基于静电纺丝神经支架的研究进展
Research Progress of Nerve Scaffold Based on Electrospinning
DOI: 10.12677/jocr.2024.124054, PDF, HTML, XML,    科研立项经费支持
作者: 范玉兰, 黄 丽, 凌 珏*:南通大学教育部神经再生重点实验室/神经再生协同创新中心,江苏 南通;李嘉莹*:南通大学教育部神经再生重点实验室/神经再生协同创新中心,江苏 南通;南通市第三人民医院,南通大学附属南通第三医院感染管理科,江苏 南通
关键词: 组织工程静电纺丝神经再生仿生微环境Tissue Engineering Electrospinning Nerve Regeneration Biomimetic Microenvironment
摘要: 神经系统是人体最为重要的系统之一,但高等哺乳动物神经损伤后,再生恢复能力很弱,尤其是中枢神经,因此如何高效精确地修复损伤神经,促进神经再生成为研究的焦点。基于静电纺丝技术制备的神经支架具有适合神经生长的特定物理、化学和生物学特性,可以有效调节神经元以及胶质细胞的行为,并支持神经再生。取向排列的静电纺丝纤维亚结构模拟了天然神经组织的定向特性。同时,在纤维支架表面进行形貌和化学修饰,可以显著改善细胞附着、增殖和分化,促进神经再生。本综述介绍了静电纺丝的基本原理、优点以及影响纤维形态的因素,如聚合物溶液性质、工艺参数和环境参数。探讨了静电纺丝技术在神经组织工程支架制备中的应用及其优化策略。讨论了神经导管壁厚和电纺纤维直径对神经再生的影响,概述了静电纺丝技术在周围神经和中枢神经再生中的应用。下一代的静电纺丝神经支架可与分子和药物治疗、细胞基因治疗相结合,同时开发术后干预方法,以缩短术后恢复时间。相信支架制造、修饰技术、材料科学、分子和细胞生物学的进一步发展也终将满足神经组织工程的需求。
Abstract: The nervous system is one of the most important systems in the human body. However, after nerve injury in higher mammals, the ability of regeneration and recovery is very weak, especially in the central nervous system. Therefore, how to repair damaged nerves efficiently and accurately and promote nerve regeneration has become the focus of research. Neural scaffolds prepared based on electrospinning technology have specific physical, chemical and biological characteristics suitable for nerve growth, which can effectively regulate the behavior of neurons and glial cells and support nerve regeneration. The aligned electrospinning fiber substructure simulates the directional characteristics of natural neural tissue. At the same time, the morphology and chemical modification on the surface of the fiber scaffold can significantly improve cell adhesion, proliferation and differentiation, and promote nerve regeneration. This review introduces the basic principles and advantages of electrospinning and the factors affecting fiber morphology, such as polymer solution properties, process parameters and environmental parameters. The application of electrospinning technology in the preparation of nerve tissue engineering scaffolds and its optimization strategy were discussed. The effects of nerve conduit wall thickness and electrospinning fiber diameter on nerve regeneration were discussed, and the application of electrospinning technology in peripheral nerve and central nerve regeneration was summarized. The next generation of electrospinning nerve scaffolds can be combined with molecular and drug therapy, cell gene therapy, and postoperative intervention methods to shorten postoperative recovery time. It is believed that the further development of scaffold manufacturing, modification technology, material science, molecular and cell biology will eventually meet the needs of neural tissue engineering.
文章引用:范玉兰, 黄丽, 李嘉莹, 凌珏. 基于静电纺丝神经支架的研究进展[J]. 有机化学研究, 2024, 12(4): 560-572. https://doi.org/10.12677/jocr.2024.124054

1. 引言

神经系统是人体最为重要的系统之一,是大脑信号传递的通道。但高等哺乳动物神经损伤后,再生恢复能力很弱,尤其是中枢神经。因此如何高效精确地修复损伤神经,促进神经再生成为研究的焦点[1]

周围神经与中枢神经相比在结构上较简单,再生相对容易,已有研究表明可以实现其功能的部分或完全恢复,但是存在再生的周围神经纤维直径细小,髓鞘薄弱,信号传导较慢,以及修复大间隙缺损困难等问题[2]-[4]。与周围神经不同,成年哺乳动物中枢神经系统损伤后较难再生,而促进轴突再生和缓解抑制再生的微环境是脊髓损伤治疗中实现神经功能恢复的两个关键因素[5]-[7]。神经损伤后,损伤处会发生一系列病理与生理的变化,周围神经再生是一个十分复杂的过程,涵盖了分子、细胞和机体等不同水平[8] [9]。从医学组织工程角度来说,促进神经修复与再生的策略主要包括手术修复、物理与化学干预、组织工程、细胞与组织移植、基因治疗等[10]-[12]

结合细胞、生物材料以及生化和生物物理因素来改善或替代生物组织的组织工程为组织损伤提供了理想的治疗选择[13]。它包括在体外分离和扩增靶细胞,并在植入的生物材料中播种和生长,以形成具有特定形状和功能的新组织[6] [14]。得益于这些自体细胞,组织工程具有自体移植物的优点,克服了许多组织有限的自我修复能力[15]。迄今为止,多种类的生物材料,包括水凝胶、多孔支架和纤维,已经在组织工程中得到了广泛的开发和探索。生物材料在组织工程中发挥着重要作用,因为它们可提供设计的生物物理和生化环境来支持细胞附着、增殖、分化和新组织生成[16]-[18]。随着对细胞与周围微环境之间的相互作用了解得越来越多,专注于开发模拟细胞外基质(ECM)的天然成分、特性和结构的生物材料的研究工作层出不穷[19]-[21]。最优化的组织支架应该模拟待再生组织ECM的力学和功能特性。

天然的ECM是由丰富的不同结构和排列的蛋白质纤维组成。近期诸多研究发现,纤维支架能够很好地模拟这种天然的排列结构,因此在组织工程领域受到了广泛关注[17]。其中,具有可控直径、排列方式和成分以及大表面积的静电纺丝纳米纤维可以满足组织工程的诸多要求,促进组织快速再生[22]-[24]

近年来,在医学组织工程中,将具有特定生物学活性的组织细胞与生物材料相结合,在体外或体内构建组织和器官,以维持、修复、再生,最后改善损伤组织和器官的功能[25]-[27]。其中,通过静电纺丝技术来制备神经支架,用于修复周围和中枢神经损伤的研究逐渐增多[28]-[30],包括取向纺丝技术、基于同轴纺丝技术的核壳包裹纤维、含串珠或多孔的二级微结构等;而更加理想的神经移植物不仅构建了神经生长的通道,同时还附着了种子细胞和营养因子,以模仿再生的微环境,可以更好地修复受损神经[27] [28] [31] (图1)。本综述简单介绍了理想的静电纺丝神经组织工程支架的设计要求,讨论了静电纺丝技术在神经再生中的应用,并讨论了静电纺丝纤维支架的优化技术。

Figure 1. Design of multi-functional electrospinning fiber based neural scaffolds

1. 多模式静电纺丝纤维神经导管设计

2. 理想的静电纺丝神经组织工程支架

理想的神经组织工程支架应该能够模拟ECM的自然环境[29] [32]-[34]。其中,静电纺丝纤维可模拟神经组织ECM的定向微纳级结构[35] [36]。静电纺丝技术可以通过高压电源所在的电场突破导电聚合物溶液表面张力,使聚合物溶液从针头喷出,在收集板上收集纳米或微米直径的随机或定向排列的纤维[33] [35]。其具有装置构成简单、纺丝材料来源丰富、成本低廉以及易操作等优点,在组织工程和生物医学中被广泛应用[37]表1列举了不同类型静电纺丝纳米纤维在神经组织工程中的应用。基于此技术,纤维的形态特征会受到聚合物溶液性质、工艺参数和环境参数的影响[38] [39]。近期研究发现采用静电纺丝技术在12~18 kV范围内的高压来生成聚合物射流,以形成聚合物纤维,使用1000~2000 RPM旋转的收集器和从9~10 cm的距离收集可以获得最佳的取向性聚合物纤维[33] [40]-[43]

采用静电纺丝技术构建的神经组织工程支架需要满足许多生物学和物理化学要求,其中生物相容性、生物降解性、渗透性和生物力学性能是主要关注的问题[50]

Table 1. Application of different types of electrospinning nanofibers in neural tissue engineering

1. 不同类型静电纺丝纳米纤维在神经组织工程中的应用

组成

排列方式

纤维尺寸

细胞与生物功能

动物模型

文献

聚己内酯、精氨酸–甘氨酸–天冬氨酸、酪氨酸–异亮氨酸–甘氨酸–丝氨酸–精氨酸

随机排列

2~4.5 εm

促进雪旺细胞粘附和存活、轴突再生和再生神经组织内的血管化

大鼠坐骨神经缺损模型

[44]

聚己内酯、酸性成纤维细胞生长因子

单轴排列

493 ± 191 nm

促进细胞增殖、轴突伸长、髓鞘再生

大鼠坐骨神经缺损模型

[45]

聚乳酸–己内酯(PCL)、胶原纳米纤维、还原氧化石墨烯

垂直或平行网状结构

10.3 ± 2.6 μm

促进神经元生长、募集血管细胞和巨噬细胞、促进髓鞘再生

大鼠坐骨神经缺损模型

[46]

甲基丙烯酸丝素

单轴排列

2~5 μm

引导雪旺细胞和神经元的排列生长,促进雪旺细胞黏附、成髓鞘和神经营养物质的分泌

大鼠坐骨神经缺损模型

[47]

明胶甲基丙烯酰

平行排列

0.8 μm~1.8 μm

促进内源性神经干细胞向神经元的迁移和分化、轴突定向生长、支架内的血管化

大鼠脊髓损伤模型

[48]

聚己内酯

网状结构

为软组织再生提供机械支撑增强组织再生

坐骨神经缺损和跟腱损伤大鼠模型

[49]

2.1. 聚合物性质

理想的神经组织工程支架应能够模拟ECM,其中包括具有良好的生物相容性,并促进细胞间的相互作用,同时,在组织再生过程中提供足够的力学性能,并具有生物可降解性,避免植入后的二次手术[33] [50] [51]。由于优良的生物相容性、可控的降解性和结构的灵活性,聚合物纤维的仿生神经支架被广泛研究。迄今为止,不同类型的聚合物纤维已被广泛用于组织工程再生领域中,其中包括天然聚合物、合成聚合物、多组分复合聚合物和有机–无机聚合物。根据实际应用中所需的不同性能,可以对聚合物纤维进行特定设计。其中,聚合物纤维支架的形态、亲水性、表面能和电荷会影响细胞的粘附、迁移、表型维持和细胞内信号传递等,都是其制备过程中应考虑的关键因素。Wu等人通过在静电纺丝的聚(ε-己内酯)和聚(乙烯基吡咯烷酮)微纤维表面构筑纳米级沟槽,促进了神经突的生长和雪旺细胞的迁移[52]。Ullah等人将DNA-阳离子表面活性剂配合物与聚乳酸共混,设计了新型的DNA基静电纺纳米纤维,发现纳米纤维呈现疏水特性,而添加纳米铜涂层能够显著增强纳米纤维的亲水性[53]。Buehler等人发现压电静电纺丝纤维能在模拟细胞外基质纤维蛋白的结构的同时,为细胞生长、细胞分化和组织功能修复提供必要刺激,包括机械电、拓扑和物理化学刺激,从而促进组织损伤修复[54]

天然的ECM是由多糖纤维和蛋白质组成的几十纳米到数百纳米的三维结构空间[51]。基于静电纺丝技术制备的纤维支架具有可控的形状尺寸、空间分布以及可修饰改进的生物学性能。因此,电纺纤维可以模拟ECM的结构,并为细胞生长提供一个三维空间和更多的粘附位点[33]。然而,在制备神经支架的过程中,调整支架的形态特性必须优化聚合物溶液的性质(浓度、分子量、使用的溶剂和聚合物类型);聚合物溶液的物理性质(粘度、表面张力和电导率)、工艺参数(电压、流速、收集器类型、尖端到收集器之间的距离)和环境参数。Liu等人发现静电纺丝可以生产珠串状和带状三种不同的纤维。珠状纤维是由低分子量聚合物和低浓度静电纺丝溶液产生;而具有珠串状纤维结构的纺丝表面粗糙,串的尺寸主要受聚合物的浓度控制;带状纤维的横截面呈扁平状,形成因素主要是溶液浓度、电导率、溶剂蒸发等[48]。Wang等人提出了一种基于分子量调控的双峰纤维成型新策略。由于溶液不均匀性,中等分子量的乙基纤维素聚合物链在“微观层面”表现出显著的粘滞力差异,从而导致射流在拉伸过程中形成双峰结构[55]。Ji等人发现纤维形状的形成受流体力学动力学、射流上的电荷分布和溶剂蒸发速率等因素影响。缓慢的溶剂蒸发或快速的溶质扩散会使射流均匀收缩,形成圆形截面的纳米纤维。相反,当聚合物链间存在显著的分子间相互作用时,溶剂迅速从射流表面蒸发,形成高浓度聚合物的外壳层,导致圆形射流向内坍塌,形成椭圆或带状纤维。射流表面电荷密度的增加会破坏表面张力和静电力的平衡,导致射流不稳定,产生分枝的纳米纤维。较低粘度的溶液和较低的射流表面电荷密度可形成珠状纳米纤维。通过将微球加入聚合物溶液中,可以制造微球纳米纤维。射流与收集器表面接触时的压缩和弯曲现象会导致纳米纤维形成褶皱、圆形螺旋、锯齿等复杂结构[56]

2.2. 支架壁厚

管状神经导管的尺寸会显著影响神经再生与成熟的质量[57]。Rutkowski等人发现壁厚越大和孔隙率越少的导管不利于轴突生长,壁厚大于810 µm的导管中轴突生长显著减少[58],随着壁厚增加,导管刚度增加可能是导致神经导管失效的原因。此外,导管壁的厚度必须允许营养物质的充分扩散[59] [60]。Pateman等人在体内实验中观察到,植入基于微热光刻技术制备的可光固化的聚乙二醇树脂导管促进神经再生的最佳壁厚为250 μm [61],虽然壁厚越小可能会有益于修复效果,但可能也会导致机械崩塌[62]

同时,导管壁厚的增加和孔隙率的降低会使生长因子在神经导管管腔内的保留时间延长,从而提高神经元的存活能力[63]。然而,壁厚的增加会导致管壁内部和外部环境之间的氧气量、葡萄糖和溶菌酶等营养物质的交换量减少,纤维组织的形成量增加,以及产生更明显的炎症反应,导致神经导管管腔阻塞[62] [64]

因此,在制备神经支架时,平衡强度和柔韧性两者之间的关系十分重要。支架必须能够承受手术、缝合和周围组织的压力,一个合适的管壁厚度应被设计成以最小的厚度来提供足够的机械强度[62] [64] [65]

2.3. 电纺纤维直径

电纺纤维的直径可以根据聚合物溶液的特性(例如浓度、粘度和分子量)而变化[41] [60]。研究表明,纤维直径可以影响细胞的形态、增殖和迁移[33] [35]。然而,尚不清楚纳米还是微米纤维能更好地支持神经再生。虽然已有研究报道了通过体外细胞实验评价纳米纤维[41] [51]和微米纤维[35] [66]对神经生长的调控作用,但在体内评估纤维直径对神经再生的影响仍然有限。

纤维直径对神经元的生长、施万细胞迁移率[35] [39]、神经元轴突的单向性和轴突密度[40]均有显著影响。在亚细胞或细胞范围内,神经元轴突在直径为1.3 µm [59]、5 µm [43]、13.5 µm [35]和17~30 µm [59]的纤维上比直径小于0.2 µm [40]的纤维中表现出更大的生长、排列和分化能力。

当纤维直径在细胞或亚细胞尺寸范围内时,生长锥可以很容易地检测到不同生长方向上的形貌差异,然而,当直径非常小时,例如,比轴突的生理尺寸细得多时,生长锥可能无法感知形貌差异。因此,小于300 nm的纤维直径对神经元的生长和施万细胞的迁移有不利影响。与中等直径(500~1000 nm)和大直径(1000~1500 nm)的纤维相比,培养5天后背根神经节神经元的长度更小[63]。由于直径为1.3 µm的纤维比中等和小直径纤维堆积地更密集,这些堆积的纤维可以更好地引导神经元延伸和施万细胞迁移。然而,当纤维具有超细胞尺寸(大于500 µm)时,神经元被聚集成更密集的束状,阻碍了轴突的充分生长[40] [41]。因此,纤维之间的堆积是影响神经元延伸和施万细胞迁移的另一个参数,在一定程度上它可以提供一个最适合细胞粘附和生长的表面。

相反,一些研究报告了纳米级纤维支架具有更好促进神经生长效果[66] [67]。Gnavi等人报道,300~600 nm纤维增加了施万细胞的粘附和增殖率[66]。此外,Yang等人报道,与微米纤维(1.5 µm)相比,纳米纤维支架(300 nm)中的神经干细胞(NSC)分化率更高,神经元生长更好[41]

这些结果均表明,纤维的直径能显著影响神经的再生。然而,科研界对于使用静电纺丝技术构建神经导管最合适的纤维直径仍没有达成共识。但是,根据这些研究的结果,纤维的直径在300 nm~30 µm范围内促神经再生的效果较佳。

3. 静电纺丝在神经再生中的应用

3.1. 静电纺丝与周围神经再生

周围神经系统是由脑和脊髓延伸出来的所有神经及相关神经节组成,脑神经和脊神经均由神经束组成,神经束又由神经纤维和结缔组织组成。其功能主要是感受刺激,传导冲动,支配肌肉运动或腺体分泌[10] [68]。周围神经损伤后,损伤部位的轴突和周围髓鞘发生变性、破碎并被吞噬细胞吞噬,同时施万细胞增殖并迁移形成Büngner带,为轴突的延伸提供有利的线性生长底物[31] [69]-[71]。同时对于神经的再生,有一个良好的再生环境也很重要。

在神经严重损伤的情况下,实现周围神经系统的完全恢复比中枢神经系统更可行。在周围神经缺损中,可以自行修复神经间隙小于5 mm的缺损,而对于长度超过5 mm,采用医疗辅助、手术和更换神经移植是必不可少的[72]

自体移植已作为一线治疗手段用于修复无法通过直接端到端缝合的周围神经损伤[73]。但是,存在自体神经移植物和受损神经之间不匹配、需要进行多轮手术、可用的移植物来源有限以及供体神经功能的永久性丧失的各种限制[74]。因此,神经导管已被认为是一种潜在的替代品,可以为神经再生创造一个对神经细胞友好的环境[50]。材料选择、结构引导和仿生特性是影响神经引导导管修复效果的重要因素。许多研究人员通过改善人工神经导管的特性来促进神经功能的恢复,如提高生物相容性、负载细胞、选择适当的材料、添加生物分子和表面形貌[75] [76]。其中结构引导作用对于构建一个能够控制神经细胞生长命运的微环境具有重要意义[77] [78]

在构建导管内部结构方面,有许多技术可以将天然和合成的生物材料加工成具有细胞生长调控作用的神经导管。包括一些常规的方法,如气体发泡、相分离、冷冻干燥、盐浸出和静电纺丝[79] [80]。在这些技术中,静电纺丝因其在表面形貌、纤维排列、纤维信号封装、直径和孔隙度等方面的可调节性而得到了广泛的应用[81]-[83]。例如,Shrestha等人开发了一种基于聚氨酯/丝素蛋白–多壁碳纳米管的静电纺丝支架,该支架具有良好的机械性能、亲水性、生物可降解性和生物相容性,体外实验表明该支架可以促进施万细胞的生长和增殖[67]。在神经导管中施加生物活性剂和外部刺激可以促进神经元的生长能力并促进神经再生。例如,Chen等人在静电纺丝神经导管上施加了生物活性剂:褪黑素和Fe3O4,该生物活性剂被证明可以抑制氧化应激,炎症和诱导神经再生,该支架可以实现可控的药物释放,为神经再生的构建合适的微环境[84]。Zhao等人设计了一种基于3D打印技术和静电纺丝技术制备的聚吡咯/丝素蛋白导电复合支架,该支架可以上调相关神经营养因子的表达,同时由于支架中导电聚合物的电响应性可以有效地促进体内轴突和髓鞘的再生。研究还发现通过在导电导管处施加电刺激可以激活MAPKs信号转导通路[85]。同时,具有中空管腔的神经导管不能再生临界大小的周围神经缺陷(大鼠15 mm,在人为25 mm),而这种情况可以通过构建有益的管腔内微环境改善。因此Yang等人开发了一种基于静电纺丝和分子自组装技术构建的取向性纤维蛋白/官能化自组装肽互穿网络的纳米纤维水凝胶,该静电纺丝水凝胶成功地桥接了大鼠15 mm的坐骨神经缺损,实现了大鼠运动功能的恢复[86]。这些研究表明具有高表面积与体积比的静电纺丝纤维支架能够良好促进周围神经再生。

3.2. 静电纺丝与中枢神经再生

中枢神经系统由脑和脊髓组成,与周围神经系统损伤不同的是,中枢神经系统损伤后由很难再生[87]。而脊髓的结构与功能相对于脑来说比较简单,因此脊髓损伤后的修复与再生成为人们研究的焦点。

脊髓损伤(Spinal Cord Injury, SCI)是中枢神经系统最致命的疾病之一。目前,临床的治疗方法主要包括手术和注射抗炎药物,如甲基泼尼松龙[88]。然而,由于SCI后复杂的病理过程和抑制性微环境,临床治疗受到限制,神经再生和功能恢复都难以得到满意的效果[89]。为了获得更好的SCI治疗效果,治疗策略应克服SCI后的综合问题。成人中枢神经系统的神经元由于缺乏生长驱动信号和亚细胞结构排列诱导生长锥的形成和轴突伸长而具有较低的再生能力[90]。因此,在中枢神经系统损伤治疗中诱导神经干细胞(Neural Stem Cells, NSCs)分化为神经元而不是神经胶质细胞对于提高再生效率至关重要[91]。例如,Binan等人开发了一种由聚左旋乳酸和明胶共纺纤维制成的支架,在支架上孵育工程化的神经干细胞,发现神经干细胞可以分化成beta-III-tubulin,HB-9,Islet-1和结合酶阳性运动神经元,同时该支架可以促进神经元的生长[92]

同时,促进轴突再生和缓解抑制环境是SCI治疗中实现神经功能恢复的两个关键因素。神经组织工程被认为是操纵这两个因素以促进神经系统再生的最有希望的方法之一[93]。对于应用于SCI的神经组织工程材料,植入病灶中心的支架应能够模拟ECM的结构和组成,从而为调节轴突伸长和神经细胞行为提供适当的微环境[94]。在制备神经支架的各种方法中,静电纺丝纤维由于在一定程度上能够模拟ECM的结构和成分,因此在SCI修复方面获得了广泛的关注[95]。更重要的是纤维支架不仅可以提供结构支撑,还可以调节轴突和细胞的行为[96] [97]。由于受伤后脊髓无法将生理电信号传输到损伤的位置,因此在支架中引入导电的生物材料可以帮助SCI修复。Shu等人将导电聚合物聚吡咯引入电纺聚乳酸纳米纤维支架中,并将支架植入T9脊髓全横断的大鼠中,研究表明该支架通过为神经再生提供有利的微环境,降低了星形胶质细胞的激活并促进轴突再生,从而有利于SCI大鼠模型中的脊髓的再生和功能恢复[98]。Chen等人开发了一种由光交联的甲基丙烯酰化的明胶和静电纺丝技术制备的取向性水凝胶微纤维支架,可以为神经细胞提供有利的生存和代谢环境,研究表明该支架不仅可以促进神经干细胞的迁移而且可以促进神经干细胞定向分化为神经元[48]。Reis等人通过同轴静电纺丝技术将丙戊酸(VPA)封装在聚乳酸二乙醇酸的微纤维中,研究表明含有VPA的支架可以促进SCI后的大鼠运动功能恢复和组织再生[99]。这些研究结果均表明,静电纺丝支架材料的成分、拓扑结构和表面特性的改进都可以调节中枢神经损伤中轴突生长和细胞行为。

4. 结论和未来展望

基于静电纺丝技术制备的神经支架具有适合神经生长的特定物理、化学和生物学特性,可以有效调节神经元以及胶质细胞的行为,并支持神经再生。取向排列的静电纺丝纤维亚结构模拟了天然神经组织的定向特性。天然和合成聚合物为调节和控制静电纺丝纤维支架的力学性能、生物相容性和生物可降解性提供了多种可能。同时,在纤维支架表面进行形貌和化学修饰,可以显著改善细胞附着、增殖和分化,促进神经再生。

目前针对纤维支架修复神经损伤的大部分研究都在大鼠模型中进行。然而,啮齿动物与人类相比,存在再生特征和神经生物学差异,因此在临床实验中,支架修复人类神经缺陷的效果较差。因此,为功克临床治疗间隙大于30 mm的周围神经损伤这一难题,亟需设计更高效生化和物理因素的多功能神经支架。为此,一些挑战和问题需要更好地解决以提高静电纺丝支架的性能。例如,尽管已经开发了各种类型的生物活性剂,但增强支架表面的生物活性仍然是一个挑战。在静电纺丝过程中,由于高压电场,蛋白质的结构会被破坏,导致支架生物活性丧失。另外,如何进一步提高导电纤维神经支架材料的生物相容性和导电性,以及改善支架的安全电刺激也是领域内技术难点。在生物机制研究方面,深入了解细胞-ECM的相互作用,以及这些成分如何在特定位置与靶细胞发生反应以及它们的嵌入位置,可以为支架的制造提供强有力的理论基础。与此同时,下一代的静电纺丝神经支架可与分子和药物治疗、细胞基因治疗相结合,同时开发术后干预方法,以缩短术后恢复时间。相信支架制造、修饰技术、材料科学、分子和细胞生物学的进一步发展也终将满足神经组织工程的需求。

基金项目

“三类”学科建设研究教育改革暨江苏省学位与研究生教育学会项目子课题项目(项目编号JSYXHXM2023-ZYB17);江苏省研学会重大2023-1 (项目编号JSSYXHZD2023-1);南通大学临床医学专项科研基金项目(2023JY028);2023年江苏省学位与研究生教育教学改革课题JGKT23_C077。

NOTES

*通讯作者。

参考文献

[1] 薛学鑫, 刘哲鹏. 静电纺纤维神经组织工程支架: 材料、功能及结构设计策略[J]. 中国组织工程研究, 2022, 26(28): 4575-4580.
[2] 郑根江. 基于神经免疫调节和能量支持的纳米酶纤维支架协同促进脊髓修复的实验研究[D]: [博士学位论文]. 重庆: 中国人民解放军海军军医大学, 2024.
[3] Moskow, J., Ferrigno, B., Mistry, N., Jaiswal, D., Bulsara, K., Rudraiah, S., et al. (2019) Review: Bioengineering Approach for the Repair and Regeneration of Peripheral Nerve. Bioactive Materials, 4, 107-113.
https://doi.org/10.1016/j.bioactmat.2018.09.001
[4] 陈晓莉, 汤晓璇, 顾心逸, 凌珏, 杨宇民. 提高神经导管生物活性的策略[J]. 生物过程, 2021, 11(3): 19-29.
[5] Badhiwala, J.H., Ahuja, C.S. and Fehlings, M.G. (2019) Time Is Spine: A Review of Translational Advances in Spinal Cord Injury. Journal of Neurosurgery: Spine, 30, 1-18.
https://doi.org/10.3171/2018.9.spine18682
[6] 王钰清, 魏静静, 李文慧, 张鲁中, 杨宇民. 基于壳聚糖导管的周围神经再生研究进展[J]. 生物过程, 2022, 12(2): 148-153.
[7] Zhang, X., Gong, B., Zhai, J., Zhao, Y., Lu, Y., Zhang, L., et al. (2021) A Perspective: Electrospun Fibers for Repairing Spinal Cord Injury. Chemical Research in Chinese Universities, 37, 404-410.
https://doi.org/10.1007/s40242-021-1162-y
[8] 李文慧, 姚珂, 张鲁中, 杨宇民. 精氨酸-谷氨酸-天冬氨酸-缬氨酸改性丝素导管的制备及性能研究[J]. 生物过程, 2021, 11(4): 123-133.
[9] Chen, P., Piao, X. and Bonaldo, P. (2015) Role of Macrophages in Wallerian Degeneration and Axonal Regeneration after Peripheral Nerve Injury. Acta Neuropathologica, 130, 605-618.
https://doi.org/10.1007/s00401-015-1482-4
[10] Radhakrishnan, J., Kuppuswamy, A.A., Sethuraman, S. and Subramanian, A. (2015) Topographic Cue from Electrospun Scaffolds Regulate Myelin-Related Gene Expressions in Schwann Cells. Journal of Biomedical Nanotechnology, 11, 512-521.
https://doi.org/10.1166/jbn.2015.1921
[11] 刘天一. 搭载神经干细胞的功能化静电纺丝支架用于脊髓损伤修复治疗研究[D]: [博士学位论文]. 长春: 吉林大学, 2023.
[12] 陈勇, 范林, 付贞, 等. 神经导管支架修复外周神经损伤的研究与现状[J]. 中国组织工程研究, 2017, 21(30): 4901-4907.
[13] Li, X., Sun, Q., Li, Q., Kawazoe, N. and Chen, G. (2018) Functional Hydrogels with Tunable Structures and Properties for Tissue Engineering Applications. Frontiers in Chemistry, 6, Article No. 499.
https://doi.org/10.3389/fchem.2018.00499
[14] Guimarães, C.F., Gasperini, L., Marques, A.P. and Reis, R.L. (2020) The Stiffness of Living Tissues and Its Implications for Tissue Engineering. Nature Reviews Materials, 5, 351-370.
https://doi.org/10.1038/s41578-019-0169-1
[15] Nguyen, T.P., Nguyen, Q.V., Nguyen, V., Le, T., Huynh, V.Q.N., Vo, D.N., et al. (2019) Silk Fibroin-Based Biomaterials for Biomedical Applications: A Review. Polymers, 11, Article No. 1933.
https://doi.org/10.3390/polym11121933
[16] 兰东维. 丝素蛋白/聚赖氨酸仿生纳米纤维支架的制备及在神经再生中的应用研究[D]: [硕士学位论文]. 重庆: 西南大学, 2022.
[17] Mo, X., Sun, B., Wu, T. and Li, D. (2019) Electrospun Nanofibers for Tissue Engineering. In: Ding, B., Wang, X.F. and Yu, J.Y., Eds., Electrospinning: Nanofabrication and Applications, Elsevier, 719-734.
https://doi.org/10.1016/b978-0-323-51270-1.00024-8
[18] Gao, X., Han, S., Zhang, R., Liu, G. and Wu, J. (2019) Progress in Electrospun Composite Nanofibers: Composition, Performance and Applications for Tissue Engineering. Journal of Materials Chemistry B, 7, 7075-7089.
https://doi.org/10.1039/c9tb01730e
[19] Li, X., Chen, Y., Kawazoe, N. and Chen, G. (2017) Influence of Microporous Gelatin Hydrogels on Chondrocyte Functions. Journal of Materials Chemistry B, 5, 5753-5762.
https://doi.org/10.1039/c7tb01350g
[20] 李孙奥. 负载氧化铜的静电纺丝支架通过调控轻度脑外伤后铜稳态发挥神经保护作用的机制研究[D]: [硕士学位论文]. 苏州: 苏州大学, 2023.
[21] Li, X., Chen, S., Li, J., Wang, X., Zhang, J., Kawazoe, N., et al. (2016) 3D Culture of Chondrocytes in Gelatin Hydrogels with Different Stiffness. Polymers, 8, Article No. 269.
https://doi.org/10.3390/polym8080269
[22] Manoukian, O.S., Matta, R., Letendre, J., Collins, P., Mazzocca, A.D. and Kumbar, S.G. (2017) Electrospun Nanofiber Scaffolds and Their Hydrogel Composites for the Engineering and Regeneration of Soft Tissues. In: Petrosko, S.H. and Day, E.S., Eds., Methods in Molecular Biology, Springer, 261-278.
https://doi.org/10.1007/978-1-4939-6840-4_18
[23] Xue, J., Xie, J., Liu, W. and Xia, Y. (2017) Electrospun Nanofibers: New Concepts, Materials, and Applications. Accounts of Chemical Research, 50, 1976-1987.
https://doi.org/10.1021/acs.accounts.7b00218
[24] Lannutti, J., Reneker, D., Ma, T., Tomasko, D. and Farson, D. (2007) Electrospinning for Tissue Engineering Scaffolds. Materials Science and Engineering: C, 27, 504-509.
https://doi.org/10.1016/j.msec.2006.05.019
[25] Nie, K., Han, S., Yang, J., Sun, Q., Wang, X., Li, X., et al. (2020) Enzyme-Crosslinked Electrospun Fibrous Gelatin Hydrogel for Potential Soft Tissue Engineering. Polymers, 12, Article No. 1977.
https://doi.org/10.3390/polym12091977
[26] Wang, D., Wang, X., Zhang, Z., Wang, L., Li, X., Xu, Y., et al. (2019) Programmed Release of Multimodal, Cross-Linked Vascular Endothelial Growth Factor and Heparin Layers on Electrospun Polycaprolactone Vascular Grafts. ACS Applied Materials & Interfaces, 11, 32533-32542.
https://doi.org/10.1021/acsami.9b10621
[27] Rose, J.C. and De Laporte, L. (2018) Hierarchical Design of Tissue Regenerative Constructs. Advanced Healthcare Materials, 7, e1701067.
https://doi.org/10.1002/adhm.201701067
[28] Schaub, N.J., Johnson, C.D., Cooper, B. and Gilbert, R.J. (2016) Electrospun Fibers for Spinal Cord Injury Research and Regeneration. Journal of Neurotrauma, 33, 1405-1415.
https://doi.org/10.1089/neu.2015.4165
[29] Ramakrishna, S., Chen, N., Tian, L. and He, L. (2016) Nanobiomaterials for Neural Regeneration. Neural Regeneration Research, 11, 1372-1374.
https://doi.org/10.4103/1673-5374.191195
[30] Lu, K., Qian, Y., Gong, J., Zhu, Z., Yin, J., Ma, L., et al. (2021) Biofabrication of Aligned Structures That Guide Cell Orientation and Applications in Tissue Engineering. Bio-Design and Manufacturing, 4, 258-277.
https://doi.org/10.1007/s42242-020-00104-5
[31] Stoll, G. and Müller, H.W. (1999) Nerve Injury, Axonal Degeneration and Neural Regeneration: Basic Insights. Brain Pathology, 9, 313-325.
https://doi.org/10.1111/j.1750-3639.1999.tb00229.x
[32] Jiang, X., Mi, R., Hoke, A. and Chew, S.Y. (2012) Nanofibrous Nerve Conduit-Enhanced Peripheral Nerve Regeneration. Journal of Tissue Engineering and Regenerative Medicine, 8, 377-385.
https://doi.org/10.1002/term.1531
[33] Hu, J., Tian, L., Prabhakaran, M., Ding, X. and Ramakrishna, S. (2016) Fabrication of Nerve Growth Factor Encapsulated Aligned Poly(ε-Caprolactone) Nanofibers and Their Assessment as a Potential Neural Tissue Engineering Scaffold. Polymers, 8, Article No. 54.
https://doi.org/10.3390/polym8020054
[34] Zhang, Y., Liu, X., Zeng, L., Zhang, J., Zuo, J., Zou, J., et al. (2019) Polymer Fiber Scaffolds for Bone and Cartilage Tissue Engineering. Advanced Functional Materials, 29, Article ID: 1903279.
https://doi.org/10.1002/adfm.201903279
[35] Lizarraga‐Valderrama, L.R., Taylor, C.S., Claeyssens, F., Haycock, J.W., Knowles, J.C. and Roy, I. (2019) Unidirectional Neuronal Cell Growth and Differentiation on Aligned Polyhydroxyalkanoate Blend Microfibres with Varying Diameters. Journal of Tissue Engineering and Regenerative Medicine, 13, 1581-1594.
https://doi.org/10.1002/term.2911
[36] Yao, L., de Ruiter, G.C.W., Wang, H., Knight, A.M., Spinner, R.J., Yaszemski, M.J., et al. (2010) Controlling Dispersion of Axonal Regeneration Using a Multichannel Collagen Nerve Conduit. Biomaterials, 31, 5789-5797.
https://doi.org/10.1016/j.biomaterials.2010.03.081
[37] Feng, X., Li, J., Zhang, X., Liu, T., Ding, J. and Chen, X. (2019) Electrospun Polymer Micro/Nanofibers as Pharmaceutical Repositories for Healthcare. Journal of Controlled Release, 302, 19-41.
https://doi.org/10.1016/j.jconrel.2019.03.020
[38] Masaeli, E., Morshed, M., Nasr-Esfahani, M.H., Sadri, S., Hilderink, J., van Apeldoorn, A., et al. (2013) Fabrication, Characterization and Cellular Compatibility of Poly(Hydroxy Alkanoate) Composite Nanofibrous Scaffolds for Nerve Tissue Engineering. PLOS ONE, 8, e57157.
https://doi.org/10.1371/journal.pone.0057157
[39] Gnavi, S., Fornasari, B., Tonda-Turo, C., Laurano, R., Zanetti, M., Ciardelli, G., et al. (2015) The Effect of Electrospun Gelatin Fibers Alignment on Schwann Cell and Axon Behavior and Organization in the Perspective of Artificial Nerve Design. International Journal of Molecular Sciences, 16, 12925-12942.
https://doi.org/10.3390/ijms160612925
[40] Wang, H.B., Mullins, M.E., Cregg, J.M., McCarthy, C.W. and Gilbert, R.J. (2010) Varying the Diameter of Aligned Electrospun Fibers Alters Neurite Outgrowth and Schwann Cell Migration. Acta Biomaterialia, 6, 2970-2978.
https://doi.org/10.1016/j.actbio.2010.02.020
[41] Yang, F., Murugan, R., Wang, S. and Ramakrishna, S. (2005) Electrospinning of Nano/micro Scale Poly(l-Lactic Acid) Aligned Fibers and Their Potential in Neural Tissue Engineering. Biomaterials, 26, 2603-2610.
https://doi.org/10.1016/j.biomaterials.2004.06.051
[42] Yao, L., O’Brien, N., Windebank, A. and Pandit, A. (2009) Orienting Neurite Growth in Electrospun Fibrous Neural Conduits. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 90, 483-491.
https://doi.org/10.1002/jbm.b.31308
[43] Daud, M.F.B., Pawar, K.C., Claeyssens, F., Ryan, A.J. and Haycock, J.W. (2012) An Aligned 3D Neuronal-Glial Co-culture Model for Peripheral Nerve Studies. Biomaterials, 33, 5901-5913.
https://doi.org/10.1016/j.biomaterials.2012.05.008
[44] Zhu, L., Wang, K., Ma, T., Huang, L., Xia, B., Zhu, S., et al. (2017) Noncovalent Bonding of RGD and YIGSR to an Electrospun Poly(ε‐caprolactone) Conduit through Peptide Self‐Assembly to Synergistically Promote Sciatic Nerve Regeneration in Rats. Advanced Healthcare Materials, 6, Article ID: 1600860.
https://doi.org/10.1002/adhm.201600860
[45] Jin, B., Yu, Y., Lou, C., Zhang, X., Gong, B., Chen, J., et al. (2022) Combining a Density Gradient of Biomacromolecular Nanoparticles with Biological Effectors in an Electrospun Fiber‐Based Nerve Guidance Conduit to Promote Peripheral Nerve Repair. Advanced Science, 10, e2203296.
https://doi.org/10.1002/advs.202203296
[46] Fang, Y., Wang, C., Liu, Z., Ko, J., Chen, L., Zhang, T., et al. (2023) 3D Printed Conductive Multiscale Nerve Guidance Conduit with Hierarchical Fibers for Peripheral Nerve Regeneration. Advanced Science, 10, e2205744.
https://doi.org/10.1002/advs.202205744
[47] Chen, X., Tang, X., Wang, Y., Gu, X., Huang, T., Yang, Y., et al. (2022) Silk-Inspired Fiber Implant with Multi-Cues Enhanced Bionic Microenvironment for Promoting Peripheral Nerve Repair. Biomaterials Advances, 135, Article ID: 112674.
https://doi.org/10.1016/j.msec.2022.112674
[48] Chen, C., Tang, J., Gu, Y., Liu, L., Liu, X., Deng, L., et al. (2018) Bioinspired Hydrogel Electrospun Fibers for Spinal Cord Regeneration. Advanced Functional Materials, 29, Article ID: 1806899.
https://doi.org/10.1002/adfm.201806899
[49] Cao, S., Wei, Y., Bo, R., Yun, X., Xu, S., Guan, Y., et al. (2023) Inversely Engineered Biomimetic Flexible Network Scaffolds for Soft Tissue Regeneration. Science Advances, 9, eadi8606.
https://doi.org/10.1126/sciadv.adi8606
[50] Gu, X., Ding, F., Yang, Y. and Liu, J. (2011) Construction of Tissue Engineered Nerve Grafts and Their Application in Peripheral Nerve Regeneration. Progress in Neurobiology, 93, 204-230.
https://doi.org/10.1016/j.pneurobio.2010.11.002
[51] Cirillo, M. and Giacomini, D. (2021) Molecular Delivery of Cytotoxic Agents via Integrin Activation. Cancers, 13, Article No. 299.
https://doi.org/10.3390/cancers13020299
[52] Wu, T., Xue, J. and Xia, Y. (2020) Engraving the Surface of Electrospun Microfibers with Nanoscale Grooves Promotes the Outgrowth of Neurites and the Migration of Schwann Cells. Angewandte Chemie International Edition, 59, 15626-15632.
https://doi.org/10.1002/anie.202002593
[53] Ullah, S., Ali, H.G., Hashmi, M., Haider, M.K., Ishaq, T., Tamada, Y., et al. (2023) Electrospun Composite Nanofibers of Deoxyribonucleic Acid and Polylactic Acid for Skincare Applications. Journal of Biomedical Materials Research Part A, 111, 1798-1807.
https://doi.org/10.1002/jbm.a.37592
[54] Azimi, B., Milazzo, M., Lazzeri, A., Berrettini, S., Uddin, M.J., Qin, Z., et al. (2019) Electrospinning Piezoelectric Fibers for Biocompatible Devices. Advanced Healthcare Materials, 9, e1901287.
https://doi.org/10.1002/adhm.201901287
[55] Wang, Q., Shao, Z., Sui, J., Shen, R., Chen, R., Gui, Z., et al. (2024) Preparation of Ethyl Cellulose Bimodal Nanofibrous Membrane by Green Electrospinning Based on Molecular Weight Regulation for High-Performance Air Filtration. International Journal of Biological Macromolecules, 275, Article ID: 133411.
https://doi.org/10.1016/j.ijbiomac.2024.133411
[56] Ji, D., Lin, Y., Guo, X., Ramasubramanian, B., Wang, R., Radacsi, N., et al. (2024) Electrospinning of Nanofibres. Nature Reviews Methods Primers, 4, Article No. 1.
https://doi.org/10.1038/s43586-023-00278-z
[57] Den Dunnen, W.F.A., Van Der Lei, B., Robinson, P.H., Holwerda, A., Pennings, A.J. and Schakenraad, J.M. (1995) Biological Performance of a Degradable Poly(Lactic Acid‐ε‐Caprolactone) Nerve Guide: Influence of Tube Dimensions. Journal of Biomedical Materials Research, 29, 757-766.
https://doi.org/10.1002/jbm.820290612
[58] Rutkowski, G.E. and Heath, C.A. (2002) Development of a Bioartificial Nerve Graft. II. Nerve Regeneration in Vitro. Biotechnology Progress, 18, 373-379.
https://doi.org/10.1021/bp020280h
[59] Rutkowski, G.E. and Heath, C.A. (2002) Development of a Bioartificial Nerve Graft. I. Design Based on a Reaction-Diffusion Model. Biotechnology Progress, 18, 362-372.
https://doi.org/10.1021/bp020300f
[60] Oh, S.H. and Lee, J.H. (2007) Fabrication and Characterization of Hydrophilized Porous PLGA Nerve Guide Conduits by a Modified Immersion Precipitation Method. Journal of Biomedical Materials Research Part A, 80, 530-538.
https://doi.org/10.1002/jbm.a.30937
[61] Wen, X. and Tresco, P.A. (2005) Effect of Filament Diameter and Extracellular Matrix Molecule Precoating on Neurite Outgrowth and Schwann Cell Behavior on Multifilament Entubulation Bridging Device in Vitro. Journal of Biomedical Materials Research Part A, 76, 626-637.
https://doi.org/10.1002/jbm.a.30520
[62] Huang, L., Zhu, L., Shi, X., Xia, B., Liu, Z., Zhu, S., et al. (2018) A Compound Scaffold with Uniform Longitudinally Oriented Guidance Cues and a Porous Sheath Promotes Peripheral Nerve Regeneration in Vivo. Acta Biomaterialia, 68, 223-236.
https://doi.org/10.1016/j.actbio.2017.12.010
[63] Yang, Y., Zhao, W., He, J., Zhao, Y., Ding, F. and Gu, X. (2011) Nerve Conduits Based on Immobilization of Nerve Growth Factor onto Modified Chitosan by Using Genipin as a Crosslinking Agent. European Journal of Pharmaceutics and Biopharmaceutics, 79, 519-525.
https://doi.org/10.1016/j.ejpb.2011.06.008
[64] Kokai, L.E., Lin, Y., Oyster, N.M. and Marra, K.G. (2009) Diffusion of Soluble Factors through Degradable Polymer Nerve Guides: Controlling Manufacturing Parameters. Acta Biomaterialia, 5, 2540-2550.
https://doi.org/10.1016/j.actbio.2009.03.009
[65] Den Dunnen, W.F.A., Meek, M.F., Robinson, P.H. and Schakernraad, J.M. (1998) Peripheral Nerve Regeneration through P(dlla-Ε-Cl) Nerve Guides. Journal of Materials Science: Materials in Medicine, 9, 811-814.
https://doi.org/10.1023/a:1008987910224
[66] Gnavi, S., Fornasari, B.E., Tonda-Turo, C., Ciardelli, G., Zanetti, M., Geuna, S., et al. (2015) The Influence of Electrospun Fibre Size on Schwann Cell Behaviour and Axonal Outgrowth. Materials Science and Engineering: C, 48, 620-631.
https://doi.org/10.1016/j.msec.2014.12.055
[67] Shrestha, S., Shrestha, B.K., Lee, J., Joong, O.K., Kim, B., Park, C.H., et al. (2019) A Conducting Neural Interface of Polyurethane/Silk-Functionalized Multiwall Carbon Nanotubes with Enhanced Mechanical Strength for Neuroregeneration. Materials Science and Engineering: C, 102, 511-523.
https://doi.org/10.1016/j.msec.2019.04.053
[68] Tian, L., Prabhakaran, M.P. and Ramakrishna, S. (2015) Strategies for Regeneration of Components of Nervous System: Scaffolds, Cells and Biomolecules. Regenerative Biomaterials, 2, 31-45.
https://doi.org/10.1093/rb/rbu017
[69] Deumens, R., Koopmans, G.C., Honig, W.M.M., Maquet, V., Jérôme, R., Steinbusch, H.W.M., et al. (2006) Chronically Injured Corticospinal Axons Do Not Cross Large Spinal Lesion Gaps after a Multifactorial Transplantation Strategy Using Olfactory Ensheathing Cell/Olfactory Nerve Fibroblast‐Biomatrix Bridges. Journal of Neuroscience Research, 83, 811-820.
https://doi.org/10.1002/jnr.20768
[70] Sonigra, R.J., Brighton, P.C., Jacoby, J., Hall, S. and Wigley, C.B. (1999) Adult Rat Olfactory Nerve Ensheathing Cells Are Effective Promoters of Adult Central Nervous System Neurite Outgrowth in Coculture. Glia, 25, 256-269.
https://doi.org/10.1002/(sici)1098-1136(19990201)25:3<256::aid-glia6>3.0.co;2-y
[71] Wu, M., Fan, D., Tadmori, I., Yang, H., Furman, M., Jiao, X., et al. (2010) Death of Axotomized Retinal Ganglion Cells Delayed after Intraoptic Nerve Transplantation of Olfactory Ensheathing Cells in Adult Rats. Cell Transplantation, 19, 159-166.
https://doi.org/10.3727/096368910x492625
[72] Tang, X., Gu, X., Huang, T., Chen, X., Zhou, Z., Yang, Y., et al. (2021) Anisotropic Silk-Inspired Nerve Conduit with Peptides Improved the Microenvironment for Long-Distance Peripheral Nerve Regeneration. ACS Macro Letters, 10, 1501-1509.
https://doi.org/10.1021/acsmacrolett.1c00533
[73] Prabhakaran, M.P., Vatankhah, E. and Ramakrishna, S. (2013) Electrospun Aligned Phbv/Collagen Nanofibers as Substrates for Nerve Tissue Engineering. Biotechnology and Bioengineering, 110, 2775-2784.
https://doi.org/10.1002/bit.24937
[74] Zhang, K., Huang, D., Yan, Z. and Wang, C. (2017) Heparin/Collagen Encapsulating Nerve Growth Factor Multilayers Coated Aligned PLLA Nanofibrous Scaffolds for Nerve Tissue Engineering. Journal of Biomedical Materials Research Part A, 105, 1900-1910.
https://doi.org/10.1002/jbm.a.36053
[75] Ouyang, Y., Huang, C., Zhu, Y., Fan, C. and Ke, Q. (2013) Fabrication of Seamless Electrospun Collagen/PLGA Conduits Whose Walls Comprise Highly Longitudinal Aligned Nanofibers for Nerve Regeneration. Journal of Biomedical Nanotechnology, 9, 931-943.
https://doi.org/10.1166/jbn.2013.1605
[76] Abbasi, N., Hashemi, S.M., Salehi, M., Jahani, H., Mowla, S.J., Soleimani, M., et al. (2015) Influence of Oriented Nanofibrous PCL Scaffolds on Quantitative Gene Expression during Neural Differentiation of Mouse Embryonic Stem Cells. Journal of Biomedical Materials Research Part A, 104, 155-164.
https://doi.org/10.1002/jbm.a.35551
[77] Dalby, M.J., Gadegaard, N. and Oreffo, R.O.C. (2014) Harnessing Nanotopography and Integrin-Matrix Interactions to Influence Stem Cell Fate. Nature Materials, 13, 558-569.
https://doi.org/10.1038/nmat3980
[78] Park, S.H., Kim, T.G., Kim, H.C., Yang, D. and Park, T.G. (2008) Development of Dual Scale Scaffolds via Direct Polymer Melt Deposition and Electrospinning for Applications in Tissue Regeneration. Acta Biomaterialia, 4, 1198-1207.
https://doi.org/10.1016/j.actbio.2008.03.019
[79] Ghasemi-Mobarakeh, L., Prabhakaran, M.P., Morshed, M., Nasr-Esfahani, M.H. and Ramakrishna, S. (2010) Bio-functionalized PCL Nanofibrous Scaffolds for Nerve Tissue Engineering. Materials Science and Engineering: C, 30, 1129-1136.
https://doi.org/10.1016/j.msec.2010.06.004
[80] Lowe, C.J., Reucroft, I.M., Grota, M.C. and Shreiber, D.I. (2016) Production of Highly Aligned Collagen Scaffolds by Freeze-Drying of Self-Assembled, Fibrillar Collagen Gels. ACS Biomaterials Science & Engineering, 2, 643-651.
https://doi.org/10.1021/acsbiomaterials.6b00036
[81] Tu, H., Bao, M., Li, Q., Li, B., Yuan, H. and Zhang, Y. (2013) Aligned Core-Shell Structured Ultrafine Composite Fibers of Plla-Collagen for Tendon Scaffolding. Journal of Controlled Release, 172, e128.
https://doi.org/10.1016/j.jconrel.2013.08.204
[82] Rajzer, I., Rom, M., Menaszek, E. and Pasierb, P. (2015) Conductive PANI Patterns on Electrospun PCL/Gelatin Scaffolds Modified with Bioactive Particles for Bone Tissue Engineering. Materials Letters, 138, 60-63.
https://doi.org/10.1016/j.matlet.2014.09.077
[83] McClure, M.J., Sell, S.A., Ayres, C.E., Simpson, D.G. and Bowlin, G.L. (2009) Electrospinning-Aligned and Random Polydioxanone-Polycaprolactone-Silk Fibroin-Blended Scaffolds: Geometry for a Vascular Matrix. Biomedical Materials, 4, Article ID: 055010.
https://doi.org/10.1088/1748-6041/4/5/055010
[84] Chen, X., Ge, X., Qian, Y., Tang, H., Song, J., Qu, X., et al. (2020) Electrospinning Multilayered Scaffolds Loaded with Melatonin and Fe3O4 Magnetic Nanoparticles for Peripheral Nerve Regeneration. Advanced Functional Materials, 30, Article ID: 2004537.
https://doi.org/10.1002/adfm.202004537
[85] Zhao, Y., Liang, Y., Ding, S., Zhang, K., Mao, H. and Yang, Y. (2020) Application of Conductive Ppy/Sf Composite Scaffold and Electrical Stimulation for Neural Tissue Engineering. Biomaterials, 255, Article ID: 120164.
https://doi.org/10.1016/j.biomaterials.2020.120164
[86] Yang, S., Zhu, J., Lu, C., Chai, Y., Cao, Z., Lu, J., et al. (2022) Aligned Fibrin/Functionalized Self-Assembling Peptide Interpenetrating Nanofiber Hydrogel Presenting Multi-Cues Promotes Peripheral Nerve Functional Recovery. Bioactive Materials, 8, 529-544.
https://doi.org/10.1016/j.bioactmat.2021.05.056
[87] Cigliola, V., Becker, C.J. and Poss, K.D. (2020) Building Bridges, Not Walls: Spinal Cord Regeneration in Zebrafish. Disease Models & Mechanisms, 13, dmm044131.
https://doi.org/10.1242/dmm.044131
[88] Cabrera-Aldana, E.E., Ruelas, F., Aranda, C., Rincon-Heredia, R., Martínez-Cruz, A., Reyes-Sánchez, A., et al. (2017) Methylprednisolone Administration Following Spinal Cord Injury Reduces Aquaporin 4 Expression and Exacerbates Edema. Mediators of Inflammation, 2017, Article ID: 4792932.
https://doi.org/10.1155/2017/4792932
[89] Sun, X., Zhang, C., Xu, J., Zhai, H., Liu, S., Xu, Y., et al. (2020) Neurotrophin-3-Loaded Multichannel Nanofibrous Scaffolds Promoted Anti-Inflammation, Neuronal Differentiation, and Functional Recovery after Spinal Cord Injury. ACS Biomaterials Science & Engineering, 6, 1228-1238.
https://doi.org/10.1021/acsbiomaterials.0c00023
[90] Bradke, F., Fawcett, J.W. and Spira, M.E. (2012) Assembly of a New Growth Cone after Axotomy: The Precursor to Axon Regeneration. Nature Reviews Neuroscience, 13, 183-193.
https://doi.org/10.1038/nrn3176
[91] Fan, L., Liu, C., Chen, X., Zou, Y., Zhou, Z., Lin, C., et al. (2018) Directing Induced Pluripotent Stem Cell Derived Neural Stem Cell Fate with a Three-Dimensional Biomimetic Hydrogel for Spinal Cord Injury Repair. ACS Applied Materials & Interfaces, 10, 17742-17755.
https://doi.org/10.1021/acsami.8b05293
[92] Binan, L., Tendey, C., De Crescenzo, G., El Ayoubi, R., Ajji, A. and Jolicoeur, M. (2014) Differentiation of Neuronal Stem Cells into Motor Neurons Using Electrospun Poly-L-Lactic Acid/Gelatin Scaffold. Biomaterials, 35, 664-674.
https://doi.org/10.1016/j.biomaterials.2013.09.097
[93] Guo, W., Zhang, X., Yu, X., Wang, S., Qiu, J., Tang, W., et al. (2016) Self-Powered Electrical Stimulation for Enhancing Neural Differentiation of Mesenchymal Stem Cells on Graphene-Poly(3,4-Ethylenedioxythiophene) Hybrid Microfibers. ACS Nano, 10, 5086-5095.
https://doi.org/10.1021/acsnano.6b00200
[94] Xue, J., Pisignano, D. and Xia, Y. (2020) Maneuvering the Migration and Differentiation of Stem Cells with Electrospun Nanofibers. Advanced Science, 7, Article ID: 2000735.
https://doi.org/10.1002/advs.202000735
[95] Xue, J., Wu, T., Dai, Y. and Xia, Y. (2019) Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chemical Reviews, 119, 5298-5415.
https://doi.org/10.1021/acs.chemrev.8b00593
[96] Xue, J., Yang, J., O’Connor, D.M., Zhu, C., Huo, D., Boulis, N.M., et al. (2017) Differentiation of Bone Marrow Stem Cells into Schwann Cells for the Promotion of Neurite Outgrowth on Electrospun Fibers. ACS Applied Materials & Interfaces, 9, 12299-12310.
https://doi.org/10.1021/acsami.7b00882
[97] Xue, J., Wu, T., Li, J., Zhu, C. and Xia, Y. (2019) Promoting the Outgrowth of Neurites on Electrospun Microfibers by Functionalization with Electrosprayed Microparticles of Fatty Acids. Angewandte Chemie International Edition, 58, 3948-3951.
https://doi.org/10.1002/anie.201814474
[98] Shu, B., Sun, X., Liu, R., Jiang, F., Yu, H., Xu, N., et al. (2019) Restoring Electrical Connection Using a Conductive Biomaterial Provides a New Therapeutic Strategy for Rats with Spinal Cord Injury. Neuroscience Letters, 692, 33-40.
https://doi.org/10.1016/j.neulet.2018.10.031
[99] Reis, K.P., Sperling, L.E., Teixeira, C., Paim, Á., Alcântara, B., Vizcay-Barrena, G., et al. (2018) Application of PLGA/FGF-2 Coaxial Microfibers in Spinal Cord Tissue Engineering: An in Vitro and in Vivo Investigation. Regenerative Medicine, 13, 785-801.
https://doi.org/10.2217/rme-2018-0060

Baidu
map