基于肠道菌群探讨肥胖相关认知功能障碍的发病机制及中医药治疗进展
Exploring the Pathogenesis of Obesity-Related Cognitive Dysfunction and the Progress of Traditional Chinese Medicine Treatment Based on the GutMicrobiota
DOI: 10.12677/jcpm.2024.34386, PDF, HTML, XML,   
作者: 周华婷*:黑龙江中医药大学研究生院,黑龙江 哈尔滨;王玉琳#:黑龙江中医药大学附属第二医院,黑龙江 哈尔滨
关键词: 肠道菌群肥胖认知功能障碍Gut Microbiota Obesity Cognitive Dysfunction
摘要: 随着肥胖率的上升,肥胖相关认知功能障碍的发生也越来越普遍。近年来的研究发现,肠道菌群与肥胖相关认知功能障碍发病密切相关,其可能通过影响神经炎症、BBB的完整性、胃肠屏障的通透性、肠道菌群代谢产物的生成以及影响胰岛素敏感性等途径影响认知功能。改善肠道菌群在改善肥胖相关认知功能障碍方面具有潜在作用,但具体的调控机制尚未明确。本文将从肠道菌群的角度探讨肥胖相关认知功能障碍的发病机制以及中医药在治疗方面的进展,旨在为临床肥胖相关认知功能障碍的预防、诊断及治疗提供新的思路。
Abstract: With the rise in obesity rates, the occurrence of obesity-related cognitive dysfunction is also becoming more common. Recent studies have found that gut microbiota is closely related to the incidence of obesity-related cognitive dysfunction, which may affect cognitive function by affecting neuroinflammation, BBB integrity, gastrointestinal barrier permeability, gut microbiota metabolites, and insulin sensitivity. Improving gut microbiota has a potential role in improving obesity-related cognitive dysfunction, but the specific regulatory mechanism has not yet been clarified. This article will explore the pathogenesis of obesity-related cognitive dysfunction and the progress of traditional Chinese medicine treatment from the perspective of gut microbiota, in order to provide new ideas for the prevention, diagnosis and treatment of clinical obesity-related cognitive dysfunction.
文章引用:周华婷, 王玉琳. 基于肠道菌群探讨肥胖相关认知功能障碍的发病机制及中医药治疗进展[J]. 临床个性化医学, 2024, 3(4): 2725-2732. https://doi.org/10.12677/jcpm.2024.34386

1. 引言

现如今,肥胖已经成为日益严重的全球性健康问题。据2020年中国居民营养与慢性病调查报告中显示,城乡各年龄组居民肥胖率持续上升,超过一半的成年居民患有肥胖[1]。肥胖除了能增加多种疾病的患病风险外,还与认知功能障碍呈线性相关[2]。随着肥胖率的不断提升,肥胖相关的认知功能障碍的发生也越来越普遍。Wernberg等[3]的研究中严重肥胖患者中有40%存在多领域认知障碍。而认知障碍是一种以获得性认知功能损害为核心的综合征,主要表现为不同程度的记忆、理解、判断及视觉空间能力的损害[4],严重影响着患者的日常生活和社会能力。因此如何防控肥胖导致的认知功能障碍对提高肥胖患者的生活质量至关重要。目前肥胖引起认知功能障碍的机制研究还在探索阶段,有研究发现,调节肠道菌群可能是预防和治疗认知障碍的一个新的潜在治疗靶点[5]。因此,本文将从肠道菌群的角度探讨肥胖相关认知功能障碍的发病机制及中医药治疗进展,以期为临床肥胖相关认知障碍的预防、诊断及治疗提供新的思路。

2. 肥胖导致肠道菌群失调

肠道菌群是一个由微生物、古细菌、病毒及其基因组成的复杂生态系统,在免疫系统发育和成熟、肠道形态和执行基本代谢功能方面起着关键作用[6]。其中,厚壁菌门和拟杆菌门与肥胖的形成密切相关。Emmanuel等[7]的研究证明,与非肥胖个体相比,肥胖个体的肠道菌群多样性显著降低。陈说等[8]的研究也证明,与消瘦型小鼠相比,肥胖型小鼠肠道中的拟杆菌门比例明显降低,厚壁菌门比例明显升高,肠道中厚壁菌门/拟杆菌门(F/B)的比值升高。而这种拟杆菌门的比例变化与脂肪消耗呈负相关,而厚壁菌门的比例变化与能量摄入和脂肪储存呈正相关[9]。此外F/B比值的变化与认知功能障碍也有着密切的关系。拟杆菌门与海马体的结构和功能可塑性呈正相关,而厚壁菌门可以促进神经活性代谢物产生的改变并改变宿主神经递质回路,促进认知障碍的发生[8]。总之,肥胖能引起肠道菌群的改变,而肠道菌群的失调则会影响大脑的认知功能,在认知功能障碍的发生发展中起着重要的作用。接下来本文将从肠道菌群失调对神经炎症、BBB的完整性、胃肠屏障的通透性、肠道菌群代谢产物的生成以及胰岛素敏感性的影响几方面对肥胖相关认知功能障碍的作用机制进行论述。

3. 肥胖导致的肠道菌群失调对认知障碍的作用机制

3.1. 神经炎症

肥胖是一种全身性的低度炎症状态。多种炎症标志物和促炎细胞因子与肥胖的发展密切相关[10]。高脂饮食(high fat diet, HFD)会使肠道中微生物的多样性和稳定性降低,从而使肠道屏障遭到破坏、循环中的促炎细胞因子和细菌衍生产物的进一步增加、小胶质细胞过度激活以及突触损伤,进而导致认知能力下降[11]。Decourt等[12]的研究表明,双歧杆菌含量可以减缓AD患者的认知障碍,主要原因是肿瘤坏死因子-α (TNF-α)是AD发展的关键促炎细胞因子,而双歧杆菌与TNF-α之间呈负相关。所以,异常的肠道菌群是肥胖状态下免疫信号传导的关键调节因子,会促使认知障碍的发生发展。在肥胖状态下,肠源性脂多糖(lipopolysaccharide, LPS)与Toll样受体4 (TLR4)受体结合,引起肠道炎症,改变肠黏膜通透性,刺激炎症因子TLR-2、白介素-6 (IL-6)及TNF-α产生,通过血脑屏障,活跃大脑中的常驻免疫效应细胞–小胶质细胞,促使TLRs及活性氧增加,介导神经炎症,损伤神经元,导致多种神经退行性认知障碍疾病的发生[13]

3.2. 影响BBB的完整性

血脑屏障(blood brain barrier, BBB)是由人脑微血管内皮细胞、基底膜、周细胞和星型胶质细胞的末端共同构成的一种微血管结构,对维持大脑稳态以及确保神经系统功能的正常发挥至关重要[14]。当血脑屏障受到破坏时,来自血液的神经毒性物质、细胞和微生物病原体等可进入大脑,这些物质与炎症和免疫反应相互作用,可能会引发多种神经退行性疾病[15]。通过影响BBB的结构和功能,肥胖和高脂饮食可以对认知功能产生影响。Parker等[16]的研究表明,肠道菌群的代谢产物如SCFAs、维生素、三甲胺、氨基酸代谢物等通过调节紧密连接(Tight Junction, TJ)蛋白、小胶质细胞等途径对血脑屏障起到调节与保护作用。而作为内皮细胞的重要组成部分,TJ蛋白也是BBB的结构和基础。肠道菌群的失调会降低TJ蛋白的表达,并引起BBB通透性改变[17]。吴海翠等[18]的研究也表明,长期摄入HFD后,小鼠海马体和前额叶皮层中与紧密连接蛋白ZO-1和Occludin相关的基因转录本ZO-1和Occludin参与BBB的转录本均减少。此外,具有肥胖型肠道菌群的正常体重小鼠可出现BBB功能障碍、脑血流量降低和认知能力的恶化[19]。另一方面,肠道菌群的代谢产物会在BBB损伤后渗透海马间隙进而激活小胶质细胞。小胶质细胞的激活将会降低突触可塑性,并直接影响大脑的长时程增强,从而导致认知障碍[20]。郑亮等[21]的研究证明,长期摄入HFD会使Tau过度磷酸化、小胶质细胞激活和炎性细胞因子表达增加,导致认知功能恶化。Simon等[22]的研究中,HFD喂养的AKO小鼠(缺乏小胶质细胞FABP4的小鼠)海马炎性细胞因子表达和小胶质细胞增生降低,小胶质细胞UCP2表达增加。这些更说明了肥胖和高脂饮食引起的肠道菌群的失调可以通过降低TJ蛋白的表达进而破坏血脑屏障,促进小胶质细胞的激活从而引起认知功能障碍[23]

3.3. 影响胃肠屏障的通透性

肠道屏障的保护功能对人体至关重要。肠道菌群失调可以通过双向肠脑通讯诱发认知障碍,其中许多是由肠道菌群产生的代谢物或免疫因子介导的。Inab等[24]的研究表明,与肥胖相关的认知功能障碍通常伴随着肠道通透性和炎症的增加。因此,肠道是微生物–肠道–大脑轴线上的关键节点。当肠道屏障完整性遭到破坏,一些细菌抗原、代谢物和毒素等易于进入体循环,进而导致炎症反应,并对认知功能产生影响[25]。而肠道菌群与肠道屏障的关系尤为密切,可通过多种途径对肠道屏障产生影响。当肠道菌群紊乱时,脂多糖、鞭毛蛋白等细菌成分会通过不同的途径加重炎症反应,并使得肠道屏障完整性遭到破坏[26]。吴海翠等[18]的研究显示,在饮食诱导的肥胖小鼠中,肥胖与肠道通透性增加有关,肠道菌群可通过肠–脑轴进而影响宿主的认知功能。

3.4. 影响肠道菌群代谢产物的生成

肥胖时会出现SCFAs水平降低并影响神经递质及其前体的产生[27]。越来越多的证据也表明,肠道菌群的代谢物(例如短链脂肪酸、神经递质及其前体)可以通过血液循环影响大脑中相关代谢物的水平,从而调节大脑功能和认知[28]

3.4.1. 短链脂肪酸

短链脂肪酸(short-chain fatty acids, SCFAs)是胃肠道膳食纤维细菌发酵产生的主要代谢产物之一,主要包括乙酸盐、丙酸盐、丁酸盐[29]。SCFAs具有神经活性,可以调节神经信号传导和神经炎症,被认为与认知功能的改善以及神经保护效应有关[30]。唐伟等[31]的研究发现,在无菌小鼠使用产生SCFAs的细菌后,TJ蛋白的表达增加,BBB的完整性得到恢复。而当肠道系统紊乱时,SCFAs表达水平降低,导致TJ蛋白减少,影响BBB通透性,继而影响大脑功能。莫小星等[32]的研究表明,长期服用酵母β葡聚糖(yeast β-glucan, BG)会促进肠道菌群衍生的SCFAs的产生,从而进一步抑制NLRP3炎性小体介导的神经炎症,减轻HFD诱导的大鼠AD样病变。这些都表明SCFAs水平可影响认知功能,当SCFAs水平降低时认知能力下降,SCFAs水平升高认知能力得到改善。

3.4.2. 神经递质及其前体

大脑的功能活动取决于不同类型神经元和神经胶质细胞之间的信号传递,而神经胶质细胞主要依赖于神经递质。有兴奋性神经递质,如谷氨酸、乙酰胆碱和多巴胺,以及抑制性神经递质,如γ-氨基丁酸、甘氨酸和血清素。神经递质积极参与各种大脑功能,包括运动、情绪、学习和记忆[33]。Labban等[34]的研究表明,HFD影响了肠道细菌组成,HFD小鼠肠道的拟杆菌门数量明显下降,厚壁菌门数量明显增多,且HFD小鼠中多巴胺和谷氨酸水平显着升高,血清素水平显着降低,从而影响了大脑功能和认知。

3.5. 影响胰岛素敏感性

高脂饮食会降低胰岛素敏感性,进而导致认知功能下降。Saiyasit等[35]的研究发现,HFD大鼠12周后表现出胰岛素不敏感,海马突触可塑性降低,树突棘数量减少,导致认知障碍。Noye Tuplin等[36]的研究表明,在饮食诱导的肥胖大鼠中发现,膳食纤维可增加有益双歧杆菌和乳酸菌丰富度,提高胰岛素敏感性从而改善认知功能。另外,胰高血糖素样肽-1 (glucagon-like prptide-1, GLP-1)信号通路在促进海马神经可塑性、改善记忆功能中发挥着重要作用[37]。肠道菌群产生的SCFAs (如丁酸盐)可以作用于G蛋白偶联受体,刺激GLP-1分泌从而增强胰岛素敏感性和认知功能[38]

4. 中医药改善肠道菌群治疗认知障碍

现代医学中,目前尚无专门针对肥胖相关认知功能障碍的特定药物,临床中主要通过生活方式干预联合药物治疗等多种综合治疗方法对疾病进行干预。但长期服用药物会出现多种不良反应,反而会加重患者的负担,而中医药对肥胖相关认知功能障碍的治疗具有多成分、多靶点、安全性高的优势,在临床上疗效显著。在中医学中,“认知障碍”并没有相对应的病名,根据疾病的具体临床表现及发病特点,通常将其归属于“呆病”“健忘”“喜忘”等神志病范畴,中医学认为其发病与虚、痰、瘀等密切相关:一为脾肾亏虚,气血不足,髓海空虚;二为痰浊内生,上蒙清窍;三为气血不畅,脑络瘀阻,神明不清。根据中医证型辨证论治,中医药在肥胖相关认知功能障碍的治疗中被广泛应用,起到良好的治疗效果。

4.1. 中药治疗

使用草药和草药产品作为治疗剂在各种疾病领域发挥着重要作用。草药由于其来源天然以及较少的副作用广泛地被作为益智药使用,包括用于AD。中药治疗包括单方和复方,多种中药单方或活性成分以及复方都可调节肠道菌群结构,进而促使肥胖相关认知功能障碍的好转。孙鹏豪等[39]的研究发现,杜仲多糖能够有效抑制肥胖导致认知障碍小鼠肠道内大肠杆菌以及产生SCFAs的细菌的增殖,同时降低其粪便和血清中LPS的浓度,以及海马内一氧化氮合酶(iNOS)、IL-1β、TNF-α、IL-6、NF-κB、Toll样受体4 (TLR4)水平,改善结肠与神经炎症,从而提高其认知功能。Gopal等[40]的研究发现,姜黄素能够恢复高脂高糖(high fat and high sugar diet, HFHSD)饮食喂养的3xTg-AD小鼠肠道内的有益菌群,并通过减少脂肪酸合成、改变胆固醇代谢和抑制肝脏中脂肪生成相关通路以及大脑中修饰的突触可塑性相关通路,使小鼠体重减轻以及行为和认知能力得到改善。张淑青等[41]的研究发现,绿原酸通过增加肠道菌群的多样性和产生SCFAs的细菌属的水平,增强神经活性配体-受体相互作用途径中富集的基因的表达,降低炎症因子的表达以及能量代谢物的浓度,增加磷酸胆碱,可显著预防HFHSD诱导的认知功能障碍。王森等[42]的研究发现,大黄酸可显著改变HFD小鼠的肠道菌群,降低血浆LPS,减少巨噬细胞积累,减少神经炎症,增加脑源性神经营养因子(brain-derived neurotrophic factor, BDNF),进而改善认知功能。因此,杜仲多糖、姜黄素、绿原酸、大黄酸等中药单方可以通过调节肠道菌群结构与稳态,对神经炎症、肠道菌群代谢产物的生成以及胰岛素敏感性等产生影响,进而改善认知功能障碍。

除了中药单方的广泛应用,复方也能够通过调节肠道菌群治疗肥胖相关认知功能障碍。任海琴等[43]的研究发现,党参远志散可以通过恢复肠道菌群紊乱和回调血清中与“细菌–肠–脑轴”密切相关的异常生化指标来减轻记忆障碍大鼠的体重以及提高其学习和记忆能力。

4.2. 针灸

肥胖能引起肠道菌群的变化,而肠道菌群的失调会影响患者的认知能力,因此恢复肠道菌群的稳态可以用于治疗肥胖导致的认知障碍。针灸具有安全、方便、有效、便宜等明显的优势,可以对机体进行多方面的整体调节。王海英等[44]的研究发现,在HFD大鼠的带脉穴进行针刺治疗可显著降低大鼠的体重,减少食物摄入,增强胰岛素敏感性、葡萄糖稳态和脂质代谢,并显著降低厚壁菌门丰富度,提高拟杆菌门丰富度,使厚壁菌门与拟杆菌门的比例降低。田浩然等[45]的研究发现,电针刺激中脘、关元、足三里和丰隆等穴,会导致HFD大鼠体重下降,血清LPS和TNF-α水平降低,小肠组织中HMGB1和MyD88蛋白及mRNA表达水平降低,肠道菌群分析显示,乳酸菌属、Muri菌属、双歧杆菌属相对丰度升高,而柯林斯菌属、普氏菌属、高氏瘤胃球菌属相对丰度降低。说明电针能降低肥胖大鼠体质量、炎性因子水平,提高有益菌属丰度,降低有害菌属丰度,维持肠道菌群稳定。周玉典等[46]的研究也发现,在HFD大鼠中,采用标本配穴法在足三里、丰隆、中脘、天枢和关元进行EA刺激与选择电针下肢的足三里和丰隆穴,或者电针腹部的中脘、天枢和关元穴相比,标本配穴组大鼠小肠组织中IL-6、TNF-α蛋白表达低于其他2个EA治疗组,各EA治疗组厚壁菌门/拟杆菌门比例降低,乳酸菌门、双歧杆菌门和拟杆菌门丰度增加。与其他2个EA治疗组相比,标本穴位组乳酸菌属和毛霉菌属的丰度增加,而柯林氏菌属和高氏瘤胃球菌的丰度降低。说明了采用标本配穴法进行电针治疗可以减轻肠道炎症,进而恢复肠道微生物的稳态。并且效果优于下肢和腹部穴位的干预,可以更好地调节特定肠道菌群的丰度。另外,蔡静等[47]的研究发现,对肥胖患者进行脐灸治疗后,肥胖患者的体重减轻,Hallii真杆菌的相对丰度增加,而对照组Blautia的相对丰度降低。说明脐灸可能通过上调Hallii真杆菌的相对丰度来重塑肠道菌群。总之,针灸可以通过有效地调节肠道菌群结构,恢复肠道菌群稳态。又因为调节肠道菌群结构可以通过减轻神经炎症、恢复BBB的完整性、降低胃肠屏障的通透性、影响肠道菌群代谢产物的生成以及提高胰岛素敏感性等途径影响认知功能,所以针灸可以通过调节肠道菌群结构从而改善患者的认知功能。

5. 总结

综上所述,肠道菌群可能通过影响神经炎症、BBB的完整性、胃肠屏障的通透性、肠道菌群代谢产物的生成以及胰岛素敏感性等途径影响认知障碍的发生。此外,中药、针灸等中医药治疗方法可以恢复肠道菌群稳态,为肥胖相关认知障碍的治疗提供了良好的现代阐释。

但是,目前的相关研究也存在一定的不足。第一,目前绝大多数关于中医药调控肠道菌群改善认知障碍的研究多是基于啮齿动物模型,较少涉及临床验证研究。第二,治疗方法中现有研究多集中于中药活性成分和针刺,而对中药复方和艾灸治疗的相关研究较少,故需进一步开展针对中药复方和艾灸调节肠道菌群改善认知功能的相关研究。虽然目前肠道菌群及其代谢物与肥胖相关认知功能障碍的关联已经初有雏形,但肠道微生物体系本就是一个庞大而复杂的系统,其中肠道菌群与宿主的互作以及肠道菌群与各组织器官间的串联仍然需要我们继续探索。此外,对于肥胖相关认知功能障碍的治疗也还需要继续深入探索,扩大对临床样本的观察及应用范围,持续地充实和发展中药治疗理论,以期能为日后寻找到治疗肥胖相关认知功能障碍的特异性创新药物提供证据。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] 中国居民营养与慢性病状况报告(2020年) [J]. 营养学报, 2020, 42(6): 521.
[2] Leigh, S. and Morris, M.J. (2020) Diet, Inflammation and the Gut Microbiome: Mechanisms for Obesity-Associated Cognitive Impairment. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1866, Article ID: 165767.
https://doi.org/10.1016/j.bbadis.2020.165767
[3] Wernberg, C.W., Grønkjær, L.L., Gade Jacobsen, B., Indira Chandran, V., Krag, A., Graversen, J.H., et al. (2023) The Prevalence and Risk Factors for Cognitive Impairment in Obesity and NAFLD. Hepatology Communications, 7, e00203.
https://doi.org/10.1097/hc9.0000000000000203
[4] Pérez Palmer, N., Trejo Ortega, B. and Joshi, P. (2022) Cognitive Impairment in Older Adults: Epidemiology, Diagnosis, and Treatment. Psychiatric Clinics of North America, 45, 639-661.
https://doi.org/10.1016/j.psc.2022.07.010
[5] Santos-Paulo, S., Costello, S.P., Forster, S.C., Travis, S.P. and Bryant, R.V. (2021) The Gut Microbiota as a Therapeutic Target for Obesity: A Scoping Review. Nutrition Research Reviews, 35, 207-220.
https://doi.org/10.1017/s0954422421000160
[6] Vuotto, C., Battistini, L., Caltagirone, C. and Borsellino, G. (2020) Gut Microbiota and Disorders of the Central Nervous System. The Neuroscientist, 26, 487-502.
https://doi.org/10.1177/1073858420918826
[7] Amabebe, E., Robert, F.O., Agbalalah, T. and Orubu, E.S.F. (2020) Microbial Dysbiosis-Induced Obesity: Role of Gut Microbiota in Homoeostasis of Energy Metabolism. British Journal of Nutrition, 123, 1127-1137.
https://doi.org/10.1017/s0007114520000380
[8] Putri, S.S.F., Irfannuddin, I., Murti, K., Kesuma, Y., Darmawan, H. and Koibuchi, N. (2023) The Role of Gut Microbiota on Cognitive Development in Rodents: A Meta-Analysis. The Journal of Physiological Sciences, 73, Article No. 10.
https://doi.org/10.1186/s12576-023-00869-1
[9] Murga-Garrido, S.M., Orbe-Orihuela, Y.C., Díaz-Benítez, C.E., Castañeda-Márquez, A.C., Cornejo-Granados, F., Ochoa-Leyva, A., et al. (2022) Alterations of the Gut Microbiome Associated to Methane Metabolism in Mexican Children with Obesity. Children, 9, Article No. 148.
https://doi.org/10.3390/children9020148
[10] Schleh, M.W., Caslin, H.L., Garcia, J.N., Mashayekhi, M., Srivastava, G., Bradley, A.B., et al. (2023) Metaflammation in Obesity and Its Therapeutic Targeting. Science Translational Medicine, 15, eadf9382.
https://doi.org/10.1126/scitranslmed.adf9382
[11] Nakandakari, S.C.B.R., Muñoz, V.R., Kuga, G.K., et al. (2019) Short-Term High-Fat Diet Modulates Several Inflammatory, ER Stress, and Apoptosis Markers in the Hippocampus of Young Mice. Brain, Behavior, and Immunity, 79, 284-293.
[12] Decourt, B., Lahiri, D.K. and Sabbagh, M.N. (2017) Targeting Tumor Necrosis Factor Alpha for Alzheimer’s Disease. Current Alzheimer Research, 14, 412-425.
https://doi.org/10.2174/1567205013666160930110551
[13] Loffredo, L., Ettorre, E., Zicari, A.M., Inghilleri, M., Nocella, C., Perri, L., et al. (2020) Oxidative Stress and Gut-Derived Lipopolysaccharides in Neurodegenerative Disease: Role of NOX2. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 8630275.
https://doi.org/10.1155/2020/8630275
[14] Kadry, H., Noorani, B. and Cucullo, L. (2020) A Blood-Brain Barrier Overview on Structure, Function, Impairment, and Biomarkers of Integrity. Fluids and Barriers of the CNS, 17, Article No. 69.
https://doi.org/10.1186/s12987-020-00230-3
[15] Chen, T., Dai, Y., Hu, C., Lin, Z., Wang, S., Yang, J., et al. (2024) Cellular and Molecular Mechanisms of the Blood-Brain Barrier Dysfunction in Neurodegenerative Diseases. Fluids and Barriers of the CNS, 21, Article No. 60.
https://doi.org/10.1186/s12987-024-00557-1
[16] Parker, A., Fonseca, S. and Carding, S.R. (2019) Gut Microbes and Metabolites as Modulators of Blood-Brain Barrier Integrity and Brain Health. Gut Microbes, 11, 135-157.
https://doi.org/10.1080/19490976.2019.1638722
[17] Sun, N., Hu, H., Wang, F., Li, L., Zhu, W., Shen, Y., et al. (2021) Antibiotic-Induced Microbiome Depletion in Adult Mice Disrupts Blood-Brain Barrier and Facilitates Brain Infiltration of Monocytes after Bone-Marrow Transplantation. Brain, Behavior, and Immunity, 92, 102-114.
https://doi.org/10.1016/j.bbi.2020.11.032
[18] Wu, H., Zhang, W., Huang, M., Lin, X. and Chiou, J. (2023) Prolonged High-Fat Diet Consumption throughout Adulthood in Mice Induced Neurobehavioral Deterioration via Gut-Brain Axis. Nutrients, 15, Article No. 392.
https://doi.org/10.3390/nu15020392
[19] Hoffman, J.D., Parikh, I., Green, S.J., Chlipala, G., Mohney, R.P., Keaton, M., et al. (2017) Age Drives Distortion of Brain Metabolic, Vascular and Cognitive Functions, and the Gut Microbiome. Frontiers in Aging Neuroscience, 9, Article No. 298.
https://doi.org/10.3389/fnagi.2017.00298
[20] Zhou, M., Cornell, J., Salinas, S. and Huang, H. (2022) Microglia Regulation of Synaptic Plasticity and Learning and Memory. Neural Regeneration Research, 17, 705-716.
https://doi.org/10.4103/1673-5374.322423
[21] Liang, Z., Gong, X., Ye, R., Zhao, Y., Yu, J., Zhao, Y., et al. (2023) Long-Term High-Fat Diet Consumption Induces Cognitive Decline Accompanied by Tau Hyper-Phosphorylation and Microglial Activation in Aging. Nutrients, 15, Article No. 250.
https://doi.org/10.3390/nu15010250
[22] So, S.W., Fleming, K.M., Duffy, C.M., Nixon, J.P., Bernlohr, D.A. and Butterick, T.A. (2022) Microglial FABP4-UCP2 Axis Modulates Neuroinflammation and Cognitive Decline in Obese Mice. International Journal of Molecular Sciences, 23, Article No. 4354.
https://doi.org/10.3390/ijms23084354
[23] Michel, L. and Prat, A. (2016) One More Role for the Gut: Microbiota and Blood Brain Barrier. Annals of Translational Medicine, 4, 15.
[24] Inaba, T., Yamashiro, K., Kurita, N., Ueno, Y., Miyamoto, N., Hira, K., et al. (2023) Microbial Lipopolysaccharide‐induced Inflammation Contributes to Cognitive Impairment and White Matter Lesion Progression in Diet‐Induced Obese Mice with Chronic Cerebral Hypoperfusion. CNS Neuroscience & Therapeutics, 29, 200-212.
https://doi.org/10.1111/cns.14301
[25] Antonini, M., Lo Conte, M., Sorini, C. and Falcone, M. (2019) How the Interplay between the Commensal Microbiota, Gut Barrier Integrity, and Mucosal Immunity Regulates Brain Autoimmunity. Frontiers in Immunology, 10, Article No. 1937.
https://doi.org/10.3389/fimmu.2019.01937
[26] Yang, Q., Wang, Y., Jia, A., Wang, Y., Bi, Y. and Liu, G. (2020) The Crosstalk between Gut Bacteria and Host Immunity in Intestinal Inflammation. Journal of Cellular Physiology, 236, 2239-2254.
https://doi.org/10.1002/jcp.30024
[27] Asadi, A., Shadab Mehr, N., Mohamadi, M.H., Shokri, F., Heidary, M., Sadeghifard, N., et al. (2022) Obesity and Gut-Microbiota-Brain Axis: A Narrative Review. Journal of Clinical Laboratory Analysis, 36, e24420.
https://doi.org/10.1002/jcla.24420
[28] Cryan, J.F., O’Riordan, K.J., Sandhu, K., Peterson, V. and Dinan, T.G. (2020) The Gut Microbiome in Neurological Disorders. The Lancet Neurology, 19, 179-194.
https://doi.org/10.1016/s1474-4422(19)30356-4
[29] 谢献政, 杨然栋, 陈肖鸣. 丙酸钠通过抑制NLRP3保护脓毒症大鼠的结肠组织[J]. 温州医科大学学报, 2020, 50(9): 712-716, 722.
[30] Dalile, B., Van Oudenhove, L., Vervliet, B. and Verbeke, K. (2019) The Role of Short-Chain Fatty Acids in Microbiota-Gut-Brain Communication. Nature Reviews Gastroenterology & Hepatology, 16, 461-478.
https://doi.org/10.1038/s41575-019-0157-3
[31] Tang, W., Zhu, H., Feng, Y., Guo, R. and Wan, D. (2020) The Impact of Gut Microbiota Disorders on the Blood-Brain Barrier. Infection and Drug Resistance, 13, 3351-3363.
https://doi.org/10.2147/idr.s254403
[32] Mo, X., Cheng, R., Shen, L., Liu, N., Sun, Y., Lin, S., et al. (2024) Yeast β-Glucan Alleviates High-Fat Diet-Induced Alzheimer’s Disease-Like Pathologies in Rats via the Gut-Brain Axis. International Journal of Biological Macromolecules, 278, Article ID: 134939.
https://doi.org/10.1016/j.ijbiomac.2024.134939
[33] Jameson, K.G., Olson, C.A., Kazmi, S.A. and Hsiao, E.Y. (2020) Toward Understanding Microbiome-Neuronal Signaling. Molecular Cell, 78, 577-583.
https://doi.org/10.1016/j.molcel.2020.03.006
[34] Labban, R.S.M., Alfawaz, H., Almnaizel, A.T., Hassan, W.M., Bhat, R.S., Moubayed, N.M., et al. (2020) High-Fat Diet-Induced Obesity and Impairment of Brain Neurotransmitter Pool. Translational Neuroscience, 11, 147-160.
https://doi.org/10.1515/tnsci-2020-0099
[35] Saiyasit, N., Chunchai, T., Prus, D., Suparan, K., Pittayapong, P., Apaijai, N., et al. (2020) Gut Dysbiosis Develops before Metabolic Disturbance and Cognitive Decline in High-Fat Diet-Induced Obese Condition. Nutrition, 69, Article ID: 110576.
https://doi.org/10.1016/j.nut.2019.110576
[36] Noye Tuplin, E.W., Alukic, E., Lowry, D.E., Chleilat, F., Wang, W., Cho, N.A., et al. (2022) Dietary Fiber Combinations to Mitigate the Metabolic, Microbial, and Cognitive Imbalances Resulting from Diet‐induced Obesity in Rats. The FASEB Journal, 36, e22269.
https://doi.org/10.1096/fj.202101750r
[37] Zhao, X., Wang, M., Wen, Z., Lu, Z., Cui, L., Fu, C., et al. (2021) GLP-1 Receptor Agonists: Beyond Their Pancreatic Effects. Frontiers in Endocrinology, 12, Article 721135.
https://doi.org/10.3389/fendo.2021.721135
[38] Ducastel, S., Touche, V., Trabelsi, M., Boulinguiez, A., Butruille, L., Nawrot, M., et al. (2020) The Nuclear Receptor FXR Inhibits Glucagon-Like Peptide-1 Secretion in Response to Microbiota-Derived Short-Chain Fatty Acids. Scientific Reports, 10, Article No. 174.
https://doi.org/10.1038/s41598-019-56743-x
[39] Sun, P., Wang, M., Li, Z., Wei, J., Liu, F., Zheng, W., et al. (2022) Eucommiae cortex Polysaccharides Mitigate Obesogenic Diet-Induced Cognitive and Social Dysfunction via Modulation of Gut Microbiota and Tryptophan Metabolism. Theranostics, 12, 3637-3655.
https://doi.org/10.7150/thno.72756
[40] Lamichhane, G., Liu, J., Lee, S., Lee, D., Zhang, G. and Kim, Y. (2024) Curcumin Mitigates the High-Fat High-Sugar Diet-Induced Impairment of Spatial Memory, Hepatic Metabolism, and the Alteration of the Gut Microbiome in Alzheimer’s Disease-Induced (3xTG-AD) Mice. Nutrients, 16, Article No. 240.
https://doi.org/10.3390/nu16020240
[41] Zhang, S.Q., Tian, D., Hu, C.Y. and Meng, Y.H. (2022) Chlorogenic Acid Ameliorates High-Fat and High-Fructose Diet-Induced Cognitive Impairment via Mediating the Microbiota-Gut-Brain Axis. Journal of Agricultural and Food Chemistry, 70, 2600-2615.
https://doi.org/10.1021/acs.jafc.1c07479
[42] Wang, S., Huang, X., Zhang, P., Wang, H., Zhang, Q., Yu, S., et al. (2016) Chronic Rhein Treatment Improves Recognition Memory in High-Fat Diet-Induced Obese Male Mice. The Journal of Nutritional Biochemistry, 36, 42-50.
https://doi.org/10.1016/j.jnutbio.2016.07.008
[43] Ren, H., Gao, S., Wang, S., Wang, J., Cheng, Y., Wang, Y., et al. (2022) Effects of Dangshen Yuanzhi Powder on Learning Ability and Gut Microflora in Rats with Memory Disorder. Journal of Ethnopharmacology, 296, Article ID: 115410.
https://doi.org/10.1016/j.jep.2022.115410
[44] Wang, H., Wang, Q., Liang, C., Su, M., Wang, X., Li, H., et al. (2019) Acupuncture Regulating Gut Microbiota in Abdominal Obese Rats Induced by High-Fat Diet. Evidence-Based Complementary and Alternative Medicine, 2019, Article ID: 4958294.
https://doi.org/10.1155/2019/4958294
[45] Tian, H.R., Zhou, Y.D., Lu, D.M., et al. (2024) Effects of Electroacupuncture on the Inflammatory Response and Intestinal Flora in Obese Rats. Acupuncture Research, 49, 949-956.
[46] Zhou, Y.D., Yang, S.R., Wang, Y.Y., et al. (2022) Effect of Electroacupuncture at Different Acupoint Combination on Intestinal Inflammatory Response and Intestinal Flora in Obese Rats. Chinese Acupuncture & Moxibustion, 42, 1145-1152.
[47] Jing, C., Xiao, N., Yu, H.J., et al. (2021) Effect of Umbilical Moxibustion on Phlegm Damp Constitution and Intestinal Flora. Chinese Acupuncture & Moxibustion, 41, 1360-1364.

Baidu
map