[1] |
薛学鑫, 刘哲鹏. 静电纺纤维神经组织工程支架: 材料、功能及结构设计策略[J]. 中国组织工程研究, 2022, 26(28): 4575-4580. |
[2] |
郑根江. 基于神经免疫调节和能量支持的纳米酶纤维支架协同促进脊髓修复的实验研究[D]: [博士学位论文]. 重庆: 中国人民解放军海军军医大学, 2024. |
[3] |
Moskow, J., Ferrigno, B., Mistry, N., Jaiswal, D., Bulsara, K., Rudraiah, S., et al. (2019) Review: Bioengineering Approach for the Repair and Regeneration of Peripheral Nerve. Bioactive Materials, 4, 107-113. https://doi.org/10.1016/j.bioactmat.2018.09.001 |
[4] |
陈晓莉, 汤晓璇, 顾心逸, 凌珏, 杨宇民. 提高神经导管生物活性的策略[J]. 生物过程, 2021, 11(3): 19-29. |
[5] |
Badhiwala, J.H., Ahuja, C.S. and Fehlings, M.G. (2019) Time Is Spine: A Review of Translational Advances in Spinal Cord Injury. Journal of Neurosurgery: Spine, 30, 1-18. https://doi.org/10.3171/2018.9.spine18682 |
[6] |
王钰清, 魏静静, 李文慧, 张鲁中, 杨宇民. 基于壳聚糖导管的周围神经再生研究进展[J]. 生物过程, 2022, 12(2): 148-153. |
[7] |
Zhang, X., Gong, B., Zhai, J., Zhao, Y., Lu, Y., Zhang, L., et al. (2021) A Perspective: Electrospun Fibers for Repairing Spinal Cord Injury. Chemical Research in Chinese Universities, 37, 404-410. https://doi.org/10.1007/s40242-021-1162-y |
[8] |
李文慧, 姚珂, 张鲁中, 杨宇民. 精氨酸-谷氨酸-天冬氨酸-缬氨酸改性丝素导管的制备及性能研究[J]. 生物过程, 2021, 11(4): 123-133. |
[9] |
Chen, P., Piao, X. and Bonaldo, P. (2015) Role of Macrophages in Wallerian Degeneration and Axonal Regeneration after Peripheral Nerve Injury. Acta Neuropathologica, 130, 605-618. https://doi.org/10.1007/s00401-015-1482-4 |
[10] |
Radhakrishnan, J., Kuppuswamy, A.A., Sethuraman, S. and Subramanian, A. (2015) Topographic Cue from Electrospun Scaffolds Regulate Myelin-Related Gene Expressions in Schwann Cells. Journal of Biomedical Nanotechnology, 11, 512-521. https://doi.org/10.1166/jbn.2015.1921 |
[11] |
刘天一. 搭载神经干细胞的功能化静电纺丝支架用于脊髓损伤修复治疗研究[D]: [博士学位论文]. 长春: 吉林大学, 2023. |
[12] |
陈勇, 范林, 付贞, 等. 神经导管支架修复外周神经损伤的研究与现状[J]. 中国组织工程研究, 2017, 21(30): 4901-4907. |
[13] |
Li, X., Sun, Q., Li, Q., Kawazoe, N. and Chen, G. (2018) Functional Hydrogels with Tunable Structures and Properties for Tissue Engineering Applications. Frontiers in Chemistry, 6, Article No. 499. https://doi.org/10.3389/fchem.2018.00499 |
[14] |
Guimarães, C.F., Gasperini, L., Marques, A.P. and Reis, R.L. (2020) The Stiffness of Living Tissues and Its Implications for Tissue Engineering. Nature Reviews Materials, 5, 351-370. https://doi.org/10.1038/s41578-019-0169-1 |
[15] |
Nguyen, T.P., Nguyen, Q.V., Nguyen, V., Le, T., Huynh, V.Q.N., Vo, D.N., et al. (2019) Silk Fibroin-Based Biomaterials for Biomedical Applications: A Review. Polymers, 11, Article No. 1933. https://doi.org/10.3390/polym11121933 |
[16] |
兰东维. 丝素蛋白/聚赖氨酸仿生纳米纤维支架的制备及在神经再生中的应用研究[D]: [硕士学位论文]. 重庆: 西南大学, 2022. |
[17] |
Mo, X., Sun, B., Wu, T. and Li, D. (2019) Electrospun Nanofibers for Tissue Engineering. In: Ding, B., Wang, X.F. and Yu, J.Y., Eds., Electrospinning: Nanofabrication and Applications, Elsevier, 719-734. https://doi.org/10.1016/b978-0-323-51270-1.00024-8 |
[18] |
Gao, X., Han, S., Zhang, R., Liu, G. and Wu, J. (2019) Progress in Electrospun Composite Nanofibers: Composition, Performance and Applications for Tissue Engineering. Journal of Materials Chemistry B, 7, 7075-7089. https://doi.org/10.1039/c9tb01730e |
[19] |
Li, X., Chen, Y., Kawazoe, N. and Chen, G. (2017) Influence of Microporous Gelatin Hydrogels on Chondrocyte Functions. Journal of Materials Chemistry B, 5, 5753-5762. https://doi.org/10.1039/c7tb01350g |
[20] |
李孙奥. 负载氧化铜的静电纺丝支架通过调控轻度脑外伤后铜稳态发挥神经保护作用的机制研究[D]: [硕士学位论文]. 苏州: 苏州大学, 2023. |
[21] |
Li, X., Chen, S., Li, J., Wang, X., Zhang, J., Kawazoe, N., et al. (2016) 3D Culture of Chondrocytes in Gelatin Hydrogels with Different Stiffness. Polymers, 8, Article No. 269. https://doi.org/10.3390/polym8080269 |
[22] |
Manoukian, O.S., Matta, R., Letendre, J., Collins, P., Mazzocca, A.D. and Kumbar, S.G. (2017) Electrospun Nanofiber Scaffolds and Their Hydrogel Composites for the Engineering and Regeneration of Soft Tissues. In: Petrosko, S.H. and Day, E.S., Eds., Methods in Molecular Biology, Springer, 261-278. https://doi.org/10.1007/978-1-4939-6840-4_18 |
[23] |
Xue, J., Xie, J., Liu, W. and Xia, Y. (2017) Electrospun Nanofibers: New Concepts, Materials, and Applications. Accounts of Chemical Research, 50, 1976-1987. https://doi.org/10.1021/acs.accounts.7b00218 |
[24] |
Lannutti, J., Reneker, D., Ma, T., Tomasko, D. and Farson, D. (2007) Electrospinning for Tissue Engineering Scaffolds. Materials Science and Engineering: C, 27, 504-509. https://doi.org/10.1016/j.msec.2006.05.019 |
[25] |
Nie, K., Han, S., Yang, J., Sun, Q., Wang, X., Li, X., et al. (2020) Enzyme-Crosslinked Electrospun Fibrous Gelatin Hydrogel for Potential Soft Tissue Engineering. Polymers, 12, Article No. 1977. https://doi.org/10.3390/polym12091977 |
[26] |
Wang, D., Wang, X., Zhang, Z., Wang, L., Li, X., Xu, Y., et al. (2019) Programmed Release of Multimodal, Cross-Linked Vascular Endothelial Growth Factor and Heparin Layers on Electrospun Polycaprolactone Vascular Grafts. ACS Applied Materials & Interfaces, 11, 32533-32542. https://doi.org/10.1021/acsami.9b10621 |
[27] |
Rose, J.C. and De Laporte, L. (2018) Hierarchical Design of Tissue Regenerative Constructs. Advanced Healthcare Materials, 7, e1701067. https://doi.org/10.1002/adhm.201701067 |
[28] |
Schaub, N.J., Johnson, C.D., Cooper, B. and Gilbert, R.J. (2016) Electrospun Fibers for Spinal Cord Injury Research and Regeneration. Journal of Neurotrauma, 33, 1405-1415. https://doi.org/10.1089/neu.2015.4165 |
[29] |
Ramakrishna, S., Chen, N., Tian, L. and He, L. (2016) Nanobiomaterials for Neural Regeneration. Neural Regeneration Research, 11, 1372-1374. https://doi.org/10.4103/1673-5374.191195 |
[30] |
Lu, K., Qian, Y., Gong, J., Zhu, Z., Yin, J., Ma, L., et al. (2021) Biofabrication of Aligned Structures That Guide Cell Orientation and Applications in Tissue Engineering. Bio-Design and Manufacturing, 4, 258-277. https://doi.org/10.1007/s42242-020-00104-5 |
[31] |
Stoll, G. and Müller, H.W. (1999) Nerve Injury, Axonal Degeneration and Neural Regeneration: Basic Insights. Brain Pathology, 9, 313-325. https://doi.org/10.1111/j.1750-3639.1999.tb00229.x |
[32] |
Jiang, X., Mi, R., Hoke, A. and Chew, S.Y. (2012) Nanofibrous Nerve Conduit-Enhanced Peripheral Nerve Regeneration. Journal of Tissue Engineering and Regenerative Medicine, 8, 377-385. https://doi.org/10.1002/term.1531 |
[33] |
Hu, J., Tian, L., Prabhakaran, M., Ding, X. and Ramakrishna, S. (2016) Fabrication of Nerve Growth Factor Encapsulated Aligned Poly(ε-Caprolactone) Nanofibers and Their Assessment as a Potential Neural Tissue Engineering Scaffold. Polymers, 8, Article No. 54. https://doi.org/10.3390/polym8020054 |
[34] |
Zhang, Y., Liu, X., Zeng, L., Zhang, J., Zuo, J., Zou, J., et al. (2019) Polymer Fiber Scaffolds for Bone and Cartilage Tissue Engineering. Advanced Functional Materials, 29, Article ID: 1903279. https://doi.org/10.1002/adfm.201903279 |
[35] |
Lizarraga‐Valderrama, L.R., Taylor, C.S., Claeyssens, F., Haycock, J.W., Knowles, J.C. and Roy, I. (2019) Unidirectional Neuronal Cell Growth and Differentiation on Aligned Polyhydroxyalkanoate Blend Microfibres with Varying Diameters. Journal of Tissue Engineering and Regenerative Medicine, 13, 1581-1594. https://doi.org/10.1002/term.2911 |
[36] |
Yao, L., de Ruiter, G.C.W., Wang, H., Knight, A.M., Spinner, R.J., Yaszemski, M.J., et al. (2010) Controlling Dispersion of Axonal Regeneration Using a Multichannel Collagen Nerve Conduit. Biomaterials, 31, 5789-5797. https://doi.org/10.1016/j.biomaterials.2010.03.081 |
[37] |
Feng, X., Li, J., Zhang, X., Liu, T., Ding, J. and Chen, X. (2019) Electrospun Polymer Micro/Nanofibers as Pharmaceutical Repositories for Healthcare. Journal of Controlled Release, 302, 19-41. https://doi.org/10.1016/j.jconrel.2019.03.020 |
[38] |
Masaeli, E., Morshed, M., Nasr-Esfahani, M.H., Sadri, S., Hilderink, J., van Apeldoorn, A., et al. (2013) Fabrication, Characterization and Cellular Compatibility of Poly(Hydroxy Alkanoate) Composite Nanofibrous Scaffolds for Nerve Tissue Engineering. PLOS ONE, 8, e57157. https://doi.org/10.1371/journal.pone.0057157 |
[39] |
Gnavi, S., Fornasari, B., Tonda-Turo, C., Laurano, R., Zanetti, M., Ciardelli, G., et al. (2015) The Effect of Electrospun Gelatin Fibers Alignment on Schwann Cell and Axon Behavior and Organization in the Perspective of Artificial Nerve Design. International Journal of Molecular Sciences, 16, 12925-12942. https://doi.org/10.3390/ijms160612925 |
[40] |
Wang, H.B., Mullins, M.E., Cregg, J.M., McCarthy, C.W. and Gilbert, R.J. (2010) Varying the Diameter of Aligned Electrospun Fibers Alters Neurite Outgrowth and Schwann Cell Migration. Acta Biomaterialia, 6, 2970-2978. https://doi.org/10.1016/j.actbio.2010.02.020 |
[41] |
Yang, F., Murugan, R., Wang, S. and Ramakrishna, S. (2005) Electrospinning of Nano/micro Scale Poly(l-Lactic Acid) Aligned Fibers and Their Potential in Neural Tissue Engineering. Biomaterials, 26, 2603-2610. https://doi.org/10.1016/j.biomaterials.2004.06.051 |
[42] |
Yao, L., O’Brien, N., Windebank, A. and Pandit, A. (2009) Orienting Neurite Growth in Electrospun Fibrous Neural Conduits. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 90, 483-491. https://doi.org/10.1002/jbm.b.31308 |
[43] |
Daud, M.F.B., Pawar, K.C., Claeyssens, F., Ryan, A.J. and Haycock, J.W. (2012) An Aligned 3D Neuronal-Glial Co-culture Model for Peripheral Nerve Studies. Biomaterials, 33, 5901-5913. https://doi.org/10.1016/j.biomaterials.2012.05.008 |
[44] |
Zhu, L., Wang, K., Ma, T., Huang, L., Xia, B., Zhu, S., et al. (2017) Noncovalent Bonding of RGD and YIGSR to an Electrospun Poly(ε‐caprolactone) Conduit through Peptide Self‐Assembly to Synergistically Promote Sciatic Nerve Regeneration in Rats. Advanced Healthcare Materials, 6, Article ID: 1600860. https://doi.org/10.1002/adhm.201600860 |
[45] |
Jin, B., Yu, Y., Lou, C., Zhang, X., Gong, B., Chen, J., et al. (2022) Combining a Density Gradient of Biomacromolecular Nanoparticles with Biological Effectors in an Electrospun Fiber‐Based Nerve Guidance Conduit to Promote Peripheral Nerve Repair. Advanced Science, 10, e2203296. https://doi.org/10.1002/advs.202203296 |
[46] |
Fang, Y., Wang, C., Liu, Z., Ko, J., Chen, L., Zhang, T., et al. (2023) 3D Printed Conductive Multiscale Nerve Guidance Conduit with Hierarchical Fibers for Peripheral Nerve Regeneration. Advanced Science, 10, e2205744. https://doi.org/10.1002/advs.202205744 |
[47] |
Chen, X., Tang, X., Wang, Y., Gu, X., Huang, T., Yang, Y., et al. (2022) Silk-Inspired Fiber Implant with Multi-Cues Enhanced Bionic Microenvironment for Promoting Peripheral Nerve Repair. Biomaterials Advances, 135, Article ID: 112674. https://doi.org/10.1016/j.msec.2022.112674 |
[48] |
Chen, C., Tang, J., Gu, Y., Liu, L., Liu, X., Deng, L., et al. (2018) Bioinspired Hydrogel Electrospun Fibers for Spinal Cord Regeneration. Advanced Functional Materials, 29, Article ID: 1806899. https://doi.org/10.1002/adfm.201806899 |
[49] |
Cao, S., Wei, Y., Bo, R., Yun, X., Xu, S., Guan, Y., et al. (2023) Inversely Engineered Biomimetic Flexible Network Scaffolds for Soft Tissue Regeneration. Science Advances, 9, eadi8606. https://doi.org/10.1126/sciadv.adi8606 |
[50] |
Gu, X., Ding, F., Yang, Y. and Liu, J. (2011) Construction of Tissue Engineered Nerve Grafts and Their Application in Peripheral Nerve Regeneration. Progress in Neurobiology, 93, 204-230. https://doi.org/10.1016/j.pneurobio.2010.11.002 |
[51] |
Cirillo, M. and Giacomini, D. (2021) Molecular Delivery of Cytotoxic Agents via Integrin Activation. Cancers, 13, Article No. 299. https://doi.org/10.3390/cancers13020299 |
[52] |
Wu, T., Xue, J. and Xia, Y. (2020) Engraving the Surface of Electrospun Microfibers with Nanoscale Grooves Promotes the Outgrowth of Neurites and the Migration of Schwann Cells. Angewandte Chemie International Edition, 59, 15626-15632. https://doi.org/10.1002/anie.202002593 |
[53] |
Ullah, S., Ali, H.G., Hashmi, M., Haider, M.K., Ishaq, T., Tamada, Y., et al. (2023) Electrospun Composite Nanofibers of Deoxyribonucleic Acid and Polylactic Acid for Skincare Applications. Journal of Biomedical Materials Research Part A, 111, 1798-1807. https://doi.org/10.1002/jbm.a.37592 |
[54] |
Azimi, B., Milazzo, M., Lazzeri, A., Berrettini, S., Uddin, M.J., Qin, Z., et al. (2019) Electrospinning Piezoelectric Fibers for Biocompatible Devices. Advanced Healthcare Materials, 9, e1901287. https://doi.org/10.1002/adhm.201901287 |
[55] |
Wang, Q., Shao, Z., Sui, J., Shen, R., Chen, R., Gui, Z., et al. (2024) Preparation of Ethyl Cellulose Bimodal Nanofibrous Membrane by Green Electrospinning Based on Molecular Weight Regulation for High-Performance Air Filtration. International Journal of Biological Macromolecules, 275, Article ID: 133411. https://doi.org/10.1016/j.ijbiomac.2024.133411 |
[56] |
Ji, D., Lin, Y., Guo, X., Ramasubramanian, B., Wang, R., Radacsi, N., et al. (2024) Electrospinning of Nanofibres. Nature Reviews Methods Primers, 4, Article No. 1. https://doi.org/10.1038/s43586-023-00278-z |
[57] |
Den Dunnen, W.F.A., Van Der Lei, B., Robinson, P.H., Holwerda, A., Pennings, A.J. and Schakenraad, J.M. (1995) Biological Performance of a Degradable Poly(Lactic Acid‐ε‐Caprolactone) Nerve Guide: Influence of Tube Dimensions. Journal of Biomedical Materials Research, 29, 757-766. https://doi.org/10.1002/jbm.820290612 |
[58] |
Rutkowski, G.E. and Heath, C.A. (2002) Development of a Bioartificial Nerve Graft. II. Nerve Regeneration in Vitro. Biotechnology Progress, 18, 373-379. https://doi.org/10.1021/bp020280h |
[59] |
Rutkowski, G.E. and Heath, C.A. (2002) Development of a Bioartificial Nerve Graft. I. Design Based on a Reaction-Diffusion Model. Biotechnology Progress, 18, 362-372. https://doi.org/10.1021/bp020300f |
[60] |
Oh, S.H. and Lee, J.H. (2007) Fabrication and Characterization of Hydrophilized Porous PLGA Nerve Guide Conduits by a Modified Immersion Precipitation Method. Journal of Biomedical Materials Research Part A, 80, 530-538. https://doi.org/10.1002/jbm.a.30937 |
[61] |
Wen, X. and Tresco, P.A. (2005) Effect of Filament Diameter and Extracellular Matrix Molecule Precoating on Neurite Outgrowth and Schwann Cell Behavior on Multifilament Entubulation Bridging Device in Vitro. Journal of Biomedical Materials Research Part A, 76, 626-637. https://doi.org/10.1002/jbm.a.30520 |
[62] |
Huang, L., Zhu, L., Shi, X., Xia, B., Liu, Z., Zhu, S., et al. (2018) A Compound Scaffold with Uniform Longitudinally Oriented Guidance Cues and a Porous Sheath Promotes Peripheral Nerve Regeneration in Vivo. Acta Biomaterialia, 68, 223-236. https://doi.org/10.1016/j.actbio.2017.12.010 |
[63] |
Yang, Y., Zhao, W., He, J., Zhao, Y., Ding, F. and Gu, X. (2011) Nerve Conduits Based on Immobilization of Nerve Growth Factor onto Modified Chitosan by Using Genipin as a Crosslinking Agent. European Journal of Pharmaceutics and Biopharmaceutics, 79, 519-525. https://doi.org/10.1016/j.ejpb.2011.06.008 |
[64] |
Kokai, L.E., Lin, Y., Oyster, N.M. and Marra, K.G. (2009) Diffusion of Soluble Factors through Degradable Polymer Nerve Guides: Controlling Manufacturing Parameters. Acta Biomaterialia, 5, 2540-2550. https://doi.org/10.1016/j.actbio.2009.03.009 |
[65] |
Den Dunnen, W.F.A., Meek, M.F., Robinson, P.H. and Schakernraad, J.M. (1998) Peripheral Nerve Regeneration through P(dlla-Ε-Cl) Nerve Guides. Journal of Materials Science: Materials in Medicine, 9, 811-814. https://doi.org/10.1023/a:1008987910224 |
[66] |
Gnavi, S., Fornasari, B.E., Tonda-Turo, C., Ciardelli, G., Zanetti, M., Geuna, S., et al. (2015) The Influence of Electrospun Fibre Size on Schwann Cell Behaviour and Axonal Outgrowth. Materials Science and Engineering: C, 48, 620-631. https://doi.org/10.1016/j.msec.2014.12.055 |
[67] |
Shrestha, S., Shrestha, B.K., Lee, J., Joong, O.K., Kim, B., Park, C.H., et al. (2019) A Conducting Neural Interface of Polyurethane/Silk-Functionalized Multiwall Carbon Nanotubes with Enhanced Mechanical Strength for Neuroregeneration. Materials Science and Engineering: C, 102, 511-523. https://doi.org/10.1016/j.msec.2019.04.053 |
[68] |
Tian, L., Prabhakaran, M.P. and Ramakrishna, S. (2015) Strategies for Regeneration of Components of Nervous System: Scaffolds, Cells and Biomolecules. Regenerative Biomaterials, 2, 31-45. https://doi.org/10.1093/rb/rbu017 |
[69] |
Deumens, R., Koopmans, G.C., Honig, W.M.M., Maquet, V., Jérôme, R., Steinbusch, H.W.M., et al. (2006) Chronically Injured Corticospinal Axons Do Not Cross Large Spinal Lesion Gaps after a Multifactorial Transplantation Strategy Using Olfactory Ensheathing Cell/Olfactory Nerve Fibroblast‐Biomatrix Bridges. Journal of Neuroscience Research, 83, 811-820. https://doi.org/10.1002/jnr.20768 |
[70] |
Sonigra, R.J., Brighton, P.C., Jacoby, J., Hall, S. and Wigley, C.B. (1999) Adult Rat Olfactory Nerve Ensheathing Cells Are Effective Promoters of Adult Central Nervous System Neurite Outgrowth in Coculture. Glia, 25, 256-269. https://doi.org/10.1002/(sici)1098-1136(19990201)25:3<256::aid-glia6>3.0.co;2-y |
[71] |
Wu, M., Fan, D., Tadmori, I., Yang, H., Furman, M., Jiao, X., et al. (2010) Death of Axotomized Retinal Ganglion Cells Delayed after Intraoptic Nerve Transplantation of Olfactory Ensheathing Cells in Adult Rats. Cell Transplantation, 19, 159-166. https://doi.org/10.3727/096368910x492625 |
[72] |
Tang, X., Gu, X., Huang, T., Chen, X., Zhou, Z., Yang, Y., et al. (2021) Anisotropic Silk-Inspired Nerve Conduit with Peptides Improved the Microenvironment for Long-Distance Peripheral Nerve Regeneration. ACS Macro Letters, 10, 1501-1509. https://doi.org/10.1021/acsmacrolett.1c00533 |
[73] |
Prabhakaran, M.P., Vatankhah, E. and Ramakrishna, S. (2013) Electrospun Aligned Phbv/Collagen Nanofibers as Substrates for Nerve Tissue Engineering. Biotechnology and Bioengineering, 110, 2775-2784. https://doi.org/10.1002/bit.24937 |
[74] |
Zhang, K., Huang, D., Yan, Z. and Wang, C. (2017) Heparin/Collagen Encapsulating Nerve Growth Factor Multilayers Coated Aligned PLLA Nanofibrous Scaffolds for Nerve Tissue Engineering. Journal of Biomedical Materials Research Part A, 105, 1900-1910. https://doi.org/10.1002/jbm.a.36053 |
[75] |
Ouyang, Y., Huang, C., Zhu, Y., Fan, C. and Ke, Q. (2013) Fabrication of Seamless Electrospun Collagen/PLGA Conduits Whose Walls Comprise Highly Longitudinal Aligned Nanofibers for Nerve Regeneration. Journal of Biomedical Nanotechnology, 9, 931-943. https://doi.org/10.1166/jbn.2013.1605 |
[76] |
Abbasi, N., Hashemi, S.M., Salehi, M., Jahani, H., Mowla, S.J., Soleimani, M., et al. (2015) Influence of Oriented Nanofibrous PCL Scaffolds on Quantitative Gene Expression during Neural Differentiation of Mouse Embryonic Stem Cells. Journal of Biomedical Materials Research Part A, 104, 155-164. https://doi.org/10.1002/jbm.a.35551 |
[77] |
Dalby, M.J., Gadegaard, N. and Oreffo, R.O.C. (2014) Harnessing Nanotopography and Integrin-Matrix Interactions to Influence Stem Cell Fate. Nature Materials, 13, 558-569. https://doi.org/10.1038/nmat3980 |
[78] |
Park, S.H., Kim, T.G., Kim, H.C., Yang, D. and Park, T.G. (2008) Development of Dual Scale Scaffolds via Direct Polymer Melt Deposition and Electrospinning for Applications in Tissue Regeneration. Acta Biomaterialia, 4, 1198-1207. https://doi.org/10.1016/j.actbio.2008.03.019 |
[79] |
Ghasemi-Mobarakeh, L., Prabhakaran, M.P., Morshed, M., Nasr-Esfahani, M.H. and Ramakrishna, S. (2010) Bio-functionalized PCL Nanofibrous Scaffolds for Nerve Tissue Engineering. Materials Science and Engineering: C, 30, 1129-1136. https://doi.org/10.1016/j.msec.2010.06.004 |
[80] |
Lowe, C.J., Reucroft, I.M., Grota, M.C. and Shreiber, D.I. (2016) Production of Highly Aligned Collagen Scaffolds by Freeze-Drying of Self-Assembled, Fibrillar Collagen Gels. ACS Biomaterials Science & Engineering, 2, 643-651. https://doi.org/10.1021/acsbiomaterials.6b00036 |
[81] |
Tu, H., Bao, M., Li, Q., Li, B., Yuan, H. and Zhang, Y. (2013) Aligned Core-Shell Structured Ultrafine Composite Fibers of Plla-Collagen for Tendon Scaffolding. Journal of Controlled Release, 172, e128. https://doi.org/10.1016/j.jconrel.2013.08.204 |
[82] |
Rajzer, I., Rom, M., Menaszek, E. and Pasierb, P. (2015) Conductive PANI Patterns on Electrospun PCL/Gelatin Scaffolds Modified with Bioactive Particles for Bone Tissue Engineering. Materials Letters, 138, 60-63. https://doi.org/10.1016/j.matlet.2014.09.077 |
[83] |
McClure, M.J., Sell, S.A., Ayres, C.E., Simpson, D.G. and Bowlin, G.L. (2009) Electrospinning-Aligned and Random Polydioxanone-Polycaprolactone-Silk Fibroin-Blended Scaffolds: Geometry for a Vascular Matrix. Biomedical Materials, 4, Article ID: 055010. https://doi.org/10.1088/1748-6041/4/5/055010 |
[84] |
Chen, X., Ge, X., Qian, Y., Tang, H., Song, J., Qu, X., et al. (2020) Electrospinning Multilayered Scaffolds Loaded with Melatonin and Fe3O4 Magnetic Nanoparticles for Peripheral Nerve Regeneration. Advanced Functional Materials, 30, Article ID: 2004537. https://doi.org/10.1002/adfm.202004537 |
[85] |
Zhao, Y., Liang, Y., Ding, S., Zhang, K., Mao, H. and Yang, Y. (2020) Application of Conductive Ppy/Sf Composite Scaffold and Electrical Stimulation for Neural Tissue Engineering. Biomaterials, 255, Article ID: 120164. https://doi.org/10.1016/j.biomaterials.2020.120164 |
[86] |
Yang, S., Zhu, J., Lu, C., Chai, Y., Cao, Z., Lu, J., et al. (2022) Aligned Fibrin/Functionalized Self-Assembling Peptide Interpenetrating Nanofiber Hydrogel Presenting Multi-Cues Promotes Peripheral Nerve Functional Recovery. Bioactive Materials, 8, 529-544. https://doi.org/10.1016/j.bioactmat.2021.05.056 |
[87] |
Cigliola, V., Becker, C.J. and Poss, K.D. (2020) Building Bridges, Not Walls: Spinal Cord Regeneration in Zebrafish. Disease Models & Mechanisms, 13, dmm044131. https://doi.org/10.1242/dmm.044131 |
[88] |
Cabrera-Aldana, E.E., Ruelas, F., Aranda, C., Rincon-Heredia, R., Martínez-Cruz, A., Reyes-Sánchez, A., et al. (2017) Methylprednisolone Administration Following Spinal Cord Injury Reduces Aquaporin 4 Expression and Exacerbates Edema. Mediators of Inflammation, 2017, Article ID: 4792932. https://doi.org/10.1155/2017/4792932 |
[89] |
Sun, X., Zhang, C., Xu, J., Zhai, H., Liu, S., Xu, Y., et al. (2020) Neurotrophin-3-Loaded Multichannel Nanofibrous Scaffolds Promoted Anti-Inflammation, Neuronal Differentiation, and Functional Recovery after Spinal Cord Injury. ACS Biomaterials Science & Engineering, 6, 1228-1238. https://doi.org/10.1021/acsbiomaterials.0c00023 |
[90] |
Bradke, F., Fawcett, J.W. and Spira, M.E. (2012) Assembly of a New Growth Cone after Axotomy: The Precursor to Axon Regeneration. Nature Reviews Neuroscience, 13, 183-193. https://doi.org/10.1038/nrn3176 |
[91] |
Fan, L., Liu, C., Chen, X., Zou, Y., Zhou, Z., Lin, C., et al. (2018) Directing Induced Pluripotent Stem Cell Derived Neural Stem Cell Fate with a Three-Dimensional Biomimetic Hydrogel for Spinal Cord Injury Repair. ACS Applied Materials & Interfaces, 10, 17742-17755. https://doi.org/10.1021/acsami.8b05293 |
[92] |
Binan, L., Tendey, C., De Crescenzo, G., El Ayoubi, R., Ajji, A. and Jolicoeur, M. (2014) Differentiation of Neuronal Stem Cells into Motor Neurons Using Electrospun Poly-L-Lactic Acid/Gelatin Scaffold. Biomaterials, 35, 664-674. https://doi.org/10.1016/j.biomaterials.2013.09.097 |
[93] |
Guo, W., Zhang, X., Yu, X., Wang, S., Qiu, J., Tang, W., et al. (2016) Self-Powered Electrical Stimulation for Enhancing Neural Differentiation of Mesenchymal Stem Cells on Graphene-Poly(3,4-Ethylenedioxythiophene) Hybrid Microfibers. ACS Nano, 10, 5086-5095. https://doi.org/10.1021/acsnano.6b00200 |
[94] |
Xue, J., Pisignano, D. and Xia, Y. (2020) Maneuvering the Migration and Differentiation of Stem Cells with Electrospun Nanofibers. Advanced Science, 7, Article ID: 2000735. https://doi.org/10.1002/advs.202000735 |
[95] |
Xue, J., Wu, T., Dai, Y. and Xia, Y. (2019) Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chemical Reviews, 119, 5298-5415. https://doi.org/10.1021/acs.chemrev.8b00593 |
[96] |
Xue, J., Yang, J., O’Connor, D.M., Zhu, C., Huo, D., Boulis, N.M., et al. (2017) Differentiation of Bone Marrow Stem Cells into Schwann Cells for the Promotion of Neurite Outgrowth on Electrospun Fibers. ACS Applied Materials & Interfaces, 9, 12299-12310. https://doi.org/10.1021/acsami.7b00882 |
[97] |
Xue, J., Wu, T., Li, J., Zhu, C. and Xia, Y. (2019) Promoting the Outgrowth of Neurites on Electrospun Microfibers by Functionalization with Electrosprayed Microparticles of Fatty Acids. Angewandte Chemie International Edition, 58, 3948-3951. https://doi.org/10.1002/anie.201814474 |
[98] |
Shu, B., Sun, X., Liu, R., Jiang, F., Yu, H., Xu, N., et al. (2019) Restoring Electrical Connection Using a Conductive Biomaterial Provides a New Therapeutic Strategy for Rats with Spinal Cord Injury. Neuroscience Letters, 692, 33-40. https://doi.org/10.1016/j.neulet.2018.10.031 |
[99] |
Reis, K.P., Sperling, L.E., Teixeira, C., Paim, Á., Alcântara, B., Vizcay-Barrena, G., et al. (2018) Application of PLGA/FGF-2 Coaxial Microfibers in Spinal Cord Tissue Engineering: An in Vitro and in Vivo Investigation. Regenerative Medicine, 13, 785-801. https://doi.org/10.2217/rme-2018-0060 |