[1] |
中国居民营养与慢性病状况报告(2020年) [J]. 营养学报, 2020, 42(6): 521. |
[2] |
Leigh, S. and Morris, M.J. (2020) Diet, Inflammation and the Gut Microbiome: Mechanisms for Obesity-Associated Cognitive Impairment. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1866, Article ID: 165767. https://doi.org/10.1016/j.bbadis.2020.165767 |
[3] |
Wernberg, C.W., Grønkjær, L.L., Gade Jacobsen, B., Indira Chandran, V., Krag, A., Graversen, J.H., et al. (2023) The Prevalence and Risk Factors for Cognitive Impairment in Obesity and NAFLD. Hepatology Communications, 7, e00203. https://doi.org/10.1097/hc9.0000000000000203 |
[4] |
Pérez Palmer, N., Trejo Ortega, B. and Joshi, P. (2022) Cognitive Impairment in Older Adults: Epidemiology, Diagnosis, and Treatment. Psychiatric Clinics of North America, 45, 639-661. https://doi.org/10.1016/j.psc.2022.07.010 |
[5] |
Santos-Paulo, S., Costello, S.P., Forster, S.C., Travis, S.P. and Bryant, R.V. (2021) The Gut Microbiota as a Therapeutic Target for Obesity: A Scoping Review. Nutrition Research Reviews, 35, 207-220. https://doi.org/10.1017/s0954422421000160 |
[6] |
Vuotto, C., Battistini, L., Caltagirone, C. and Borsellino, G. (2020) Gut Microbiota and Disorders of the Central Nervous System. The Neuroscientist, 26, 487-502. https://doi.org/10.1177/1073858420918826 |
[7] |
Amabebe, E., Robert, F.O., Agbalalah, T. and Orubu, E.S.F. (2020) Microbial Dysbiosis-Induced Obesity: Role of Gut Microbiota in Homoeostasis of Energy Metabolism. British Journal of Nutrition, 123, 1127-1137. https://doi.org/10.1017/s0007114520000380 |
[8] |
Putri, S.S.F., Irfannuddin, I., Murti, K., Kesuma, Y., Darmawan, H. and Koibuchi, N. (2023) The Role of Gut Microbiota on Cognitive Development in Rodents: A Meta-Analysis. The Journal of Physiological Sciences, 73, Article No. 10. https://doi.org/10.1186/s12576-023-00869-1 |
[9] |
Murga-Garrido, S.M., Orbe-Orihuela, Y.C., Díaz-Benítez, C.E., Castañeda-Márquez, A.C., Cornejo-Granados, F., Ochoa-Leyva, A., et al. (2022) Alterations of the Gut Microbiome Associated to Methane Metabolism in Mexican Children with Obesity. Children, 9, Article No. 148. https://doi.org/10.3390/children9020148 |
[10] |
Schleh, M.W., Caslin, H.L., Garcia, J.N., Mashayekhi, M., Srivastava, G., Bradley, A.B., et al. (2023) Metaflammation in Obesity and Its Therapeutic Targeting. Science Translational Medicine, 15, eadf9382. https://doi.org/10.1126/scitranslmed.adf9382 |
[11] |
Nakandakari, S.C.B.R., Muñoz, V.R., Kuga, G.K., et al. (2019) Short-Term High-Fat Diet Modulates Several Inflammatory, ER Stress, and Apoptosis Markers in the Hippocampus of Young Mice. Brain, Behavior, and Immunity, 79, 284-293. |
[12] |
Decourt, B., Lahiri, D.K. and Sabbagh, M.N. (2017) Targeting Tumor Necrosis Factor Alpha for Alzheimer’s Disease. Current Alzheimer Research, 14, 412-425. https://doi.org/10.2174/1567205013666160930110551 |
[13] |
Loffredo, L., Ettorre, E., Zicari, A.M., Inghilleri, M., Nocella, C., Perri, L., et al. (2020) Oxidative Stress and Gut-Derived Lipopolysaccharides in Neurodegenerative Disease: Role of NOX2. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 8630275. https://doi.org/10.1155/2020/8630275 |
[14] |
Kadry, H., Noorani, B. and Cucullo, L. (2020) A Blood-Brain Barrier Overview on Structure, Function, Impairment, and Biomarkers of Integrity. Fluids and Barriers of the CNS, 17, Article No. 69. https://doi.org/10.1186/s12987-020-00230-3 |
[15] |
Chen, T., Dai, Y., Hu, C., Lin, Z., Wang, S., Yang, J., et al. (2024) Cellular and Molecular Mechanisms of the Blood-Brain Barrier Dysfunction in Neurodegenerative Diseases. Fluids and Barriers of the CNS, 21, Article No. 60. https://doi.org/10.1186/s12987-024-00557-1 |
[16] |
Parker, A., Fonseca, S. and Carding, S.R. (2019) Gut Microbes and Metabolites as Modulators of Blood-Brain Barrier Integrity and Brain Health. Gut Microbes, 11, 135-157. https://doi.org/10.1080/19490976.2019.1638722 |
[17] |
Sun, N., Hu, H., Wang, F., Li, L., Zhu, W., Shen, Y., et al. (2021) Antibiotic-Induced Microbiome Depletion in Adult Mice Disrupts Blood-Brain Barrier and Facilitates Brain Infiltration of Monocytes after Bone-Marrow Transplantation. Brain, Behavior, and Immunity, 92, 102-114. https://doi.org/10.1016/j.bbi.2020.11.032 |
[18] |
Wu, H., Zhang, W., Huang, M., Lin, X. and Chiou, J. (2023) Prolonged High-Fat Diet Consumption throughout Adulthood in Mice Induced Neurobehavioral Deterioration via Gut-Brain Axis. Nutrients, 15, Article No. 392. https://doi.org/10.3390/nu15020392 |
[19] |
Hoffman, J.D., Parikh, I., Green, S.J., Chlipala, G., Mohney, R.P., Keaton, M., et al. (2017) Age Drives Distortion of Brain Metabolic, Vascular and Cognitive Functions, and the Gut Microbiome. Frontiers in Aging Neuroscience, 9, Article No. 298. https://doi.org/10.3389/fnagi.2017.00298 |
[20] |
Zhou, M., Cornell, J., Salinas, S. and Huang, H. (2022) Microglia Regulation of Synaptic Plasticity and Learning and Memory. Neural Regeneration Research, 17, 705-716. https://doi.org/10.4103/1673-5374.322423 |
[21] |
Liang, Z., Gong, X., Ye, R., Zhao, Y., Yu, J., Zhao, Y., et al. (2023) Long-Term High-Fat Diet Consumption Induces Cognitive Decline Accompanied by Tau Hyper-Phosphorylation and Microglial Activation in Aging. Nutrients, 15, Article No. 250. https://doi.org/10.3390/nu15010250 |
[22] |
So, S.W., Fleming, K.M., Duffy, C.M., Nixon, J.P., Bernlohr, D.A. and Butterick, T.A. (2022) Microglial FABP4-UCP2 Axis Modulates Neuroinflammation and Cognitive Decline in Obese Mice. International Journal of Molecular Sciences, 23, Article No. 4354. https://doi.org/10.3390/ijms23084354 |
[23] |
Michel, L. and Prat, A. (2016) One More Role for the Gut: Microbiota and Blood Brain Barrier. Annals of Translational Medicine, 4, 15. |
[24] |
Inaba, T., Yamashiro, K., Kurita, N., Ueno, Y., Miyamoto, N., Hira, K., et al. (2023) Microbial Lipopolysaccharide‐induced Inflammation Contributes to Cognitive Impairment and White Matter Lesion Progression in Diet‐Induced Obese Mice with Chronic Cerebral Hypoperfusion. CNS Neuroscience & Therapeutics, 29, 200-212. https://doi.org/10.1111/cns.14301 |
[25] |
Antonini, M., Lo Conte, M., Sorini, C. and Falcone, M. (2019) How the Interplay between the Commensal Microbiota, Gut Barrier Integrity, and Mucosal Immunity Regulates Brain Autoimmunity. Frontiers in Immunology, 10, Article No. 1937. https://doi.org/10.3389/fimmu.2019.01937 |
[26] |
Yang, Q., Wang, Y., Jia, A., Wang, Y., Bi, Y. and Liu, G. (2020) The Crosstalk between Gut Bacteria and Host Immunity in Intestinal Inflammation. Journal of Cellular Physiology, 236, 2239-2254. https://doi.org/10.1002/jcp.30024 |
[27] |
Asadi, A., Shadab Mehr, N., Mohamadi, M.H., Shokri, F., Heidary, M., Sadeghifard, N., et al. (2022) Obesity and Gut-Microbiota-Brain Axis: A Narrative Review. Journal of Clinical Laboratory Analysis, 36, e24420. https://doi.org/10.1002/jcla.24420 |
[28] |
Cryan, J.F., O’Riordan, K.J., Sandhu, K., Peterson, V. and Dinan, T.G. (2020) The Gut Microbiome in Neurological Disorders. The Lancet Neurology, 19, 179-194. https://doi.org/10.1016/s1474-4422(19)30356-4 |
[29] |
谢献政, 杨然栋, 陈肖鸣. 丙酸钠通过抑制NLRP3保护脓毒症大鼠的结肠组织[J]. 温州医科大学学报, 2020, 50(9): 712-716, 722. |
[30] |
Dalile, B., Van Oudenhove, L., Vervliet, B. and Verbeke, K. (2019) The Role of Short-Chain Fatty Acids in Microbiota-Gut-Brain Communication. Nature Reviews Gastroenterology & Hepatology, 16, 461-478. https://doi.org/10.1038/s41575-019-0157-3 |
[31] |
Tang, W., Zhu, H., Feng, Y., Guo, R. and Wan, D. (2020) The Impact of Gut Microbiota Disorders on the Blood-Brain Barrier. Infection and Drug Resistance, 13, 3351-3363. https://doi.org/10.2147/idr.s254403 |
[32] |
Mo, X., Cheng, R., Shen, L., Liu, N., Sun, Y., Lin, S., et al. (2024) Yeast β-Glucan Alleviates High-Fat Diet-Induced Alzheimer’s Disease-Like Pathologies in Rats via the Gut-Brain Axis. International Journal of Biological Macromolecules, 278, Article ID: 134939. https://doi.org/10.1016/j.ijbiomac.2024.134939 |
[33] |
Jameson, K.G., Olson, C.A., Kazmi, S.A. and Hsiao, E.Y. (2020) Toward Understanding Microbiome-Neuronal Signaling. Molecular Cell, 78, 577-583. https://doi.org/10.1016/j.molcel.2020.03.006 |
[34] |
Labban, R.S.M., Alfawaz, H., Almnaizel, A.T., Hassan, W.M., Bhat, R.S., Moubayed, N.M., et al. (2020) High-Fat Diet-Induced Obesity and Impairment of Brain Neurotransmitter Pool. Translational Neuroscience, 11, 147-160. https://doi.org/10.1515/tnsci-2020-0099 |
[35] |
Saiyasit, N., Chunchai, T., Prus, D., Suparan, K., Pittayapong, P., Apaijai, N., et al. (2020) Gut Dysbiosis Develops before Metabolic Disturbance and Cognitive Decline in High-Fat Diet-Induced Obese Condition. Nutrition, 69, Article ID: 110576. https://doi.org/10.1016/j.nut.2019.110576 |
[36] |
Noye Tuplin, E.W., Alukic, E., Lowry, D.E., Chleilat, F., Wang, W., Cho, N.A., et al. (2022) Dietary Fiber Combinations to Mitigate the Metabolic, Microbial, and Cognitive Imbalances Resulting from Diet‐induced Obesity in Rats. The FASEB Journal, 36, e22269. https://doi.org/10.1096/fj.202101750r |
[37] |
Zhao, X., Wang, M., Wen, Z., Lu, Z., Cui, L., Fu, C., et al. (2021) GLP-1 Receptor Agonists: Beyond Their Pancreatic Effects. Frontiers in Endocrinology, 12, Article 721135. https://doi.org/10.3389/fendo.2021.721135 |
[38] |
Ducastel, S., Touche, V., Trabelsi, M., Boulinguiez, A., Butruille, L., Nawrot, M., et al. (2020) The Nuclear Receptor FXR Inhibits Glucagon-Like Peptide-1 Secretion in Response to Microbiota-Derived Short-Chain Fatty Acids. Scientific Reports, 10, Article No. 174. https://doi.org/10.1038/s41598-019-56743-x |
[39] |
Sun, P., Wang, M., Li, Z., Wei, J., Liu, F., Zheng, W., et al. (2022) Eucommiae cortex Polysaccharides Mitigate Obesogenic Diet-Induced Cognitive and Social Dysfunction via Modulation of Gut Microbiota and Tryptophan Metabolism. Theranostics, 12, 3637-3655. https://doi.org/10.7150/thno.72756 |
[40] |
Lamichhane, G., Liu, J., Lee, S., Lee, D., Zhang, G. and Kim, Y. (2024) Curcumin Mitigates the High-Fat High-Sugar Diet-Induced Impairment of Spatial Memory, Hepatic Metabolism, and the Alteration of the Gut Microbiome in Alzheimer’s Disease-Induced (3xTG-AD) Mice. Nutrients, 16, Article No. 240. https://doi.org/10.3390/nu16020240 |
[41] |
Zhang, S.Q., Tian, D., Hu, C.Y. and Meng, Y.H. (2022) Chlorogenic Acid Ameliorates High-Fat and High-Fructose Diet-Induced Cognitive Impairment via Mediating the Microbiota-Gut-Brain Axis. Journal of Agricultural and Food Chemistry, 70, 2600-2615. https://doi.org/10.1021/acs.jafc.1c07479 |
[42] |
Wang, S., Huang, X., Zhang, P., Wang, H., Zhang, Q., Yu, S., et al. (2016) Chronic Rhein Treatment Improves Recognition Memory in High-Fat Diet-Induced Obese Male Mice. The Journal of Nutritional Biochemistry, 36, 42-50. https://doi.org/10.1016/j.jnutbio.2016.07.008 |
[43] |
Ren, H., Gao, S., Wang, S., Wang, J., Cheng, Y., Wang, Y., et al. (2022) Effects of Dangshen Yuanzhi Powder on Learning Ability and Gut Microflora in Rats with Memory Disorder. Journal of Ethnopharmacology, 296, Article ID: 115410. https://doi.org/10.1016/j.jep.2022.115410 |
[44] |
Wang, H., Wang, Q., Liang, C., Su, M., Wang, X., Li, H., et al. (2019) Acupuncture Regulating Gut Microbiota in Abdominal Obese Rats Induced by High-Fat Diet. Evidence-Based Complementary and Alternative Medicine, 2019, Article ID: 4958294. https://doi.org/10.1155/2019/4958294 |
[45] |
Tian, H.R., Zhou, Y.D., Lu, D.M., et al. (2024) Effects of Electroacupuncture on the Inflammatory Response and Intestinal Flora in Obese Rats. Acupuncture Research, 49, 949-956. |
[46] |
Zhou, Y.D., Yang, S.R., Wang, Y.Y., et al. (2022) Effect of Electroacupuncture at Different Acupoint Combination on Intestinal Inflammatory Response and Intestinal Flora in Obese Rats. Chinese Acupuncture & Moxibustion, 42, 1145-1152. |
[47] |
Jing, C., Xiao, N., Yu, H.J., et al. (2021) Effect of Umbilical Moxibustion on Phlegm Damp Constitution and Intestinal Flora. Chinese Acupuncture & Moxibustion, 41, 1360-1364. |