[1] |
Guo, H., Chou, W., Lai, Y., Liang, K., Tam, J.W., Brickey, W.J., et al. (2020) Multi-Omics Analyses of Radiation Survivors Identify Radioprotective Microbes and Metabolites. Science, 370, eaay9097. https://doi.org/10.1126/science.aay9097 |
[2] |
Qu, Y., Li, X., Xu, F., Zhao, S., Wu, X., Wang, Y., et al. (2021) Kaempferol Alleviates Murine Experimental Colitis by Restoring Gut Microbiota and Inhibiting the LPS-TLR4-NF-κB Axis. Frontiers in Immunology, 12, Article ID: 679897. https://doi.org/10.3389/fimmu.2021.679897 |
[3] |
Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2021) Cancer Statistics, 2021. CA: A Cancer Journal for Clinicians, 71, 7-33. https://doi.org/10.3322/caac.21654 |
[4] |
Chen, F., Dai, X., Zhou, C., Li, K., Zhang, Y., Lou, X., et al. (2021) Integrated Analysis of the Faecal Metagenome and Serum Metabolome Reveals the Role of Gut Microbiome-Associated Metabolites in the Detection of Colorectal Cancer and Adenoma. Gut, 71, 1315-1325. https://doi.org/10.1136/gutjnl-2020-323476 |
[5] |
McKenzie, C., Tan, J., Macia, L. and Mackay, C.R. (2017) The Nutrition‐Gut Microbiome‐Physiology Axis and Allergic Diseases. Immunological Reviews, 278, 277-295. https://doi.org/10.1111/imr.12556 |
[6] |
Chabé, M., Lokmer, A. and Ségurel, L. (2017) Gut Protozoa: Friends or Foes of the Human Gut Microbiota? Trends in Parasitology, 33, 925-934. https://doi.org/10.1016/j.pt.2017.08.005 |
[7] |
Qi, Y., Sun, J., Ren, L., Cao, X., Dong, J., Tao, K., et al. (2018) Intestinal Microbiota Is Altered in Patients with Gastric Cancer from Shanxi Province, China. Digestive Diseases and Sciences, 64, 1193-1203. https://doi.org/10.1007/s10620-018-5411-y |
[8] |
Xavier, R.J. and Podolsky, D.K. (2007) Unravelling the Pathogenesis of Inflammatory Bowel Disease. Nature, 448, 427-434. https://doi.org/10.1038/nature06005 |
[9] |
Dai, Z., Coker, O.O., Nakatsu, G., Wu, W.K.K., Zhao, L., Chen, Z., et al. (2018) Multi-Cohort Analysis of Colorectal Cancer Metagenome Identified Altered Bacteria across Populations and Universal Bacterial Markers. Microbiome, 6, Article No. 70. https://doi.org/10.1186/s40168-018-0451-2 |
[10] |
Blaak, E.E., Canfora, E.E., Theis, S., Frost, G., Groen, A.K., Mithieux, G., et al. (2020) Short Chain Fatty Acids in Human Gut and Metabolic Health. Beneficial Microbes, 11, 411-455. https://doi.org/10.3920/bm2020.0057 |
[11] |
Hanus, M., Parada-Venegas, D., Landskron, G., Wielandt, A.M., Hurtado, C., Alvarez, K., et al. (2021) Immune System, Microbiota, and Microbial Metabolites: The Unresolved Triad in Colorectal Cancer Microenvironment. Frontiers in Immunology, 12, Article ID: 612826. https://doi.org/10.3389/fimmu.2021.612826 |
[12] |
Neag, M., Craciun, A., Inceu, A., Burlacu, D., Craciun, C. and Buzoianu, A. (2022) Short-Chain Fatty Acids as Bacterial Enterocytes and Therapeutic Target in Diabetes Mellitus Type 2. Biomedicines, 11, Article No. 72. https://doi.org/10.3390/biomedicines11010072 |
[13] |
Smith, P.M., Howitt, M.R., Panikov, N., Michaud, M., Gallini, C.A., Bohlooly-Y, M., et al. (2013) The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis. Science, 341, 569-573. https://doi.org/10.1126/science.1241165 |
[14] |
Calvo-Barreiro, L., Zhang, L., Abdel-Rahman, S.A., Naik, S.P. and Gabr, M. (2023) Gut Microbial-Derived Metabolites as Immune Modulators of T Helper 17 and Regulatory T Cells. International Journal of Molecular Sciences, 24, Article No. 1806. https://doi.org/10.3390/ijms24021806 |
[15] |
Kalina, U., Koyama, N., Hosoda, T., Nuernberger, H., Sato, K., Hoelzer, D., et al. (2002) Enhanced Production of IL-18 in Butyrate-Treated Intestinal Epithelium by Stimulation of the Proximal Promoter Region. European Journal of Immunology, 32, 2635-2643. https://doi.org/10.1002/1521-4141(200209)32:9<2635::aid-immu2635>3.0.co;2-n |
[16] |
Singh, N., Gurav, A., Sivaprakasam, S., Brady, E., Padia, R., Shi, H., et al. (2014) Activation of Gpr109a, Receptor for Niacin and the Commensal Metabolite Butyrate, Suppresses Colonic Inflammation and Carcinogenesis. Immunity, 40, 128-139. https://doi.org/10.1016/j.immuni.2013.12.007 |
[17] |
Lavoie, S., Chun, E., Bae, S., Brennan, C.A., Gallini Comeau, C.A., Lang, J.K., et al. (2020) Expression of Free Fatty Acid Receptor 2 by Dendritic Cells Prevents Their Expression of Interleukin 27 and Is Required for Maintenance of Mucosal Barrier and Immune Response against Colorectal Tumors in Mice. Gastroenterology, 158, 1359-1372.e9. https://doi.org/10.1053/j.gastro.2019.12.027 |
[18] |
Chen, Y. and Chen, Y. (2021) Microbiota-Associated Metabolites and Related Immunoregulation in Colorectal Cancer. Cancers, 13, Article No. 4054. https://doi.org/10.3390/cancers13164054 |
[19] |
Metidji, A., Omenetti, S., Crotta, S., Li, Y., Nye, E., Ross, E., et al. (2018) The Environmental Sensor AHR Protects from Inflammatory Damage by Maintaining Intestinal Stem Cell Homeostasis and Barrier Integrity. Immunity, 49, 353-362.e5. https://doi.org/10.1016/j.immuni.2018.07.010 |
[20] |
Kayama, H., Okumura, R. and Takeda, K. (2020) Interaction between the Microbiota, Epithelia, and Immune Cells in the Intestine. Annual Review of Immunology, 38, 23-48. https://doi.org/10.1146/annurev-immunol-070119-115104 |
[21] |
O’Keefe, S.J.D., Li, J.V., Lahti, L., Ou, J., Carbonero, F., Mohammed, K., et al. (2015) Fat, Fibre and Cancer Risk in African Americans and Rural Africans. Nature Communications, 6, Article No. 6342. https://doi.org/10.1038/ncomms7342 |
[22] |
Chung, L., Orberg, E.T., Geis, A.L., Chan, J.L., Fu, K., DeStefano Shields, C.E., et al. (2018) Bacteroides Fragilis Toxin Coordinates a Pro-Carcinogenic Inflammatory Cascade via Targeting of Colonic Epithelial Cells. Cell Host & Microbe, 23, Article No. 421. https://doi.org/10.1016/j.chom.2018.02.004 |
[23] |
Gao, R., Wu, C., Zhu, Y., Kong, C., Zhu, Y., Gao, Y., et al. (2022) Integrated Analysis of Colorectal Cancer Reveals Cross-Cohort Gut Microbial Signatures and Associated Serum Metabolites. Gastroenterology, 163, 1024-1037.e9. https://doi.org/10.1053/j.gastro.2022.06.069 |
[24] |
Jin, D., Huang, K., Xu, M., Hua, H., Ye, F., Yan, J., et al. (2022) Deoxycholic Acid Induces Gastric Intestinal Metaplasia by Activating STAT3 Signaling and Disturbing Gastric Bile Acids Metabolism and Microbiota. Gut Microbes, 14, Article ID: 2120744. https://doi.org/10.1080/19490976.2022.2120744 |
[25] |
Yao, Y., Li, X., Xu, B., Luo, L., Guo, Q., Wang, X., et al. (2022) Cholecystectomy Promotes Colon Carcinogenesis by Activating the Wnt Signaling Pathway by Increasing the Deoxycholic Acid Level. Cell Communication and Signaling, 20, Article No. 71. https://doi.org/10.1186/s12964-022-00890-8 |
[26] |
Casero, R.A., Murray Stewart, T. and Pegg, A.E. (2018) Polyamine Metabolism and Cancer: Treatments, Challenges and Opportunities. Nature Reviews Cancer, 18, 681-695. https://doi.org/10.1038/s41568-018-0050-3 |
[27] |
Venäläinen, M.K., Roine, A.N., Häkkinen, M.R., Vepsäläinen, J.J., Kumpulainen, P.S., Kiviniemi, M.S., et al. (2018) Altered Polyamine Profiles in Colorectal Cancer. Anticancer Research, 38, 3601-3607. https://doi.org/10.21873/anticanres.12634 |
[28] |
Dejea, C.M., Wick, E.C., Hechenbleikner, E.M., White, J.R., Mark Welch, J.L., Rossetti, B.J., et al. (2014) Microbiota Organization Is a Distinct Feature of Proximal Colorectal Cancers. Proceedings of the National Academy of Sciences, 111, 18321-18326. https://doi.org/10.1073/pnas.1406199111 |
[29] |
Thomas, A.M., Manghi, P., Asnicar, F., Pasolli, E., Armanini, F., Zolfo, M., et al. (2019) Metagenomic Analysis of Colorectal Cancer Datasets Identifies Cross-Cohort Microbial Diagnostic Signatures and a Link with Choline Degradation. Nature Medicine, 25, 667-678. https://doi.org/10.1038/s41591-019-0405-7 |
[30] |
Wu, S., Rhee, K., Albesiano, E., Rabizadeh, S., Wu, X., Yen, H., et al. (2009) A Human Colonic Commensal Promotes Colon Tumorigenesis via Activation of T Helper Type 17 T Cell Responses. Nature Medicine, 15, 1016-1022. https://doi.org/10.1038/nm.2015 |
[31] |
Geis, A.L., Fan, H., Wu, X., Wu, S., Huso, D.L., Wolfe, J.L., et al. (2015) Regulatory T-Cell Response to Enterotoxigenic bacteroides Fragilis colonization Triggers Il17-Dependent Colon Carcinogenesis. Cancer Discovery, 5, 1098-1109. https://doi.org/10.1158/2159-8290.cd-15-0447 |
[32] |
Donaldson, G.P., Ladinsky, M.S., Yu, K.B., Sanders, J.G., Yoo, B.B., Chou, W.-., et al. (2018) Gut Microbiota Utilize Immunoglobulin A for Mucosal Colonization. Science, 360, 795-800. https://doi.org/10.1126/science.aaq0926 |
[33] |
Wong, C.C. and Yu, J. (2023) Gut Microbiota in Colorectal Cancer Development and Therapy. Nature Reviews Clinical Oncology, 20, 429-452. https://doi.org/10.1038/s41571-023-00766-x |
[34] |
Wang, Z., Dan, W., Zhang, N., Fang, J. and Yang, Y. (2023) Colorectal Cancer and Gut Microbiota Studies in China. Gut Microbes, 15, Article 2236364. https://doi.org/10.1080/19490976.2023.2236364 |
[35] |
Peng, Z., Cheng, S., Kou, Y., Wang, Z., Jin, R., Hu, H., et al. (2020) The Gut Microbiome Is Associated with Clinical Response to Anti-PD-1/PD-L1 Immunotherapy in Gastrointestinal Cancer. Cancer Immunology Research, 8, 1251-1261. https://doi.org/10.1158/2326-6066.cir-19-1014 |
[36] |
Schiweck, C., Edwin Thanarajah, S., Aichholzer, M., Matura, S., Reif, A., Vrieze, E., et al. (2022) Regulation of CD4+ and CD8+ T Cell Biology by Short-Chain Fatty Acids and Its Relevance for Autoimmune Pathology. International Journal of Molecular Sciences, 23, Article No. 8272. https://doi.org/10.3390/ijms23158272 |
[37] |
Myers, J.A. and Miller, J.S. (2020) Exploring the NK Cell Platform for Cancer Immunotherapy. Nature Reviews Clinical Oncology, 18, 85-100. https://doi.org/10.1038/s41571-020-0426-7 |
[38] |
Mehla, K. and Singh, P.K. (2019) Metabolic Regulation of Macrophage Polarization in Cancer. Trends in Cancer, 5, 822-834. https://doi.org/10.1016/j.trecan.2019.10.007 |
[39] |
O’Donnell, J.S., Teng, M.W.L. and Smyth, M.J. (2018) Cancer Immunoediting and Resistance to T Cell-Based Immunotherapy. Nature Reviews Clinical Oncology, 16, 151-167. https://doi.org/10.1038/s41571-018-0142-8 |
[40] |
Cohen, R., Rousseau, B., Vidal, J., Colle, R., Diaz, L.A. and André, T. (2019) Immune Checkpoint Inhibition in Colorectal Cancer: Microsatellite Instability and Beyond. Targeted Oncology, 15, 11-24. https://doi.org/10.1007/s11523-019-00690-0 |
[41] |
Ganesh, K., Stadler, Z.K., Cercek, A., Mendelsohn, R.B., Shia, J., Segal, N.H., et al. (2019) Immunotherapy in Colorectal Cancer: Rationale, Challenges and Potential. Nature Reviews Gastroenterology & Hepatology, 16, 361-375. https://doi.org/10.1038/s41575-019-0126-x |
[42] |
李腾宇, 黑志军, 连玉贵, 等. PD-1抑制剂联合新辅助放化疗治疗微卫星稳定/错配修复正常的局部进展期直肠癌的短期效果[J]. 郑州大学学报(医学版), 2022, 57(4): 585-587. |
[43] |
André, T., Shiu, K., Kim, T.W., Jensen, B.V., Jensen, L.H., Punt, C., et al. (2020) Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer. New England Journal of Medicine, 383, 2207-2218. https://doi.org/10.1056/nejmoa2017699 |
[44] |
Zhang, Y., Li, C. and Zhang, X. (2021) Bacteriophage-Mediated Modulation of Microbiota for Diseases Treatment. Advanced Drug Delivery Reviews, 176, Article ID: 113856. https://doi.org/10.1016/j.addr.2021.113856 |
[45] |
Sivan, A., Corrales, L., Hubert, N., Williams, J.B., Aquino-Michaels, K., Earley, Z.M., et al. (2015) Commensal Bifidobacterium Promotes Antitumor Immunity and Facilitates Anti-PD-L1 Efficacy. Science, 350, 1084-1089. https://doi.org/10.1126/science.aac4255 |
[46] |
Ju, X., Wu, X., Chen, Y., Cui, S., Cai, Z., Zhao, L., et al. (2023) Mucin Binding Protein of Lactobacillus Casei Inhibits HT-29 Colorectal Cancer Cell Proliferation. Nutrients, 15, 2314. https://doi.org/10.3390/nu15102314 |
[47] |
Fong, W., Li, Q. and Yu, J. (2020) Gut Microbiota Modulation: A Novel Strategy for Prevention and Treatment of Colorectal Cancer. Oncogene, 39, 4925-4943. https://doi.org/10.1038/s41388-020-1341-1 |