面(蛋白质和脂肪)水平,也没有给出包括对老年宠物的具体营养需求的建议。FEDIAF于2017年发布了老年犬营养声明[19],呼吁行业特别关注特定营养素如粗纤维(维持肠道蠕动)、维生素E、锌、硒和二十二碳六烯酸(DHA)的作用。然而,由于“缺乏可用信息”,它未就老年犬的最低营养要求提供具体建议。但它还指出应重视二十碳五烯酸(EPA)和DHA等营养物质的重要性;此外,有许多已被证明对老年宠物有有益作用的营养成分(表2)并没有在标签中明确给出最低或建议的含量,这使得宠物主人很难理解“高级”的粮食是否确实能为老年宠物提供额外的益处。事实上,最近研究发现,针对“成年”或“老年”宠物销售的粮食没有明确的营养素方面的差异(粗纤维除外) [20]。然而,包括水在内的营养可以明显改善与年龄或潜在生理过程相关的健康状况(表2)。这表明在当前的营养指南中,需要专门的科学研究来确定老年猫和犬的营养需求,从而为调控肌肉减少症、炎症/炎症和认知能力等提供参考。

Table 1. Age classifications of cats and dogs as suggested by Salt et al. [7]

1. 猫和犬的年龄分类(参考Salt等[7])

幼猫

<1岁

幼犬

<1岁

中早期

1~4岁

玩具犬

青年期

1~6岁

中年期

7~11岁

老年期

12~13岁

超老年期

>14岁

中老年期

5~9岁

小型犬

青年期

1~6岁

中年期

7~11岁

老年期

12~13岁

超老年期

>14岁

老年期

10~11岁

中型犬

青年期

1~5岁

中年期

6~9岁

老年期

10~13岁

超老年期

>14岁

超老年期

12~13岁

大型犬

青年期

1~5岁

中年期

6~9岁

老年期

10~11岁

超老年期

>12岁

3.1. 肌肉减少症

保持去脂体重是猫和犬寿命的主要预测因素,对活动能力产生最深远的影响。肌肉减少症被定义为骨骼肌质量和功能随着衰老而丧失。矛盾的是,这种肌肉质量的损失通常发生在肥胖的情况下,即所谓的肌少性肥胖[21] [22]。大约40%的“老年”猫和犬[23]肥胖,其中12%~15%的去脂体重水平极低。因此,这是老年宠物中非常常见的病症,尽管其机制尚不清楚[24],可能主要是由于蛋白质合成受损造成的,再加上蛋白质的小部分降解,最终导致骨骼肌纤维萎缩和线粒体功能降低[25]。一项长期研究表明,在老年猫中,用亚油酸强化高蛋白和高脂肪粮食可以减少约10%的体重(去脂体重)损失[26]

3.2. 炎症

衰老与健康状况的自然恶化有关,“炎症”是大多数物种都会出现的与年龄相关的免疫功能下降。人们普遍认为炎症受到宿主免疫反应和胃肠道微生物组之间相互作用的影响[27] [28],但这一点尚未在猫和犬身上发现直接研究报道,且猫和犬发生炎症的细胞机制也未明确[24]。炎症被认为是猫和犬发病和死亡的主要原因[29],Salt等[7]发现了许多与衰老相关的炎症状况,包括骨关节炎、肾衰竭和心力衰竭,都是由炎症标志物的变化引起的。事实上,在8~10岁的猫群体中,促炎细胞因子增加,而抗炎细胞因子减少[30]。据观察,β-胡萝卜素(犬的维生素A的前体)、维生素E (生育酚)和多不饱和脂肪酸(PUFA;通常通过鱼/亚麻籽油或藻类提供)等营养素可改善免疫力——猫和犬的免疫状态,避免炎症发生(表2)。

3.3. 认知功能衰退

犬和猫经常被用作人类认知能力下降的模型。有多项研究表明营养素对认知标志(包括压力和焦虑)的影响,结果表明,脂质(PUFA、中链甘油三酯和磷脂)、抗氧化剂、B族维生素、肉碱和精氨酸等特定氨基酸等营养素(通常为专有混合物)可改善部分老年犬以及猫的认知功能指标(表2)。

Table 2. Nutrients with proven efficacy in cats and dogs

2. 特定营养素对猫和犬健康的影响

品种

年龄(范围)

影响对象

营养素

结果

参考文献

1.7~10.6岁

免疫状态

β-胡萝卜素(20或40 mg/kg)

提高免疫功能

[31]

7~10岁

免疫状态

α-生育酚醋酸酯/维生素E (101 mg/kg)

提高免疫功能

[32]

1.5~10岁

免疫状态

维生素E (225 mg/kg)

提高免疫功能

[33]

2.0~11.0岁

免疫状态

含omega-6和omega-3比例为4.77:1的鳕鱼油(剂量未说明)

提高免疫功能

[34]

2~12.6岁

认知功能

D,L-α-生育酚(1000 ppm)、左旋肉碱(250 ppm)、D,L-α-亚油酸(120 ppm)、抗坏血酸(80 ppm)、1%的菠菜片、番茄皮、葡萄皮、胡萝卜颗粒和柑橘果肉

降低认知功能障碍

[35]

2~12.5岁

认知功能

D,L-α-生育酚(1,050 ppm)、左旋肉碱(260 ppm)、D,L-α-亚油酸(128 ppm)、抗坏血酸(80 ppm)、1%的菠菜片、番茄皮、葡萄皮、胡萝卜颗粒和柑橘果肉

降低认知功能障碍

[36]

7~9岁

认知功能

α-亚油酸(11.0 mg/kg)和乙酰左旋肉碱(27.5 mg/kg)

提高认知能力

[37]

9~11.5岁

认知功能

维生素E (551 mg/kg)、维生素C (84.7 mg/kg)、精氨酸(2.52 %)、硫胺素(18.67 mg/kg)、核黄素(13.35 mg/kg)、泛酸(34.07 mg/kg)、烟酸(102.57 mg/kg)、吡哆醇(11.05 mg/kg)、氰钴胺(0.1 mg/kg)、叶酸(3.94 mg/kg)、EPA (0.24%)和DHA (0.21%)

认知能力提高

[38]

续表

9~16岁

认知功能

6.5%中链甘油三酯 + 脑保护混合物、维生素E (552 mg/kg)、维生素C (151 mg/kg)、精氨酸(1.79%)、硫胺素(58.7 mg/kg)、核黄素(26.5 mg/kg)、泛酸(77.3 mg/kg)、烟酸(225.76 mg/kg)、吡哆醇(17.8 mg/kg)、维生素B12 (0.175 mg/kg)、叶酸(8.39 mg/kg)、EPA (0.30%)、硒(0.681 mg/kg)和DHA (0.23%)

认知能力提高

[39]

6.8~8岁

认知功能

α-亚油酸(3 mg/kg体重)和肉碱(6 mg/kg BW体重)

认知能力提高

[40]

8~12岁

认知功能

维生素E (800 IU或21 mg/kg体重/天)、维生素C (1.6 mg/kg体重/天)、肉碱(5.2 mg/kg体重/天)和亚油酸(2.6 mg/kg体重/天)

认知能力提高

[41]

5.5~8.7岁

认知功能

维生素E (550 mg/kg)、维生素C (80 mg/kg)、精氨酸(2.3%)、硫胺素(55.0 mg/kg)、核黄素(30.9 mg/kg)、泛酸(55.4 mg/kg)、吡哆醇(18 mg/kg)、维生素B12 (0.09 mg/kg)、叶酸(4.25 mg/kg)、EPA (0.28%)和DHA (0.27%)

认知能力提高

[42]

7~17岁

寿命

维生素E (140.7 IU/1000kcal)和β-胡萝卜素(5 mg/1000kcal)

延长寿命并降低疾病发生率

[26]

7~17岁

寿命

维生素E (140.7 IU/1000kcal)和β-胡萝卜素(5 mg/1000kcal)、亚油酸(占脂肪的21.3%)和菊苣根(未说明比例)

延长寿命并降低疾病发生率,肠道健康水平提高

[26]

4. 小结

宠物猫和犬的寿命正在变得越来越长,与之相对应,需要开展老年猫和犬的能量、宏观营养素(蛋白质、脂肪)和微量营养素(维生素、微量元素)等需要量研究。许多试验均发现,营养干预对与衰老相关的指标或免疫系统等基础生理过程均有显著影响,表明衰老的猫和犬确实有特定的营养需求。因此,未来有必要进行相应的研究以更好地了解能量等营养素的需求,从而为老龄猫和犬制定具体的营养指南提供参考。

参考文献

[1] Bellows, J., Colitz, C.M.H., Daristotle, L., Ingram, D.K., Lepine, A., Marks, S.L., et al. (2015) Common Physical and Functional Changes Associated with Aging in Dogs. Journal of the American Veterinary Medical Association, 246, 67-75.
https://doi.org/10.2460/javma.246.1.67
[2] Bellows, J., Center, S., Daristotle, L., Estrada, A.H., Flickinger, E.A., Horwitz, D.F., et al. (2016) Aging in Cats. Journal of Feline Medicine and Surgery, 18, 533-550.
https://doi.org/10.1177/1098612x16649523
[3] Case, L.P., Daristotle, L., Hayek, M.G. and Raasch, M.F. (2011) Geriatrics. In: Canine and Feline Nutrition, Elsevier, 261-275.
https://doi.org/10.1016/b978-0-323-06619-8.10025-8
[4] Quimby, J., Gowland, S., Carney, H.C., DePorter, T., Plummer, P. and Westropp, J. (2021) 2021 AAHA/AAFP Feline Life Stage Guidelines. Journal of Feline Medicine and Surgery, 23, 211-233.
https://doi.org/10.1177/1098612x21993657
[5] Ray, M., Carney, H.C., Boynton, B., Quimby, J., Robertson, S., St Denis, K., et al. (2021) 2021 AAFP Feline Senior Care Guidelines. Journal of Feline Medicine and Surgery, 23, 613-638.
https://doi.org/10.1177/1098612x211021538
[6] Creevy, K.E., Grady, J., Little, S.E., Moore, G.E., Strickler, B.G., Thompson, S., et al. (2019) 2019 AAHA Canine Life Stage Guidelines. Journal of the American Animal Hospital Association, 55, 267-290.
https://doi.org/10.5326/jaaha-ms-6999
[7] Salt, C., Saito, E.K., O’Flynn, C. and Allaway, D. (2022) Stratification of Companion Animal Life Stages from Electronic Medical Record Diagnosis Data. The Journals of Gerontology: Series A, 78, 579-586.
https://doi.org/10.1093/gerona/glac220
[8] Bermingham, E.N., Weidgraaf, K., Hekman, M., Roy, N.C., Tavendale, M.H. and Thomas, D.G. (2012) Seasonal and Age Effects on Energy Requirements in Domestic Short-Hair Cats (Felis catus) in a Temperate Environment. Journal of Animal Physiology and Animal Nutrition, 97, 522-530.
https://doi.org/10.1111/j.1439-0396.2012.01293.x
[9] Bermingham, E.N., Young, W., Butowski, C.F., Moon, C.D., Maclean, P.H., Rosendale, D., et al. (2018) The Fecal Microbiota in the Domestic Cat (Felis catus) Is Influenced by Interactions between Age and Diet; A Five Year Longitudinal Study. Frontiers in Microbiology, 9, Article 1231.
https://doi.org/10.3389/fmicb.2018.01231
[10] Peachey, S.E., Dawson, J.M. and Harper, E.J. (2000) Gastrointestinal Transit Times in Young and Old Cats. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 126, 85-90.
https://doi.org/10.1016/s1095-6433(00)00189-6
[11] Papasouliotis, K., Sparkes, A.H., Gruffydd-Jones, T.J., Cripps, P.J. and Harper, E.J. (1998) Use of the Breath Hydrogen Test to Assess the Effect of Age on Orocecal Transit Time and Carbohydrate Assimilation in Cats. American Journal of Veterinary Research, 59, 1299-1302.
https://doi.org/10.2460/ajvr.1998.59.10.1299
[12] Garden, O.A., Rutgers, H.C., Sørensen, S.H., Daniels, S., Walker, D. and Batt, R.M. (1997) Reference Range and Repeatability of a Combined Intestinal Permeability and Function Test in Clinically Healthy Irish Setter Dogs. Research in Veterinary Science, 63, 257-261.
https://doi.org/10.1016/s0034-5288(97)90030-8
[13] Weber, M.P., Martin, L.J., Dumon, H.J., Biourge, V.C. and Nguyen, P.G. (2002) Influence of Age and Body Size on Intestinal Permeability and Absorption in Healthy Dogs. American Journal of Veterinary Research, 63, 1323-1328.
https://doi.org/10.2460/ajvr.2002.63.1323
[14] Kuzmuk, K.N., Swanson, K.S., Tappenden, K.A., Schook, L.B. and Fahey, G.C. (2005) Diet and Age Affect Intestinal Morphology and Large Bowel Fermentative End-Product Concentrations in Senior and Young Adult Dogs. The Journal of Nutrition, 135, 1940-1945.
https://doi.org/10.1093/jn/135.8.1940
[15] Larsen, J.A. and Farcas, A. (2014) Nutrition of Aging Dogs. Veterinary Clinics of North America: Small Animal Practice, 44, 741-759.
https://doi.org/10.1016/j.cvsm.2014.03.003
[16] Schauf, S., Stockman, J., Haydock, R., Eyre, R., Fortener, L., Park, J.S., et al. (2021) Healthy Ageing Is Associated with Preserved or Enhanced Nutrient and Mineral Apparent Digestibility in Dogs and Cats Fed Commercially Relevant Extruded Diets. Animals, 11, Article 2127.
https://doi.org/10.3390/ani11072127
[17] Laflamme, D.P. (2005) Nutrition for Aging Cats and Dogs and the Importance of Body Condition. Veterinary Clinics of North America: Small Animal Practice, 35, 713-742.
https://doi.org/10.1016/j.cvsm.2004.12.011
[18] National Research Council (2006) Nutrient Requirements of Dogs and Cats. The National Academies Press.
[19] FEDIAF (2017) FEDIAF Scientific Advisory Board Statement Nutrition of Senior Animals.
https://europeanpetfood.org/wp-content/uploads/2024/09/FEDIAF-Nutritional-Guidelines_2024.pdf
[20] Summers, S.C., Stockman, J., Larsen, J.A., Sanchez Rodriguez, A. and Zhang, L. (2020) Evaluation of Nutrient Content and Caloric Density in Commercially Available Foods Formulated for Senior Cats. Journal of Veterinary Internal Medicine, 34, 2029-2035.
https://doi.org/10.1111/jvim.15858
[21] Freeman, L.M. (2011) Cachexia and Sarcopenia: Emerging Syndromes of Importance in Dogs and Cats. Journal of Veterinary Internal Medicine, 26, 3-17.
https://doi.org/10.1111/j.1939-1676.2011.00838.x
[22] Laflamme, D.P. (2016) Sarcopenia and Weight Loss in the Geriatric Cat. In: August’s Consultations in Feline Internal Medicine, Volume 7, Elsevier, 951-956.
https://doi.org/10.1016/b978-0-323-22652-3.00095-5
[23] Mao, J., Xia, Z., Chen, J. and Yu, J. (2013) Prevalence and Risk Factors for Canine Obesity Surveyed in Veterinary Practices in Beijing, China. Preventive Veterinary Medicine, 112, 438-442.
https://doi.org/10.1016/j.prevetmed.2013.08.012
[24] McKenzie, B.A. (2022) Comparative Veterinary Geroscience: Mechanism of Molecular, Cellular, and Tissue Aging in Humans, Laboratory Animal Models, and Companion Dogs and Cats. American Journal of Veterinary Research, 83, 1-16.
https://doi.org/10.2460/ajvr.22.02.0027
[25] Greenlund, L. (2003) Sarcopenia—Consequences, Mechanisms, and Potential Therapies. Mechanisms of Ageing and Development, 124, 287-299.
https://doi.org/10.1016/s0047-6374(02)00196-3
[26] Cupp, C.J., Jean-Phillipe, C., Kerr, W., et al. (2007) Effect of Nutrition Interventions on Longevity of Senior Cats. International Journal of Applied Research in Veterinary Medicine, 5, 133-149.
[27] Fransen, F., van Beek, A.A., Borghuis, T., Aidy, S.E., Hugenholtz, F., et al. (2017) Aged Gut Microbiota Contributes to Systemical Inflammaging after Transfer to Germ-Free Mice. Frontiers in Immunology, 8, Article 1385.
https://doi.org/10.3389/fimmu.2017.01385
[28] Franceschi, C., Garagnani, P., Parini, P., Giuliani, C. and Santoro, A. (2018) Inflammaging: A New Immune-Metabolic Viewpoint for Age-Related Diseases. Nature Reviews Endocrinology, 14, 576-590.
https://doi.org/10.1038/s41574-018-0059-4
[29] Day, M.J. (2010) Ageing, Immuno-Senescence and Inflammageing in the Dog and Cat. Journal of Comparative Pathology, 142, S60-S69.
https://doi.org/10.1016/j.jcpa.2009.10.011
[30] Kipar, A., Baptiste, K., Meli, M., Barth, A., Knietsch, M., Reinacher, M., et al. (2005) Age-Related Dynamics of Constitutive Cytokine Transcription Levels of Feline Monocytes. Experimental Gerontology, 40, 243-248.
https://doi.org/10.1016/j.exger.2004.12.007
[31] Massimino, S., Kearns, R.J., Loos, K.M., Burr, J., Park, J.S., Chew, B., et al. (2003) Effects of Age and Dietary β-carotene on Immunological Variables in Dogs. Journal of Veterinary Internal Medicine, 17, 835-842.
https://doi.org/10.1111/j.1939-1676.2003.tb02523.x
[32] Hall, J.A., Tooley, K.A., Gradin, J.L., Jewell, D.E. and Wander, R.C. (2003) Effects of Dietary N-6 and N-3 Fatty Acids and Vitamin E on the Immune Response of Healthy Geriatric Dogs. American Journal of Veterinary Research, 64, 762-772.
https://doi.org/10.2460/ajvr.2003.64.762
[33] O’Brien, T., Thomas, D.G., Morel, P.C.H. and Rutherfurd-Markwick, K.J. (2015) Moderate Dietary Supplementation with Vitamin E Enhances Lymphocyte Functionality in the Adult Cat. Research in Veterinary Science, 99, 63-69.
https://doi.org/10.1016/j.rvsc.2015.01.007
[34] Rutherfurd-Markwick, K.J., Hendriks, W.H., Morel, P.C.H. and Thomas, D.G. (2013) The Potential for Enhancement of Immunity in Cats by Dietary Supplementation. Veterinary Immunology and Immunopathology, 152, 333-340.
https://doi.org/10.1016/j.vetimm.2013.01.007
[35] Milgram, N.W., Head, E., Zicker, S.C., Ikeda-Douglas, C., Murphey, H., Muggenberg, B.A., et al. (2004) Long-Term Treatment with Antioxidants and a Program of Behavioral Enrichment Reduces Age-Dependent Impairment in Discrimination and Reversal Learning in Beagle Dogs. Experimental Gerontology, 39, 753-765.
https://doi.org/10.1016/j.exger.2004.01.007
[36] Milgram, N., Zicker, S., Head, E., Muggenburg, B., Murphey, H., Ikedadouglas, C., et al. (2002) Dietary Enrichment Counteracts Age-Associated Cognitive Dysfunction in Canines. Neurobiology of Aging, 23, 737-745.
https://doi.org/10.1016/s0197-4580(02)00020-9
[37] Milgram, N.W., Araujo, J.A., Hagen, T.M., Treadwell, B.V. and Ames, B.N. (2007) Acetyl-l-Carnitine and α-Lipoic Acid Supplementation of Aged Beagle Dogs Improves Learning in Two Landmark Discrimination Tests. The FASEB Journal, 21, 3756-3762.
https://doi.org/10.1096/fj.07-8531com
[38] Pan, Y., Kennedy, A.D., Jönsson, T.J. and Milgram, N.W. (2018) Cognitive Enhancement in Old Dogs from Dietary Supplementation with a Nutrient Blend Containing Arginine, Antioxidants, B Vitamins and Fish Oil. British Journal of Nutrition, 119, 349-358.
https://doi.org/10.1017/s0007114517003464
[39] Pan, Y., Landsberg, G., Mougeot, I., Kelly, S., Xu, H., Bhatnagar, S., et al. (2018) Efficacy of a Therapeutic Diet on Dogs with Signs of Cognitive Dysfunction Syndrome (CDS): A Prospective Double Blinded Placebo Controlled Clinical Study. Frontiers in Nutrition, 5, Article 127.
https://doi.org/10.3389/fnut.2018.00127
[40] Snigdha, S., de Rivera, C., Milgram, N.W. and Cotman, C.W. (2016) Effect of Mitochondrial Cofactors and Antioxidants Supplementation on Cognition in the Aged Canine. Neurobiology of Aging, 37, 171-178.
https://doi.org/10.1016/j.neurobiolaging.2015.09.015
[41] Dowling, A.L.S. and Head, E. (2012) Antioxidants in the Canine Model of Human Aging. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1822, 685-689.
https://doi.org/10.1016/j.bbadis.2011.09.020
[42] Pan, Y., Araujo, J.A., Burrows, J., de Rivera, C., Gore, A., Bhatnagar, S., et al. (2012) Cognitive Enhancement in Middle-Aged and Old Cats with Dietary Supplementation with a Nutrient Blend Containing Fish Oil, B Vitamins, Antioxidants and Arginine. British Journal of Nutrition, 110, 40-49.
https://doi.org/10.1017/s0007114512004771

Baidu
map