[1] |
Kuo, H., Yu, H., Juo, S.H., Yang, K.D., Wang, Y., Liang, C., et al. (2010) Journal of Human Genetics, 56, 161-165. https://doi.org/10.1038/jhg.2010.154 |
[2] |
Noval Rivas, M. and Arditi, M. (2020) Kawasaki Disease: Pathophysiology and Insights from Mouse Models. Nature Reviews Rheumatology, 16, 391-405. https://doi.org/10.1038/s41584-020-0426-0 |
[3] |
Valtuille, Z., Lefevre-Utile, A., Ouldali, N., Beyler, C., Boizeau, P., Dumaine, C., et al. (2023) Calculating the Fraction of Kawasaki Disease Potentially Attributable to Seasonal Pathogens: A Time Series Analysis. E Clinical Medicine, 61, Article 102078. https://doi.org/10.1016/j.eclinm.2023.102078 |
[4] |
McCrindle, B.W., Rowley, A.H., Newburger, J.W., Burns, J.C., Bolger, A.F., Gewitz, M., et al. (2017) Diagnosis, Treatment, and Long-Term Management of Kawasaki Disease: A Scientific Statement for Health Professionals from the American Heart Association. Circulation, 135, e927-e999. https://doi.org/10.1161/cir.0000000000000484 |
[5] |
Sabharwal, T., Manlhiot, C., Benseler, S.M., Tyrrell, P.N., Chahal, N., Yeung, R.S.M., et al. (2009) Comparison of Factors Associated with Coronary Artery Dilation Only versus Coronary Artery Aneurysms in Patients with Kawasaki Disease. The American Journal of Cardiology, 104, 1743-1747. https://doi.org/10.1016/j.amjcard.2009.07.062 |
[6] |
McCrindle, B.W., Li, J.S., Minich, L.L., Colan, S.D., Atz, A.M., Takahashi, M., et al. (2007) Coronary Artery Involvement in Children with Kawasaki Disease. Circulation, 116, 174-179. https://doi.org/10.1161/circulationaha.107.690875 |
[7] |
Suzuki, A., Kamiya, T., Yasuo, O. and Kuroe, K. (1991) Extended Long Term Follow-Up Study of Coronary Arterial Lesions in Kawasaki Disease. Journal of the American College of Cardiology, 17, A33. https://doi.org/10.1016/0735-1097(91)91097-x |
[8] |
Gerber, M.A., Baltimore, R.S., Eaton, C.B., Gewitz, M., Rowley, A.H., Shulman, S.T., et al. (2009) Prevention of Rheumatic Fever and Diagnosis and Treatment of Acute Streptococcal Pharyngitis. Circulation, 119, 1541-1551. https://doi.org/10.1161/circulationaha.109.191959 |
[9] |
Orenstein, J.M., Shulman, S.T., Fox, L.M., Baker, S.C., Takahashi, M., Bhatti, T.R., et al. (2012) Three Linked Vasculopathic Processes Characterize Kawasaki Disease: A Light and Transmission Electron Microscopic Study. PLOS ONE, 7, e38998. https://doi.org/10.1371/journal.pone.0038998 |
[10] |
Wang, H., Tang, Y., Yan, W., Xu, Q., Li, X. and Qian, W. (2022) Breastfeeding Has No Protective Effects on the Development of Coronary Artery Lesions in Kawasaki Disease: A Retrospective Cohort Study. BMC Pediatrics, 22, Article No. 353. https://doi.org/10.1186/s12887-022-03422-y |
[11] |
Bäckhed, F., Roswall, J., Peng, Y., Feng, Q., Jia, H., Kovatcheva-Datchary, P., et al. (2015) Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host & Microbe, 17, 690-703. https://doi.org/10.1016/j.chom.2015.04.004 |
[12] |
Koenig, J.E., Spor, A., Scalfone, N., Fricker, A.D., Stombaugh, J., Knight, R., et al. (2010) Succession of Microbial Consortia in the Developing Infant Gut Microbiome. Proceedings of the National Academy of Sciences, 108, 4578-4585. https://doi.org/10.1073/pnas.1000081107 |
[13] |
Chen, S., Tsai, C., Lee, Y., Lin, C., Huang, K., Chao, H., et al. (2017) Intestinal Microbiome in Children with Severe and Complicated Acute Viral Gastroenteritis. Scientific Reports, 7, Article No. 46130. https://doi.org/10.1038/srep46130 |
[14] |
Minot, S.S., Mayer-Blackwell, K., Fiore-Gartland, A., Johnson, A., Self, S., Bhatti, P., et al. (2024) Species-and Subspecies-Level Characterization of Health-Associated Bacterial Consortia That Colonize the Human Gut during Infancy. Gut Microbes, 16, Article 2414975. https://doi.org/10.1080/19490976.2024.2414975 |
[15] |
刘进娜, 张婵娟, 李娜. 补中益气汤调控JAK2/STAT3信号通路对气虚发热证大鼠肠道菌群、免疫功能及神经功能的影响[J]. 陕西中医, 2023, 44(5): 571-574. |
[16] |
周倩沁, 吴军华, 邱海燕. 川崎病病因及发病机制的研究进展[J]. 浙江医学, 2019, 41(13): 1443-1446. |
[17] |
Huang, S., Huang, S., Weng, K., Chien, K., Lin, C. and Huang, Y. (2019) Update on Association between Kawasaki Disease and Infection. Journal of the Chinese Medical Association, 82, 172-174. https://doi.org/10.1097/jcma.0000000000000025 |
[18] |
李瑞燕, 李晓辉. 川崎病病因学研究进展[J]. 心血管病学进展, 2010, 31(4): 616-620. |
[19] |
Yamashiro, Y., Nagata, S., Ohtsuka, Y., Oguchi, S. and Shimizu, T. (1996) Microbiologic Studies on the Small Intestine in Kawasaki Disease. Pediatric Research, 39, 622-624. https://doi.org/10.1203/00006450-199604000-00010 |
[20] |
Eladawy, M., Dominguez, S.R., Anderson, M.S. and Glodé, M.P. (2013) Kawasaki Disease and the Pediatric Gastroenterologist. Journal of Pediatric Gastroenterology and Nutrition, 56, 297-299. https://doi.org/10.1097/mpg.0b013e3182794432 |
[21] |
Esposito, S., Polinori, I. and Rigante, D. (2019) The Gut Microbiota-Host Partnership as a Potential Driver of Kawasaki Syndrome. Frontiers in Pediatrics, 7, Article 124. https://doi.org/10.3389/fped.2019.00124 |
[22] |
Fukazawa, M., Fukazawa, M., Nanishi, E., Nishio, H., Ichihara, K. and Ohga, S. (2020) Previous Antibiotic Use and the Development of Kawasaki Disease: A Matched Pair Case-Control Study. Pediatrics International, 62, 1044-1048. https://doi.org/10.1111/ped.14255 |
[23] |
沈男, 王莹, 王兴翠, 等. 川崎病对儿童肠道菌群的影响[J]. 基础医学与临床, 2019, 39(5): 636-640. |
[24] |
Teramoto, Y., Akagawa, S., Hori, S., Tsuji, S., Higasa, K. and Kaneko, K. (2023) Dysbiosis of the Gut Microbiota as a Susceptibility Factor for Kawasaki Disease. Frontiers in Immunology, 14, Article 1268453. https://doi.org/10.3389/fimmu.2023.1268453 |
[25] |
钱范宇, 章启豪, 岑建柯, 等. 低聚果糖通过调整肠道菌群改善川崎病小鼠冠状动脉损伤的机制[J]. 温州医科大学学报, 2021, 51(6): 431-436. |
[26] |
高娜, 贺改涛, 穆志龙, 等. 川崎病患儿肠道菌群构成及分布与其冠状动脉病变的相关性分析[J]. 现代生物医学进展, 2023, 23(20): 3969-3973. |
[27] |
Zhou, C., Li, L., Li, T., Sun, L., Yin, J., Guan, H., et al. (2020) SCFAS Induce Autophagy in Intestinal Epithelial Cells and Relieve Colitis by Stabilizing Hif-1α. Journal of Molecular Medicine, 98, 1189-1202. https://doi.org/10.1007/s00109-020-01947-2 |
[28] |
吕露露, 张雪静. 耳塞和眼罩对重症监护室患者谵妄和睡眠质量影响的Meta分析[J]. 中国全科医学, 2019, 22(32): 3956-3961+3968. |
[29] |
Bartolomaeus, H., Balogh, A., Yakoub, M., Homann, S., Markó, L., Höges, S., et al. (2019) Short-Chain Fatty Acid Propionate Protects from Hypertensive Cardiovascular Damage. Circulation, 139, 1407-1421. https://doi.org/10.1161/circulationaha.118.036652 |
[30] |
Chen, Y., Xu, C., Huang, R., Song, J., Li, D. and Xia, M. (2018) Butyrate from Pectin Fermentation Inhibits Intestinal Cholesterol Absorption and Attenuates Atherosclerosis in Apolipoprotein E-Deficient Mice. The Journal of Nutritional Biochemistry, 56, 175-182. https://doi.org/10.1016/j.jnutbio.2018.02.011 |
[31] |
Wang, Y., Xu, Y., Yang, M., Zhang, M., Xiao, M. and Li, X. (2020) Butyrate Mitigates TNF-Α-Induced Attachment of Monocytes to Endothelial Cells. Journal of Bioenergetics and Biomembranes, 52, 247-256. https://doi.org/10.1007/s10863-020-09841-9 |
[32] |
Kasahara, K., Krautkramer, K.A., Org, E., Romano, K.A., Kerby, R.L., Vivas, E.I., et al. (2018) Interactions between Roseburia Intestinalis and Diet Modulate Atherogenesis in a Murine Model. Nature Microbiology, 3, 1461-1471. https://doi.org/10.1038/s41564-018-0272-x |
[33] |
Kaneko, K., Akagawa, S., Akagawa, Y., Kimata, T. and Tsuji, S. (2020) Our Evolving Understanding of Kawasaki Disease Pathogenesis: Role of the Gut Microbiota. Frontiers in Immunology, 11, Article 1616. https://doi.org/10.3389/fimmu.2020.01616 |
[34] |
Wang, N., Chen, Z., Zhang, F., Zhang, Q., Sun, L., Lv, H., et al. (2022) Intravenous Immunoglobulin Therapy Restores the Quantity and Phenotype of Circulating Dendritic Cells and CD4+ T Cells in Children with Acute Kawasaki Disease. Frontiers in Immunology, 13, Article 802690. https://doi.org/10.3389/fimmu.2022.802690 |
[35] |
Wang, F., Qian, F., Zhang, Q., Zhao, J., Cen, J., Zhang, J., et al. (2023) The Reduced SCFA-Producing Gut Microbes Are Involved in the Inflammatory Activation in Kawasaki Disease. Frontiers in Immunology, 14, Article 1124118. https://doi.org/10.3389/fimmu.2023.1124118 |
[36] |
石树文, 田雯. 肠道微生物群与儿童川崎病[J]. 心血管病学进展, 2020, 41(6): 608-610+621. |
[37] |
Porritt, R.A., Markman, J.L., Maruyama, D., Kocaturk, B., Chen, S., Lehman, T.J.A., et al. (2020) Interleukin-1 Beta-Mediated Sex Differences in Kawasaki Disease Vasculitis Development and Response to Treatment. Arteriosclerosis, Thrombosis, and Vascular Biology, 40, 802-818. https://doi.org/10.1161/atvbaha.119.313863 |
[38] |
McCrindle, B.W. and Manlhiot, C. (2020) Sars-Cov-2-Related Inflammatory Multisystem Syndrome in Children. Journal of the American Medical Association, 324, 246-248. https://doi.org/10.1001/jama.2020.10370 |
[39] |
Chen, J., Yue, Y., Wang, L., Deng, Z., Yuan, Y., Zhao, M., et al. (2020) Altered Gut Microbiota Correlated with Systemic Inflammation in Children with Kawasaki Disease. Scientific Reports, 10, Article No. 14525. https://doi.org/10.1038/s41598-020-71371-6 |
[40] |
Bonten, M.J. and Willems, R.J. (2012) Vancomycin-Resistant Enterococcus—Chronicle of a Foretold Problem. Nederlands Tijdschrift voor Geneeskunde, 156, A5233. |
[41] |
Treitman, A.N., Yarnold, P.R., Warren, J. and Noskin, G.A. (2005) Emerging Incidence of Enterococcus Faecium among Hospital Isolates (1993 to 2002). Journal of Clinical Microbiology, 43, 462-463. https://doi.org/10.1128/jcm.43.1.462-463.2005 |
[42] |
Guiton, P.S., Hung, C.S., Hancock, L.E., Caparon, M.G. and Hultgren, S.J. (2010) Enterococcal Biofilm Formation and Virulence in an Optimized Murine Model of Foreign Body-Associated Urinary Tract Infections. Infection and Immunity, 78, 4166-4175. https://doi.org/10.1128/iai.00711-10 |
[43] |
Kusuda, T., Nakashima, Y., Murata, K., Kanno, S., Nishio, H., Saito, M., et al. (2014) Kawasaki Disease-Specific Molecules in the Sera Are Linked to Microbe-Associated Molecular Patterns in the Biofilms. PLOS ONE, 9, e113054. https://doi.org/10.1371/journal.pone.0113054 |
[44] |
Bazemore, T.C., Maskarinec, S.A., Zietlow, K., Hendershot, E.F. and Perfect, J.R. (2016) Familial Adenomatous Polyposis Manifesting as Lactococcus Endocarditis: A Case Report and Review of the Association of Lactococcus with Underlying Gastrointestinal Disease. Case Reports in Infectious Diseases, 2016, 1-5. https://doi.org/10.1155/2016/5805326 |
[45] |
Nagata, S. (2019) Causes of Kawasaki Disease—From Past to Present. Frontiers in Pediatrics, 7, Article 18. https://doi.org/10.3389/fped.2019.00018 |
[46] |
Papathanasopoulos, A. and Camilleri, M. (2010) Dietary Fiber Supplements: Effects in Obesity and Metabolic Syndrome and Relationship to Gastrointestinal Functions. Gastroenterology, 138, 65-72. https://doi.org/10.1053/j.gastro.2009.11.045 |
[47] |
Nagata, S., Yamashiro, Y., Ohtsuka, Y., Shimizu, T., Sakurai, Y., Misawa, S., et al. (2009) Heat Shock Proteins and Super-Antigenic Properties of Bacteria from the Gastrointestinal Tract of Patients with Kawasaki Disease. Immunology, 128, 511-520. https://doi.org/10.1111/j.1365-2567.2009.03135.x |
[48] |
Flem, E., Mouawad, C., Palmu, A.A., Platt, H., Johnson, K.D., McIntosh, E.D., et al. (2024) Indirect Protection in Adults ≥18 Years of Age from Pediatric Pneumococcal Vaccination: A Review. Expert Review of Vaccines, 23, 997-1010. https://doi.org/10.1080/14760584.2024.2416229 |
[49] |
Rello, J., Ricart, M., Mirelis, B., Quintana, E., Gurgui, M., Net, A. and Prats, G. (1994) Nosocomial Bacteremia in a Medical-surgical Intensive Care Unit: Epidemiologic Characteristics and Factors Influencing Mortality in 111 Episodes. Intensive Care Medicine, 20, 94-98. https://doi.org/10.1007/BF01707661 |