[1] |
Wan, M., Li, T., Chen, H., Mao, C. and Shen, J. (2021) Biosafety, Functionalities, and Applications of Biomedical Micro/Nanomotors. Angewandte Chemie International Edition, 60, 13158-13176. https://doi.org/10.1002/anie.202013689 |
[2] |
Xia, X., Li, Y., Xiao, X., Zhang, Z., Mao, C., Li, T., et al. (2023) Chemotactic Micro/Nanomotors for Biomedical Applications. Small, 20, Article ID: 2306191. https://doi.org/10.1002/smll.202306191 |
[3] |
Kagan, D., Calvo-Marzal, P., Balasubramanian, S., Sattayasamitsathit, S., Manesh, K.M., Flechsig, G., et al. (2009) Chemical Sensing Based on Catalytic Nanomotors: Motion-Based Detection of Trace Silver. Journal of the American Chemical Society, 131, 12082-12083. https://doi.org/10.1021/ja905142q |
[4] |
Hansen‐Bruhn, M., de Ávila, B.E., Beltrán‐Gastélum, M., Zhao, J., Ramírez‐Herrera, D.E., Angsantikul, P., et al. (2018) Active Intracellular Delivery of a Cas9/sgRNA Complex Using Ultrasound‐Propelled Nanomotors. Angewandte Chemie International Edition, 57, 2657-2661. https://doi.org/10.1002/anie.201713082 |
[5] |
Xuan, M., Shao, J., Lin, X., Dai, L. and He, Q. (2014) Self‐Propelled Janus Mesoporous Silica Nanomotors with Sub‐100 Nm Diameters for Drug Encapsulation and Delivery. ChemPhysChem, 15, 2255-2260. https://doi.org/10.1002/cphc.201402111 |
[6] |
Sokolov, I.L., Cherkasov, V.R., Tregubov, A.A., Buiucli, S.R. and Nikitin, M.P. (2017) Smart Materials on the Way to Theranostic Nanorobots: Molecular Machines and Nanomotors, Advanced Biosensors, and Intelligent Vehicles for Drug Delivery. Biochimica et Biophysica Acta (BBA)—General Subjects, 1861, 1530-1544. https://doi.org/10.1016/j.bbagen.2017.01.027 |
[7] |
Wu, Z., Li, T., Gao, W., Xu, T., Jurado‐Sánchez, B., Li, J., et al. (2015) Cell‐Membrane‐Coated Synthetic Nanomotors for Effective Biodetoxification. Advanced Functional Materials, 25, 3881-3887. https://doi.org/10.1002/adfm.201501050 |
[8] |
Ou, J., Liu, K., Jiang, J., Wilson, D.A., Liu, L., Wang, F., et al. (2020) Micro‐/Nanomotors toward Biomedical Applications: The Recent Progress in Biocompatibility. Small, 16, Article ID: 1906184. https://doi.org/10.1002/smll.201906184 |
[9] |
Wang, S., Xu, J., Zhou, Q., Geng, P., Wang, B., Zhou, Y., et al. (2021) Biodegradability of Micro/nanomotors: Challenges and Opportunities. Advanced Healthcare Materials, 10, Article ID: 2100335. https://doi.org/10.1002/adhm.202100335 |
[10] |
Esteban-Fernández de Ávila, B., Gao, W., Karshalev, E., Zhang, L. and Wang, J. (2018) Cell-Like Micromotors. Accounts of Chemical Research, 51, 1901-1910. https://doi.org/10.1021/acs.accounts.8b00202 |
[11] |
Buzas, E.I. (2022) The Roles of Extracellular Vesicles in the Immune System. Nature Reviews Immunology, 23, 236-250. |
[12] |
van den Boorn, J.G., Schlee, M., Coch, C. and Hartmann, G. (2011) SiRNA Delivery with Exosome Nanoparticles. Nature Biotechnology, 29, 325-326. https://doi.org/10.1038/nbt.1830 |
[13] |
de Abreu, R.C., Fernandes, H., da Costa Martins, P.A., Sahoo, S., Emanueli, C. and Ferreira, L. (2020) Native and Bioengineered Extracellular Vesicles for Cardiovascular Therapeutics. Nature Reviews Cardiology, 17, 685-697. https://doi.org/10.1038/s41569-020-0389-5 |
[14] |
Colombo, M., Raposo, G. and Théry, C. (2014) Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles. Annual Review of Cell and Developmental Biology, 30, 255-289. https://doi.org/10.1146/annurev-cellbio-101512-122326 |
[15] |
Kalluri, R. and LeBleu, V.S. (2020) The Biology, Function, and Biomedical Applications of Exosomes. Science, 367, eaau6977. https://doi.org/10.1126/science.aau6977 |
[16] |
Alvarez-Erviti, L., Seow, Y., Yin, H., Betts, C., Lakhal, S. and Wood, M.J.A. (2011) Delivery of SiRNA to the Mouse Brain by Systemic Injection of Targeted Exosomes. Nature Biotechnology, 29, 341-345. https://doi.org/10.1038/nbt.1807 |
[17] |
Discher, D.E. and Eisenberg, A. (2002) Polymer Vesicles. Science, 297, 967-973. https://doi.org/10.1126/science.1074972 |
[18] |
Gorgoll, R.M., Tsubota, T., Harano, K. and Nakamura, E. (2015) Cooperative Self-Assembly of Gold Nanoparticles on the Hydrophobic Surface of Vesicles in Water. Journal of the American Chemical Society, 137, 7568-7571. https://doi.org/10.1021/jacs.5b03632 |
[19] |
Zhu, Y., Fan, L., Yang, B. and Du, J. (2014) Multifunctional Homopolymer Vesicles for Facile Immobilization of Gold Nanoparticles and Effective Water Remediation. ACS Nano, 8, 5022-5031. https://doi.org/10.1021/nn5010974 |
[20] |
Chenthamara, D., Subramaniam, S., Ramakrishnan, S.G., Krishnaswamy, S., Essa, M.M., Lin, F., et al. (2019) Therapeutic Efficacy of Nanoparticles and Routes of Administration. Biomaterials Research, 23, Article No. 20. https://doi.org/10.1186/s40824-019-0166-x |
[21] |
Wang, Z., Yan, Y., Li, C., Yu, Y., Cheng, S., Chen, S., et al. (2022) Fluidity-guided Assembly of Au@Pt on Liposomes as a Catalase-Powered Nanomotor for Effective Cell Uptake in Cancer Cells and Plant Leaves. ACS Nano, 16, 9019-9030. https://doi.org/10.1021/acsnano.2c00327 |
[22] |
Hortelão, A.C., García‐Jimeno, S., Cano‐Sarabia, M., Patiño, T., Maspoch, D. and Sanchez, S. (2020) LipoBots: Using Liposomal Vesicles as Protective Shell of Urease‐Based Nanomotors. Advanced Functional Materials, 30, Article ID: 2002767. https://doi.org/10.1002/adfm.202002767 |
[23] |
Cui, J., Jin, H. and Zhan, W. (2022) Enzyme-free Liposome Active Motion via Asymmetrical Lipid Efflux. Langmuir, 38, 11468-11477. https://doi.org/10.1021/acs.langmuir.2c01866 |
[24] |
Fang, R.H., Kroll, A.V., Gao, W. and Zhang, L. (2018) Cell Membrane Coating Nanotechnology. Advanced Materials, 30, Article ID: 1706759. https://doi.org/10.1002/adma.201706759 |
[25] |
Jan, N., Madni, A., Khan, S., et al. (2022) Biomimetic Cell Membrane-Coated Poly(Lactic-Co-Glycolic Acid) Nanoparticles for Bio-Medical Applications. Bioengineering & Translational Medicine, 8, e10441. |
[26] |
Dehaini, D., Wei, X., Fang, R.H., Masson, S., Angsantikul, P., Luk, B.T., et al. (2017) Erythrocyte-Platelet Hybrid Membrane Coating for Enhanced Nanoparticle Functionalization. Advanced Materials, 29, Article ID: 1606209. https://doi.org/10.1002/adma.201606209 |
[27] |
Guo, Y., Wang, D., Song, Q., Wu, T., Zhuang, X., Bao, Y., et al. (2015) Erythrocyte Membrane-Enveloped Polymeric Nanoparticles as Nanovaccine for Induction of Antitumor Immunity against Melanoma. ACS Nano, 9, 6918-6933. https://doi.org/10.1021/acsnano.5b01042 |
[28] |
Zhuang, J., Ying, M., Spiekermann, K., Holay, M., Zhang, Y., Chen, F., et al. (2018) Biomimetic Nanoemulsions for Oxygen Delivery in Vivo. Advanced Materials, 30, Article ID: 1804693. https://doi.org/10.1002/adma.201804693 |
[29] |
Shao, J., Abdelghani, M., Shen, G., Cao, S., Williams, D.S. and van Hest, J.C.M. (2018) Erythrocyte Membrane Modified Janus Polymeric Motors for Thrombus Therapy. ACS Nano, 12, 4877-4885. https://doi.org/10.1021/acsnano.8b01772 |
[30] |
Boudreaux, M.K. and Christopherson, P.W. (2022) Platelet Structure. In: Brooks, M.B., Harr, K.E., Seelig, D.M., Wardrop, K.J. and Weiss, D.J., Eds., Schalm’s Veterinary Hematology, Wiley-Blackwell, 658-666. |
[31] |
Olsson, M., Bruhns, P., Frazier, W.A., Ravetch, J.V. and Oldenborg, P. (2005) Platelet Homeostasis Is Regulated by Platelet Expression of CD47 under Normal Conditions and in Passive Immune Thrombocytopenia. Blood, 105, 3577-3582. https://doi.org/10.1182/blood-2004-08-2980 |
[32] |
Valant, P.A., Jy, W., Horstman, L.L., Mao, W. and Ahn, Y.S. (1998) Thrombotic Thrombocytopenic Purpura Plasma Enhances Platelet-Leucocyte Interaction in Vitro. British Journal of Haematology, 100, 24-32. https://doi.org/10.1046/j.1365-2141.1998.00526.x |
[33] |
Ampofo, E., Müller, I., Dahmke, I.N., Eichler, H., Montenarh, M., Menger, M.D., et al. (2015) Role of Protein Kinase CK2 in the Dynamic Interaction of Platelets, Leukocytes and Endothelial Cells during Thrombus Formation. Thrombosis Research, 136, 996-1006. https://doi.org/10.1016/j.thromres.2015.08.023 |
[34] |
Jooss, N.J., De Simone, I., Provenzale, I., Fernández, D.I., Brouns, S.L.N., Farndale, R.W., et al. (2019) Role of Platelet Glycoprotein VI and Tyrosine Kinase Syk in Thrombus Formation on Collagen-Like Surfaces. International Journal of Molecular Sciences, 20, Article No. 2788. https://doi.org/10.3390/ijms20112788 |
[35] |
Yeaman, M.R. (2009) Platelets in Defense against Bacterial Pathogens. Cellular and Molecular Life Sciences, 67, 525-544. https://doi.org/10.1007/s00018-009-0210-4 |
[36] |
Gupta, S., Konradt, C., Corken, A., Ware, J., Nieswandt, B., Di Paola, J., et al. (2020) Hemostasis vs. Homeostasis: Platelets Are Essential for Preserving Vascular Barrier Function in the Absence of Injury or Inflammation. Proceedings of the National Academy of Sciences, 117, 24316-24325. https://doi.org/10.1073/pnas.2007642117 |
[37] |
Vargas, A. and Simon, S.I. (2022) Platelet Plugs Prevent Vascular Hemorrhage at Sites of Neutrophil Diapedesis. Journal of Investigative Dermatology, 142, 2558-2560. https://doi.org/10.1016/j.jid.2022.06.009 |
[38] |
Li, J., Angsantikul, P., Liu, W., Esteban‐Fernández de Ávila, B., Chang, X., Sandraz, E., et al. (2017) Biomimetic Platelet‐Camouflaged Nanorobots for Binding and Isolation of Biological Threats. Advanced Materials, 30, Article ID: 1704800. https://doi.org/10.1002/adma.201704800 |
[39] |
Tang, S., Zhang, F., Gong, H., Wei, F., Zhuang, J., Karshalev, E., et al. (2020) Enzyme-powered Janus Platelet Cell Robots for Active and Targeted Drug Delivery. Science Robotics, 5, eaba6137. https://doi.org/10.1126/scirobotics.aba6137 |
[40] |
Huang, Y., Li, T., Gao, W., Wang, Q., Li, X., Mao, C., et al. (2020) Platelet-Derived Nanomotor Coated Balloon for Atherosclerosis Combination Therapy. Journal of Materials Chemistry B, 8, 5765-5775. https://doi.org/10.1039/d0tb00789g |
[41] |
Wan, M., Wang, Q., Wang, R., Wu, R., Li, T., Fang, D., et al. (2020) Platelet-Derived Porous Nanomotor for Thrombus Therapy. Science Advances, 6, eaaz9014. https://doi.org/10.1126/sciadv.aaz9014 |
[42] |
Springer, T.A. (1994) Traffic Signals for Lymphocyte Recirculation and Leukocyte Emigration: The Multistep Paradigm. Cell, 76, 301-314. https://doi.org/10.1016/0092-8674(94)90337-9 |
[43] |
Wang, D., Gao, C., Zhou, C., Lin, Z. and He, Q. (2020) Leukocyte Membrane-Coated Liquid Metal Nanoswimmers for Actively Targeted Delivery and Synergistic Chemophotothermal Therapy. Research, 2020, Article ID: 3676954. https://doi.org/10.34133/2020/3676954 |
[44] |
Fang, R.H., Hu, C.J., Luk, B.T., Gao, W., Copp, J.A., Tai, Y., et al. (2014) Cancer Cell Membrane-Coated Nanoparticles for Anticancer Vaccination and Drug Delivery. Nano Letters, 14, 2181-2188. https://doi.org/10.1021/nl500618u |
[45] |
Pereira-Silva, M., Santos, A.C., Conde, J., Hoskins, C., Concheiro, A., Alvarez-Lorenzo, C., et al. (2020) Biomimetic Cancer Cell Membrane-Coated Nanosystems as Next-Generation Cancer Therapies. Expert Opinion on Drug Delivery, 17, 1515-1518. https://doi.org/10.1080/17425247.2020.1813109 |
[46] |
Zhang, H., Li, Z., Wu, Z. and He, Q. (2019) Cancer Cell Membrane‐Camouflaged Micromotor. Advanced Therapeutics, 2, Article ID: 1900096. https://doi.org/10.1002/adtp.201900096 |
[47] |
Zhou, M., Xing, Y., Li, X., Du, X., Xu, T. and Zhang, X. (2020) Cancer Cell Membrane Camouflaged Semi-Yolk@Spiky-Shell Nanomotor for Enhanced Cell Adhesion and Synergistic Therapy. Small, 16, Article ID: 2003834. https://doi.org/10.1002/smll.202003834 |
[48] |
Cheng, L. and Hill, A.F. (2022) Therapeutically Harnessing Extracellular Vesicles. Nature Reviews Drug Discovery, 21, 379-399. https://doi.org/10.1038/s41573-022-00410-w |
[49] |
Liu, A., Wang, Q., Zhao, Z., Wu, R., Wang, M., Li, J., et al. (2021) Nitric Oxide Nanomotor Driving Exosomes-Loaded Microneedles for Achilles Tendinopathy Healing. ACS Nano, 15, 13339-13350. https://doi.org/10.1021/acsnano.1c03177 |
[50] |
Wang, Q., Li, T., Yang, J., Zhao, Z., Tan, K., Tang, S., et al. (2022) Engineered Exosomes with Independent Module/Cascading Function for Therapy of Parkinson’s Disease by Multistep Targeting and Multistage Intervention Method. Advanced Materials, 34, Article ID: 2201406. https://doi.org/10.1002/adma.202201406 |
[51] |
Tu, Y., Peng, F., Heuvelmans, J.M., Liu, S., Nolte, R.J.M. and Wilson, D.A. (2019) Motion Control of Polymeric Nanomotors Based on Host-Guest Interactions. Angewandte Chemie International Edition, 58, 8687-8691. https://doi.org/10.1002/anie.201900917 |
[52] |
Tu, Y., Peng, F., White, P.B. and Wilson, D.A. (2017) Redox‐Sensitive Stomatocyte Nanomotors: Destruction and Drug Release in the Presence of Glutathione. Angewandte Chemie International Edition, 56, 7620-7624. https://doi.org/10.1002/anie.201703276 |
[53] |
Tu, Y., Peng, F., André, A.A.M., Men, Y., Srinivas, M. and Wilson, D.A. (2017) Biodegradable Hybrid Stomatocyte Nanomotors for Drug Delivery. ACS Nano, 11, 1957-1963. https://doi.org/10.1021/acsnano.6b08079 |
[54] |
Choi, H., Lee, G., Kim, K.S. and Hahn, S.K. (2018) Light-guided Nanomotor Systems for Autonomous Photothermal Cancer Therapy. ACS Applied Materials & Interfaces, 10, 2338-2346. https://doi.org/10.1021/acsami.7b16595 |
[55] |
Zhang, P., Wu, G., Zhao, C., Zhou, L., Wang, X. and Wei, S. (2020) Magnetic Stomatocyte-Like Nanomotor as Photosensitizer Carrier for Photodynamic Therapy Based Cancer Treatment. Colloids and Surfaces B: Biointerfaces, 194, Article ID: 111204. https://doi.org/10.1016/j.colsurfb.2020.111204 |