[1] |
Rudbaek, J.J., Agrawal, M., Torres, J., Mehandru, S., Colombel, J. and Jess, T. (2023) Deciphering the Different Phases of Preclinical Inflammatory Bowel Disease. Nature Reviews Gastroenterology & Hepatology, 21, 86-100. https://doi.org/10.1038/s41575-023-00854-4 |
[2] |
Alatab, S., Sepanlou, S.G., Ikuta, K., Vahedi, H., Bisignano, C., Safiri, S., et al. (2020) The Global, Regional, and National Burden of Inflammatory Bowel Disease in 195 Countries and Territories, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet Gastroenterology & Hepatology, 5, 17-30. https://doi.org/10.1016/s2468-1253(19)30333-4 |
[3] |
Sahoo, D.K., Heilmann, R.M., Paital, B., Patel, A., Yadav, V.K., Wong, D., et al. (2023) Oxidative Stress, Hormones, and Effects of Natural Antioxidants on Intestinal Inflammation in Inflammatory Bowel Disease. Frontiers in Endocrinology, 14, Article ID: 1217165. https://doi.org/10.3389/fendo.2023.1217165 |
[4] |
Wang, R., Li, Z., Liu, S. and Zhang, D. (2023) Global, Regional and National Burden of Inflammatory Bowel Disease in 204 Countries and Territories from 1990 to 2019: A Systematic Analysis Based on the Global Burden of Disease Study 2019. BMJ Open, 13, e065186. https://doi.org/10.1136/bmjopen-2022-065186 |
[5] |
Pizarro, T.T., Stappenbeck, T.S., Rieder, F., Rosen, M.J., Colombel, J., Donowitz, M., et al. (2019) Challenges in IBD Research: Preclinical Human IBD Mechanisms. Inflammatory Bowel Diseases, 25, S5-S12. https://doi.org/10.1093/ibd/izz075 |
[6] |
Diederen, K., Haverman, L., Grootenhuis, M.A., Benninga, M.A. and Kindermann, A. (2018) Parental Distress and Quality of Life in Pediatric Inflammatory Bowel Disease: Implications for the Outpatient Clinic. Journal of Pediatric Gastroenterology and Nutrition, 66, 630-636. https://doi.org/10.1097/mpg.0000000000001756 |
[7] |
Dou, Z., Zheng, H., Shi, Y., Li, Y. and Jia, J. (2024) Analysis of Global Prevalence, DALY and Trends of Inflammatory Bowel Disease and Their Correlations with Sociodemographic Index: Data from 1990 to 2019. Autoimmunity Reviews, 23, Article ID: 103655. https://doi.org/10.1016/j.autrev.2024.103655 |
[8] |
Strober, W., Fuss, I. and Mannon, P. (2007) The Fundamental Basis of Inflammatory Bowel Disease. Journal of Clinical Investigation, 117, 514-521. https://doi.org/10.1172/jci30587 |
[9] |
Dowdell, A.S. and Colgan, S.P. (2021) Metabolic Host-Microbiota Interactions in Autophagy and the Pathogenesis of Inflammatory Bowel Disease (IBD). Pharmaceuticals, 14, Article No. 708. https://doi.org/10.3390/ph14080708 |
[10] |
Guzzo, G.L., Andrews, J.M. and Weyrich, L.S. (2022) The Neglected Gut Microbiome: Fungi, Protozoa, and Bacteriophages in Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 28, 1112-1122. https://doi.org/10.1093/ibd/izab343 |
[11] |
Khan, I., Ullah, N., Zha, L., Bai, Y., Khan, A., Zhao, T., et al. (2019) Alteration of Gut Microbiota in Inflammatory Bowel Disease (IBD): Cause or Consequence? IBD Treatment Targeting the Gut Microbiome. Pathogens, 8, Article No. 126. https://doi.org/10.3390/pathogens8030126 |
[12] |
Raoul, P., Cintoni, M., Palombaro, M., Basso, L., Rinninella, E., Gasbarrini, A., et al. (2022) Food Additives, a Key Environmental Factor in the Development of IBD through Gut Dysbiosis. Microorganisms, 10, Article No. 167. https://doi.org/10.3390/microorganisms10010167 |
[13] |
Molodecky, N.A., Soon, I.S., Rabi, D.M., Ghali, W.A., Ferris, M., Chernoff, G., et al. (2012) Increasing Incidence and Prevalence of the Inflammatory Bowel Diseases with Time, Based on Systematic Review. Gastroenterology, 142, 46-54.e42. https://doi.org/10.1053/j.gastro.2011.10.001 |
[14] |
Cader, M.Z. and Kaser, A. (2013) Recent Advances in Inflammatory Bowel Disease: Mucosal Immune Cells in Intestinal Inflammation. Gut, 62, 1653-1664. https://doi.org/10.1136/gutjnl-2012-303955 |
[15] |
Park, J.B., Yang, S., Byeon, J., Park, E., Moon, G., Myung, S.J., et al. (2006) Familial Occurrence of Inflammatory Bowel Disease in Korea. Inflammatory Bowel Diseases, 12, 1146-1151. https://doi.org/10.1097/01.mib.0000235094.01608.59 |
[16] |
Franke, A., McGovern, D.P.B., Barrett, J.C., Wang, K., Radford-Smith, G.L., Ahmad, T., et al. (2010) Genome-Wide Meta-Analysis Increases to 71 the Number of Confirmed Crohn’s Disease Susceptibility Loci. Nature Genetics, 42, 1118-1125. https://doi.org/10.1038/ng.717 |
[17] |
Anderson, C.A., Boucher, G., Lees, C.W., Franke, A., D’Amato, M., Taylor, K.D., et al. (2011) Meta-Analysis Identifies 29 Additional Ulcerative Colitis Risk Loci, Increasing the Number of Confirmed Associations to 47. Nature Genetics, 43, 246-252. https://doi.org/10.1038/ng.764 |
[18] |
Jostins, L., Ripke, S., Weersma, R.K., Duerr, R.H., McGovern, D.P., Hui, K.Y., et al. (2012) Host-Microbe Interactions Have Shaped the Genetic Architecture of Inflammatory Bowel Disease. Nature, 491, 119-124. https://doi.org/10.1038/nature11582 |
[19] |
Liu, J.Z., van Sommeren, S., Huang, H., Ng, S.C., Alberts, R., Takahashi, A., et al. (2015) Association Analyses Identify 38 Susceptibility Loci for Inflammatory Bowel Disease and Highlight Shared Genetic Risk across Populations. Nature Genetics, 47, 979-986. https://doi.org/10.1038/ng.3359 |
[20] |
Huang, H., Fang, M., Jostins, L., Umićević Mirkov, M., Boucher, G., Anderson, C.A., et al. (2017) Fine-Mapping Inflammatory Bowel Disease Loci to Single-Variant Resolution. Nature, 547, 173-178. https://doi.org/10.1038/nature22969 |
[21] |
陆忠凯, 陈志荣, 朱俊义, 等. IL-23R基因多态性与炎症性肠病的相关性[J]. 世界华人消化杂志, 2011, 19(19): 2076-2080. |
[22] |
何小华, 陈建勇. 炎症性肠病发病的相关免疫机制[J]. 南昌大学学报(医学版), 2011, 51(10): 93-96. |
[23] |
黄胜男, 李芳芳, 金丹. 自噬在炎症性肠病中作用机制的研究进展[J]. 细胞与分子免疫学杂志, 2022, 38(6): 559-564. |
[24] |
周文鹏, 白爱平. 炎症性肠病常见基因多态性[J]. 胃肠病学, 2018, 23(3): 177-180. |
[25] |
Narasimamurthy, R., Hatori, M., Nayak, S.K., Liu, F., Panda, S. and Verma, I.M. (2012) Circadian Clock Protein Cryptochrome Regulates the Expression of Proinflammatory Cytokines. Proceedings of the National Academy of Sciences, 109, 12662-12667. https://doi.org/10.1073/pnas.1209965109 |
[26] |
姜雨薇, 金丹. 炎症性肠病免疫学发病机制研究进展[J]. 延边大学医学学报, 2014(1): 3. |
[27] |
Chang, Y., Zhai, L., Peng, J., Wu, H., Bian, Z. and Xiao, H. (2021) Phytochemicals as Regulators of Th17/Treg Balance in Inflammatory Bowel Diseases. Biomedicine & Pharmacotherapy, 141, Article ID: 111931. https://doi.org/10.1016/j.biopha.2021.111931 |
[28] |
Omrane, I., Baroudi, O., Bougatef, K., Mezlini, A., Abidi, A., Medimegh, I., et al. (2014) Significant Association between IL23R and IL17F Polymorphisms and Clinical Features of Colorectal Cancer. Immunology Letters, 158, 189-194. https://doi.org/10.1016/j.imlet.2014.01.002 |
[29] |
Xu, Y., Shen, J. and Ran, Z. (2019) Emerging Views of Mitophagy in Immunity and Autoimmune Diseases. Autophagy, 16, 3-17. https://doi.org/10.1080/15548627.2019.1603547 |
[30] |
Vincent, G., Novak, E.A., Siow, V.S., Cunningham, K.E., Griffith, B.D., Comerford, T.E., et al. (2020) Nix-Mediated Mitophagy Modulates Mitochondrial Damage during Intestinal Inflammation. Antioxidants & Redox Signaling, 33, 1-19. https://doi.org/10.1089/ars.2018.7702 |
[31] |
Lee, S.H., Kwon, J.E. and Cho, M. (2018) Immunological Pathogenesis of Inflammatory Bowel Disease. Intestinal Research, 16, Article No. 26. https://doi.org/10.5217/ir.2018.16.1.26 |
[32] |
Leppkes, M., Becker, C., Ivanov, I.I., Hirth, S., Wirtz, S., Neufert, C., et al. (2009) Rorγ-Expressing Th17 Cells Induce Murine Chronic Intestinal Inflammation via Redundant Effects of IL-17A and Il-17f. Gastroenterology, 136, 257-267. https://doi.org/10.1053/j.gastro.2008.10.018 |
[33] |
Pearl, D.S., Shah, K., Whittaker, M.A., Nitch-Smith, H., Brown, J.F., Shute, J.K., et al. (2013) Cytokine Mucosal Expression in Ulcerative Colitis, the Relationship between Cytokine Release and Disease Activity. Journal of Crohn’s and Colitis, 7, 481-489. https://doi.org/10.1016/j.crohns.2012.07.022 |
[34] |
Raza, A., Ahmed, K., Navaneethan, U., Nady, S., Shata, M. and Giannella, R. (2011) The Levels of IL-17 Secreted by Lipopolysaccharide-Stimulated Eripheral Blood Mononuclear Cells (PBMC) in Inflammatory Bowel Disease (IBD) Patients Significantly Correlated with Disease Severity in Ulcerative Colitis but Not in Crohnʼs Disease. American Journal of Gastroenterology, 106, S486. https://doi.org/10.14309/00000434-201110002-01275 |
[35] |
Neurath, M.F. (2019) IL-23 in Inflammatory Bowel Diseases and Colon Cancer. Cytokine & Growth Factor Reviews, 45, 1-8. https://doi.org/10.1016/j.cytogfr.2018.12.002 |
[36] |
Aschenbrenner, D., Quaranta, M., Banerjee, S., Ilott, N., Jansen, J., Steere, B., et al. (2020) Deconvolution of Monocyte Responses in Inflammatory Bowel Disease Reveals an IL-1 Cytokine Network That Regulates IL-23 in Genetic and Acquired IL-10 Resistance. Gut, 70, 1023-1036. https://doi.org/10.1136/gutjnl-2020-321731 |
[37] |
Lee, J., Hall, J.A., Kroehling, L., Wu, L., Najar, T., Nguyen, H.H., et al. (2020) Serum Amyloid a Proteins Induce Pathogenic Th17 Cells and Promote Inflammatory Disease. Cell, 180, 79-91.e16. https://doi.org/10.1016/j.cell.2019.11.026 |
[38] |
Lucaciu, L.A., Ilieș, M., Vesa, Ș.C., Seicean, R., Din, S., Iuga, C.A., et al. (2021) Serum Interleukin (IL)-23 and IL-17 Profile in Inflammatory Bowel Disease (IBD) Patients Could Differentiate between Severe and Non-Severe Disease. Journal of Personalized Medicine, 11, Article No. 1130. https://doi.org/10.3390/jpm11111130 |
[39] |
Jansen, K., Cevhertas, L., Ma, S., Satitsuksanoa, P., Akdis, M. and van de Veen, W. (2021) Regulatory B Cells, a to Z. Allergy, 76, 2699-2715. https://doi.org/10.1111/all.14763 |
[40] |
Xie, J., Shi, C., Huang, H., Yang, W., Jiang, Y., Ye, L., et al. (2021) Induction of the Il-10-Producing Regulatory B Cell Phenotype Following Trichinella Spiralis Infection. Molecular Immunology, 133, 86-94. https://doi.org/10.1016/j.molimm.2021.02.012 |
[41] |
Noh, J., Lee, J.H., Noh, G., Bang, S.Y., Kim, H.S., Choi, W.S., et al. (2010) Characterisation of Allergen-Specific Responses of Il-10-Producing Regulatory B Cells (br1) in Cow Milk Allergy. Cellular Immunology, 264, 143-149. https://doi.org/10.1016/j.cellimm.2010.05.013 |
[42] |
Mizoguchi, A., Mizoguchi, E., Takedatsu, H., Blumberg, R.S. and Bhan, A.K. (2002) Chronic Intestinal Inflammatory Condition Generates Il-10-Producing Regulatory B Cell Subset Characterized by Cd1d Upregulation. Immunity, 16, 219-230. https://doi.org/10.1016/s1074-7613(02)00274-1 |
[43] |
孙晓睿, 张津铭, 方智芸, 等. 巨噬细胞极化在炎症性肠病中作用的研究进展[J]. 重庆医学, 2024, 53(12): 1889-1895. |
[44] |
张梦婷, 项镜蓉, 朱濛昕, 等. 巨噬细胞极化在炎症性肠病中的研究进展[J]. 胃肠病学, 2024, 29(1): 51-56. |
[45] |
肖瑶, 金丹. 树突状细胞在炎症性肠病中的作用研究进展[J]. 延边大学医学学报, 2020, 43(2): 148-151. |
[46] |
郑翠芳, 黄瑛. 锌指蛋白A20对树突状细胞的免疫调控及其在炎症性肠病发病机制中的作用[J]. 临床儿科杂志, 2016, 34(6): 470-474. |
[47] |
毛靖伟, 唐海英, 王英德. 树突状细胞、调节性T细胞在炎症性肠病中的研究进展[J]. 胃肠病学和肝病学杂志, 2010, 19(8): 762-765. |
[48] |
Cardoso-Silva, D., Delbue, D., Itzlinger, A., Moerkens, R., Withoff, S., Branchi, F., et al. (2019) Intestinal Barrier Function in Gluten-Related Disorders. Nutrients, 11, Article No. 2325. https://doi.org/10.3390/nu11102325 |
[49] |
Li, Y., Wang, Y., Liu, Y., Wang, Y., Zuo, X., Li, Y., et al. (2014) The Possible Role of the Novel Cytokines IL-35 and IL-37 in Inflammatory Bowel Disease. Mediators of Inflammation, 2014, Article ID: 136329. https://doi.org/10.1155/2014/136329 |
[50] |
Na, Y.R., Stakenborg, M., Seok, S.H. and Matteoli, G. (2019) Macrophages in Intestinal Inflammation and Resolution: A Potential Therapeutic Target in IBD. Nature Reviews Gastroenterology & Hepatology, 16, 531-543. https://doi.org/10.1038/s41575-019-0172-4 |
[51] |
Bain, C.C. and Schridde, A. (2018) Origin, Differentiation, and Function of Intestinal Macrophages. Frontiers in Immunology, 9, Article No. 2733. https://doi.org/10.3389/fimmu.2018.02733 |
[52] |
Moreira Lopes, T.C., Mosser, D.M. and Gonçalves, R. (2020) Macrophage Polarization in Intestinal Inflammation and Gut Homeostasis. Inflammation Research, 69, 1163-1172. https://doi.org/10.1007/s00011-020-01398-y |
[53] |
Mann, E.R. (2014) Intestinal Antigen-Presenting Cells in Mucosal Immune Homeostasis: Crosstalk between Dendritic Cells, Macrophages and β-Cells. World Journal of Gastroenterology, 20, Article No. 9653. https://doi.org/10.3748/wjg.v20.i29.9653 |
[54] |
Sender, R., Fuchs, S. and Milo, R. (2016) Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLOS Biology, 14, e1002533. https://doi.org/10.1371/journal.pbio.1002533 |
[55] |
Hillman, E.T., Lu, H., Yao, T. and Nakatsu, C.H. (2017) Microbial Ecology along the Gastrointestinal Tract. Microbes and environments, 32, 300-313. https://doi.org/10.1264/jsme2.me17017 |
[56] |
Sebastián Domingo, J.J. and Sánchez Sánchez, C. (2017) From the Intestinal Flora to the Microbiome. Revista Española de Enfermedades Digestivas, 110, 51-56. https://doi.org/10.17235/reed.2017.4947/2017 |
[57] |
Kumar, S. and Kumar, A. (2022) Microbial Pathogenesis in Inflammatory Bowel Diseases. Microbial Pathogenesis, 163, Article ID: 105383. https://doi.org/10.1016/j.micpath.2021.105383 |
[58] |
Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D.R., et al. (2011) Enterotypes of the Human Gut Microbiome. Nature, 473, 174-180. https://doi.org/10.1038/nature09944 |
[59] |
Sokol, H., Pigneur, B., Watterlot, L., Lakhdari, O., Bermúdez-Humarán, L.G., Gratadoux, J., et al. (2008) Faecalibacterium prausnitzii Is an Anti-Inflammatory Commensal Bacterium Identified by Gut Microbiota Analysis of Crohn Disease Patients. Proceedings of the National Academy of Sciences, 105, 16731-16736. https://doi.org/10.1073/pnas.0804812105 |
[60] |
Darfeuille-Michaud, A., Boudeau, J., Bulois, P., Neut, C., Glasser, A., Barnich, N., et al. (2004) High Prevalence of Adherent-Invasive Escherichia Coli Associated with Ileal Mucosa in Crohn’s Disease. Gastroenterology, 127, 412-421. https://doi.org/10.1053/j.gastro.2004.04.061 |
[61] |
Lee, M. and Chang, E.B. (2021) Inflammatory Bowel Diseases (IBD) and the Microbiome—Searching the Crime Scene for Clues. Gastroenterology, 160, 524-537. https://doi.org/10.1053/j.gastro.2020.09.056 |
[62] |
Kudelka, M.R., Stowell, S.R., Cummings, R.D. and Neish, A.S. (2020) Intestinal Epithelial Glycosylation in Homeostasis and Gut Microbiota Interactions in IBD. Nature Reviews Gastroenterology & Hepatology, 17, 597-617. https://doi.org/10.1038/s41575-020-0331-7 |
[63] |
Cahana, I. and Iraqi, F.A. (2020) Impact of Host Genetics on Gut Microbiome: Take‐Home Lessons from Human and Mouse Studies. Animal Models and Experimental Medicine, 3, 229-236. https://doi.org/10.1002/ame2.12134 |
[64] |
Vester-Andersen, M.K., Mirsepasi-Lauridsen, H.C., Prosberg, M.V., Mortensen, C.O., Träger, C., Skovsen, K., et al. (2019) Increased Abundance of Proteobacteria in Aggressive Crohn’s Disease Seven Years after Diagnosis. Scientific Reports, 9, Article No. 13473. https://doi.org/10.1038/s41598-019-49833-3 |
[65] |
Knights, D., Silverberg, M.S., Weersma, R.K., Gevers, D., Dijkstra, G., Huang, H., et al. (2014) Complex Host Genetics Influence the Microbiome in Inflammatory Bowel Disease. Genome Medicine, 6, Article No. 107. https://doi.org/10.1186/s13073-014-0107-1 |
[66] |
Shin, N., Whon, T.W. and Bae, J. (2015) Proteobacteria: Microbial Signature of Dysbiosis in Gut Microbiota. Trends in Biotechnology, 33, 496-503. https://doi.org/10.1016/j.tibtech.2015.06.011 |
[67] |
Mirsepasi-Lauridsen, H.C., Vallance, B.A., Krogfelt, K.A. and Petersen, A.M. (2019) Escherichia coli Pathobionts Associated with Inflammatory Bowel Disease. Clinical Microbiology Reviews, 32, e00060-18. https://doi.org/10.1128/cmr.00060-18 |
[68] |
Martinez-Medina, M., Aldeguer, X., Lopez-Siles, M., González-Huix, F., López-Oliu, C., Dahbi, G., et al. (2009) Molecular Diversity of Escherichia Coli in the Human Gut: New Ecological Evidence Supporting the Role of Adherent-Invasive E. coli (AIEC) in Crohnʼs Disease. Inflammatory Bowel Diseases, 15, 872-882. https://doi.org/10.1002/ibd.20860 |
[69] |
Walker, A.W., Sanderson, J.D., Churcher, C., Parkes, G.C., Hudspith, B.N., Rayment, N., et al. (2011) High-Throughput Clone Library Analysis of the Mucosa-Associated Microbiota Reveals Dysbiosis and Differences between Inflamed and Non-Inflamed Regions of the Intestine in Inflammatory Bowel Disease. BMC Microbiology, 11, Article No. 7. https://doi.org/10.1186/1471-2180-11-7 |
[70] |
Bull, T.J., McMinn, E.J., Sidi-Boumedine, K., Skull, A., Durkin, D., Neild, P., et al. (2003) Detection and Verification of Mycobacterium avium Subsp. paratuberculosis in Fresh Ileocolonic Mucosal Biopsy Specimens from Individuals with and without Crohn’s Disease. Journal of Clinical Microbiology, 41, 2915-2923. https://doi.org/10.1128/jcm.41.7.2915-2923.2003 |
[71] |
Berg, A., Qazi, T., Wasan, S., Calderwood, A., Villafuerte-Gálvez, J., Kelly, C., et al. (2012) Antibodies to Clostridium Difficile Toxins in Inflammatory Bowel Disease Patients. American Journal of Gastroenterology, 107, S616. https://doi.org/10.14309/00000434-201210001-01534 |
[72] |
Kang, S., Denman, S.E., Morrison, M., Yu, Z., Dore, J., Leclerc, M., et al. (2010) Dysbiosis of Fecal Microbiota in Crohnʼs Disease Patients as Revealed by a Custom Phylogenetic Microarray. Inflammatory Bowel Diseases, 16, 2034-2042. https://doi.org/10.1002/ibd.21319 |
[73] |
Kleessen, B., Kroesen, A.J., Buhr, H.J. and Blaut, M. (2002) Mucosal and Invading Bacteria in Patients with Inflammatory Bowel Disease Compared with Controls. Scandinavian Journal of Gastroenterology, 37, 1034-1041. https://doi.org/10.1080/003655202320378220 |
[74] |
Macfarlane, S., Furrie, E., Cummings, J.H. and Macfarlane, G.T. (2004) Chemotaxonomic Analysis of Bacterial Populations Colonizing the Rectal Mucosa in Patients with Ulcerative Colitis. Clinical Infectious Diseases, 38, 1690-1699. https://doi.org/10.1086/420823 |
[75] |
Barnich, N., Carvalho, F.A., Glasser, A., Darcha, C., Jantscheff, P., Allez, M., et al. (2007) CEACAM6 Acts as a Receptor for Adherent-Invasive E. coli, Supporting Ileal Mucosa Colonization in Crohn Disease. Journal of Clinical Investigation, 117, 1566-1574. https://doi.org/10.1172/jci30504 |
[76] |
Martinez, C., Antolin, M., Santos, J., Torrejon, A., Casellas, F., Borruel, N., et al. (2008) Unstable Composition of the Fecal Microbiota in Ulcerative Colitis during Clinical Remission. The American Journal of Gastroenterology, 103, 643-648. https://doi.org/10.1111/j.1572-0241.2007.01592.x |
[77] |
Turner, J.R. (2024) Intestinal Mucosal Barrier Function in Health and Disease. Nature Reviews Immunology. |
[78] |
Fasano, A. (2011) Zonulin and Its Regulation of Intestinal Barrier Function: The Biological Door to Inflammation, Autoimmunity, and Cancer. Physiological Reviews, 91, 151-175. https://doi.org/10.1152/physrev.00003.2008 |
[79] |
Ng, S.C., Shi, H.Y., Hamidi, N., Underwood, F.E., Tang, W., Benchimol, E.I., et al. (2017) Worldwide Incidence and Prevalence of Inflammatory Bowel Disease in the 21st Century: A Systematic Review of Population-Based Studies. The Lancet, 390, 2769-2778. https://doi.org/10.1016/s0140-6736(17)32448-0 |
[80] |
Ge, J., Han, T., Liu, J., Li, J., Zhang, X., Wang, Y., et al. (2020) Meat Intake and Risk of Inflammatory Bowel Disease: A Meta-analysis. The Turkish Journal of Gastroenterology, 26, 492-497. https://doi.org/10.5152/tjg.2015.0106 |
[81] |
Jaber, M., Altamimi, M., Altamimi, A., Cavaliere, S. and De Filippis, F. (2022) Mediterranean Diet Diminishes the Effects of Crohn’s Disease and Improves Its Parameters: A Systematic Review. Nutrition and Health. https://doi.org/10.1177/02601060221102281 |
[82] |
Khademi, Z., Milajerdi, A., Larijani, B. and Esmaillzadeh, A. (2021) Dietary Intake of Total Carbohydrates, Sugar and Sugar-Sweetened Beverages, and Risk of Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Frontiers in Nutrition, 8, Article ID: 707795. https://doi.org/10.3389/fnut.2021.707795 |
[83] |
Khorshidi, M., Djafarian, K., Aghayei, E., et al. (2019) A Posteriori Dietary Patterns and Risk of Inflammatory Bowel Disease: A Meta-Analysis of Observational Studies. International Journal for Vitamin and Nutrition Research, 90, 376-384. |
[84] |
Milajerdi, A., Ebrahimi-Daryani, N., Dieleman, L.A., Larijani, B. and Esmaillzadeh, A. (2021) Association of Dietary Fiber, Fruit, and Vegetable Consumption with Risk of Inflammatory Bowel Disease: A Systematic Review and Meta-analysis. Advances in Nutrition, 12, 735-743. https://doi.org/10.1093/advances/nmaa145 |
[85] |
Narula, N., Chang, N.H., Mohammad, D., Wong, E.C.L., Ananthakrishnan, A.N., Chan, S.S.M., et al. (2023) Food Processing and Risk of Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Clinical Gastroenterology and Hepatology, 21, 2483-2495.e1. https://doi.org/10.1016/j.cgh.2023.01.012 |
[86] |
Piovani, D., Danese, S., Peyrin-Biroulet, L., Nikolopoulos, G.K., Lytras, T. and Bonovas, S. (2019) Environmental Risk Factors for Inflammatory Bowel Diseases: An Umbrella Review of Meta-Analyses. Gastroenterology, 157, 647-659.e4. https://doi.org/10.1053/j.gastro.2019.04.016 |
[87] |
Barros, V.J.d.S., Severo, J.S., Mendes, P.H.M., da Silva, A.C.A., de Oliveira, K.B.V., Parente, J.M.L., et al. (2021) Effect of Dietary Interventions on Inflammatory Biomarkers of Inflammatory Bowel Diseases: A Systematic Review of Clinical Trials. Nutrition, 91, Article ID: 111457. https://doi.org/10.1016/j.nut.2021.111457 |
[88] |
Comeche, J.M., Gutierrez-Hervás, A., Tuells, J., Altavilla, C. and Caballero, P. (2020) Predefined Diets in Patients with Inflammatory Bowel Disease: Systematic Review and Meta-Analysis. Nutrients, 13, Article No. 52. https://doi.org/10.3390/nu13010052 |
[89] |
Tian, Z., Zhuang, X., Zhao, M., Zhuo, S., Li, X., Ma, R., et al. (2021) Index-Based Dietary Patterns and Inflammatory Bowel Disease: A Systematic Review of Observational Studies. Advances in Nutrition, 12, 2288-2300. https://doi.org/10.1093/advances/nmab069 |
[90] |
Charlebois, A., Rosenfeld, G. and Bressler, B. (2015) The Impact of Dietary Interventions on the Symptoms of Inflammatory Bowel Disease: A Systematic Review. Critical Reviews in Food Science and Nutrition, 56, 1370-1378. https://doi.org/10.1080/10408398.2012.760515 |
[91] |
Thomas, T., Chandan, J.S., Li, V.S.W., Lai, C.Y., Tang, W., Bhala, N., et al. (2019) Global Smoking Trends in Inflammatory Bowel Disease: A Systematic Review of Inception Cohorts. PLOS ONE, 14, e0221961. https://doi.org/10.1371/journal.pone.0221961 |
[92] |
Cosnes, J., Carbonnel, F., Beaugerie, L., Le Quintrec, Y. and Gendre, J. (1996) Effects of Cigarette Smoking on the Long-Term Course of Crohn’s Disease. Gastroenterology, 110, 424-431. https://doi.org/10.1053/gast.1996.v110.pm8566589 |
[93] |
Cosnes, J., Beaugerie, L., Carbonnel, F. and Gendre, J. (2001) Smoking Cessation and the Course of Crohn’s Disease: An Intervention Study. Gastroenterology, 120, 1093-1099. https://doi.org/10.1053/gast.2001.23231 |
[94] |
Cosnes,, Carbonnel,, Carrat,, Beaugerie,, Cattan, and Gendre, (1999) Effects of Current and Former Cigarette Smoking on the Clinical Course of Crohn’s Disease. Alimentary Pharmacology & Therapeutics, 13, 1403-1411. https://doi.org/10.1046/j.1365-2036.1999.00630.x |
[95] |
Kuenzig, E., Eksteen, B., Barkema, H.W., Seow, C., Silverberg, M., Fedorak, R., et al. (2015) Age at Diagnosis of Crohnʼs Disease May Explain Nod2-Smoking Interactions. American Journal of Gastroenterology, 110, S837. https://doi.org/10.14309/00000434-201510001-01975 |
[96] |
Bastida, G. (2011) Ulcerative Colitis in Smokers, Non-Smokers and Ex-Smokers. World Journal of Gastroenterology, 17, Article No. 2740. https://doi.org/10.3748/wjg.v17.i22.2740 |
[97] |
Mokbel, M., Carbonnel, F., Beaugerie, L., et al. (1998) Effect of Smoking on the Long-Term Course of Ulcerative Colitis. Gastroenterologie Clinique et Biologique, 22, 858-862. |
[98] |
Arora, U., Ananthakrishnan, A.N., Kedia, S., Bopanna, S., Mouli, P.V., Yadav, D.P., et al. (2017) Effect of Oral Tobacco Use and Smoking on Outcomes of Crohn’s Disease in India. Journal of Gastroenterology and Hepatology, 33, 134-140. https://doi.org/10.1111/jgh.13815 |
[99] |
Ng, S.C., Tang, W., Ching, J.Y., Wong, M., Chow, C.M., Hui, A.J., et al. (2013) Incidence and Phenotype of Inflammatory Bowel Disease Based on Results from the Asia-Pacific Crohn’s and Colitis Epidemiology Study. Gastroenterology, 145, 158-165.e2. https://doi.org/10.1053/j.gastro.2013.04.007 |