具有给体–受体结构的有机小分子光敏剂在肿瘤光治疗中的应用进展
The Application Progress of Organic Small Molecule Photosensitizers with Donor-Receptor Structure in Tumor Phototherapy
摘要: 肿瘤光治疗以光热治疗和光动力治疗为主,因其耐药性小、侵袭性低、可控性好等优点而受到越来越多的关注。光敏剂在这些过程中起着关键作用,在激光照射下,肿瘤细胞可被光敏剂产生的高热或活性氧杀死。与无机光敏剂和共轭聚合物光敏剂相比,有机小分子光敏剂具有良好的生物相容性、低毒性、高重现性和易于分子修饰等优点。其中具有电子给受体骨架的有机共轭小分子光敏剂的发展势头强劲。越来越多的这类型光敏剂被设计用于光热、光动力或其他协同治疗。本文总结了具有给体–受体结构的有机小分子光敏剂的不同共轭骨架的设计策略,并对其在肿瘤光疗中的应用进行了总结。
Abstract: Tumor phototherapies including mainly photothermal therapy (PTT) and photodynamic therapy (PDT) have drawn increasing attention due to their various merits of minimal drug resistance, low invasiveness and good spatial-temporal controllability. Photosensitizers play a key role in these processes. Under laser irradiation, tumor cells can be killed by hyperpyrexia or reactive oxygen species produced by photosensitizers. Compared with inorganic photosensitizers and conjugated polymer photosensitizers, organic small molecule photosensitizers exhibit many valuable advantages, such as excellent biocompatibility, low toxicity, high reproducibility and facile molecular tailoring. Among them, the development of organic conjugated small-molecule photosensitizers that contain electron donor-acceptor backbones has maintained strong momentum. More and more such type photosensitizers have been designed for PTT, PDT or their synergistic phototherapy. In this review, we highlight the design strategy adopted for diverse conjugated backbones in D-A structured organic conjugated small molecule photosensitizers and give a comprehensive summary of their applications in tumor phototherapy.
文章引用:夏嘉辰, 卢冰. 具有给体–受体结构的有机小分子光敏剂在肿瘤光治疗中的应用进展[J]. 有机化学研究, 2024, 12(4): 537-548. https://doi.org/10.12677/jocr.2024.124052

1. 给体–受体(D-A)型小分子光敏剂

D-A骨架存在于多种光敏剂中[1]。D和A基团之间的强相互作用可以促进这些分子的分子内电荷迁移(ICT)。增强ICT可以降低带隙,提高光敏剂的系间窜越(ISC)速率,有利于增强光动力(PDT)活性。所以目前分子设计的核心是如何提高D基团和A基团之间的相互作用。这里就不能不提到由Tang于2001年首次提出的聚集诱导发光(aggregation-induced emission, AIE)的概念[2]

在各种AIE分子中,阴离子–π+ AIE分子具有D-A结构,于2017年首次报道,已广泛应用于肿瘤光治疗。这些分子最显著特征是它们使用阳离子基团(例如吡啶基)作为受体单元。这些吡啶基团不仅起到拉电子单元的作用,而且还起到肿瘤靶向的作用。相比之下,给体单元的类型就不那么令人眼花缭乱,其中使用的给体单元通常是三苯胺(triphenylamine, TPA)及其衍生物。

2018年,Tang及其同事设计了两种AIE分子,TTPy和MeTTPy,它们是使用吡啶部分和TPA片段构建的,并以碳碳双键和噻吩环作为π桥(图1) [3]。就PDT活性而言,由于MeTTPy的单线激发态和三线激发态之间的能级差(ΔEST)较小,因此与TTPy (71.91%)相比,MeTTPy具有更高的活性氧(ROS)量子产率,为90.7%。此外,吡啶部分的引入赋予了TTPy和MeTTPy线粒体特异性靶向作用。细胞活力数据表明,MeTTPy由于其更高的PDT活性而表现更好。MeTTPy的体内PDT性能进一步表明,这种光敏剂是一种有前途的成像引导PDT治疗诊断剂。吡啶部分的引入有助于引入具有不同肿瘤靶向能力的其他基团。因此,Tang的团队继续合成了三种AIE分子:TFPy、TFVP和TPE-TFPy,它们分别通过靶向于线粒体、细胞膜和溶酶体而表现出不同的肿瘤靶向性[4]。此外,他们提出了一种新颖的光治疗策略,将三种AIE分子整合到一种治疗诊断剂中(图2)。TFPy、TFVP和TPE-TFPy的单线态氧量子产率分别为25.2%、18.3%和63.0%。此外,这些AIE分子在整合时不会干扰彼此的1O2生成。体外和体内实验结果均表明三种AIE分子共同表现出“1 + 1 + 1 > 3”协同光动力疗法。

Figure 1. Chemical structures of D-A-type photosensitizers, where the donor units are shown in blue and the acceptor units are shown in red

1. D-A型光敏剂的化学结构,其中给体单元以蓝色显示,受体单元以红色显示

Figure 2. (a) Chemical structures of the three AIEgens: TFPy, TFVP and TPE-TFPy. (b) Schematic illustration of using the three AIEgens for achieving “1 + 1 + 1 > 3” synergistic enhanced photodynamic therapy

2. (a) 三种AIE分子:TFPy、TFVP和TPE-TFPy的化学结构。(b) 使用三种AIE分子实现“1 + 1 + 1 > 3”协同增强光动力治疗的示意图

此外,Tang等人于2020年合成了四种阴离子–π+ AIE分子(TBZPy、MTBZPy、TNZPy、MTNZPy)使用相同的吡啶基序和不同的给电子单元[5]。MTNZPy中的D基团通过引入甲氧基取代的TPA片段和萘并[2,3-c] [1,2,5]噻二唑部分显示出最高的给电子能力。结果显示,MTNZPy具有最好的ROS产生能力。此外,增强的ISC赋予光敏剂I型PDT活性,这有利于缺氧条件下的PDT [6]。因此,MTBZPy和TNZPy同时具有I型和II型PDT活性,MTNZPy主要表现出I型PDT活性。

另一种改善D-A效应的方法是通过插入一个或多个富电子芳环来延长π共轭长度。这一设计理念已被用于合成TI、TSI、TSSI、TTT-1、TTT-2、TTT-3和TTT-4等一系列AIE分子[7] [8],这些分子已成为光治疗应用的“全能运动员”。与电子给体单元类似,提高受体单元的吸电子能力也是增强D-A效应的有效方法。除吡啶基离子外,其他离子(即2,3,3-三甲基吲哚、喹啉基和吖啶基)也被用作A基团,构建阴离子–π+ AIE分子[9] [10]。在吡啶基、喹啉基和吖啶基离子中,吖啶基离子具有最高的吸电子能力。因此,以吖啶离子为A基团的TPEDCAc显示出最宽的吸收和最强的ICT强度,这使得TPEDCAc具有最高的PDT活性[10]。此外,与TPEDCPy和TPEDCQY相比,TPEDCAc由于骨架扭曲和转子扭曲而表现出明显的PTT活性。基于这些光敏剂的光物理特性,在MCF7荷瘤裸鼠中测试了它们的治疗效果。体内实验表明,TPEDCAc由于具有PTT和PDT双重活性,对肿瘤生长具有最高的抑制能力。相比之下,TPEDCPy和TPEDCQY在体内仅仅能光动力治疗,只能轻微抑制肿瘤生长。上述光敏剂虽然可以实现多模式光治疗,但其吸收值均不超过800 nm。针对这一缺点,Lee等人通过结构修饰合成了D-A结构光敏剂BT3,其吸收峰超过800 nm (图3)。基于BT3的纳米颗粒显示出58.3%的PTCE,BT3纳米颗粒的ROS生成效率比吲哚菁绿(ICG;图3)高10.3倍[11]。光热效应在A549荷瘤裸鼠肿瘤的治疗中也得到证实。在808 nm激光照射(1 W·cm–2) 5分钟后,注射BT3纳米颗粒的小鼠肿瘤部位的温度升至54℃ ± 1℃(图3(c)图3(d))。其他体内实验表明,具有良好生物安全性的BT3纳米颗粒在基于PTT和PDT联合的肿瘤生长抑制方面表现良好(图3(e)~(g))。

Figure 3. Scheme of photosensitizer nanoparticles for multimodality phototheranostics. (a) Chemical structures of BT1, BT2, and BT3 molecules and the main properties of BT3 NPs. (b) Scheme of the BT3 NPs applied in photoacoustic imaging-guided multimodality phototherapy. (c) Temperature increases and (d) corresponding infrared thermal images of mice after injection of PBS and BT3 NPs under an 808 nm laser with a power density of 1 W·cm–2 recorded at various time intervals. (e) Representative photos of the tumors extracted from mice in the various groups at the end of treatment (day 14). (f) Growth inhibition of A549 tumor cells and (g) hematoxylin and eosin (H&E)-stained tumor sections from tumor-bearing mice after various treatments

3. 光敏剂纳米粒子用于多模式光诊疗示意图。(a) BT1、BT2和BT3分子的化学结构以及BT3纳米粒子的主要性质。(b) BT3纳米颗粒应用于光声成像引导多模式光治疗的方案。(c) 在功率密度为1 W·cm–2 的808 nm激光下注射PBS和BT3纳米颗粒后小鼠在不同时间间隔记录的温度升高和(d) 相应的红外热图像。(e) 治疗结束时(第14天)从各组小鼠中提取的肿瘤的代表性照片。(f) A549肿瘤细胞的生长抑制和(g) 各种治疗后荷瘤小鼠的苏木精和伊红(H&E)染色的肿瘤切片

2. 给体–受体–给体(D-A-D)型小分子光敏剂的研究进展

早在20世纪90年代,D-A-D结构小分子就已经被成功设计合成出[12]。在早期研究中,这类分子被用作有机半导体材料且广泛应用于有机发光和有机太阳能电池领域[13] [14]。而在生物领域,这类分子则在荧光成像应用中首次出现[15]。目前,越来越多的这类分子被设计出来应用于肿瘤光治疗领域。与D-A结构光敏剂相似,D-A-D结构中使用的D单元依然是TPA、芳香族杂环、三苯乙烯基团或是它们的结合体。相比之下,A单元的变化更为丰富多彩,主要有吡咯并吡咯二酮(DPP)、苯并噻二唑(BT)、苯并[1,2-c:4,5-c’]双[1,2,5]噻二唑(BBTD)、噻二唑苯并三唑(TBZ)、[1,2,5]噻二唑并[3,4-g]喹喔啉(TQ)等。

2.1. DPP类

自20世纪70年代首次发现以来[16],DPP已经成为在构建具有π共轭结构的有机小分子中非常常用的电子受体单元,它具有诸如合成简便、稳定性强、结构易于修饰等优点[17]-[20]。在DPP分子中,还有多个可供结构修饰的位点,调节溶解度、提高生物相容性或提供肿瘤靶向能力的功能性侧链可以方便地通过N-烷基化引入到基于DPP的小分子中。通过将富电子的芳香环附着在DPP上,还可以很容易地构建D-A-D结构的小分子。基于DPP的小分子材料具有高摩尔消光系数和强近红外吸收,这对其在光治疗中的应用具有重要意义。

Figure 4. Chemical structures of D-A-D-type photosensitizers based on the DPP core (as highlighted in red)

4. 以DPP为核心的D-A-D型光敏剂的化学结构(以红色突出显示)

自2017年以来,许多研究团队都报道了主要以TPA及其衍生物为电子供体单元、基于DPP的小分子光敏剂(图4)。Dong团队以π桥对这些光敏剂性能的影响为研究重点,分别使用呋喃环、噻吩环和硒代噻吩环作为π桥合成了三种具有相同结构的光敏剂FDPP-TPA [21]、DPP-TPA [22]和SeDPP-TPA [23] (图6)。与FDPP-TPA和DPP-TPA相比,SeDPP-TPA由于硒吩环更高的供电子能力,在溶液中表现出明显的红移吸收。此外,这三种分子都同时具有PTT和PDT活性。经计算,FDPP-TPA、DPP-TPA和SeDPP-TPA的光热转换效率分别为47%、34.5%和37.9%,活性氧量子产率分别为40%、33.6%和40%。因此,这三种分子在多模式成像引导的光热治疗和光动力治疗中均表现良好(图5)。

鉴于π桥和供电子单元的重要性,Tang研究团队系统地研究了它们对光敏剂性能的影响。为此,他们分别使用不同的π桥和供电子单元合成了四种具有相同结构的光敏剂(图6:DPP-TPA、2TPAVDPP、TPATPEVDPP和2TPEVDPP) [24],发现通过在噻吩环上用乙烯基进行取代来改善平面性和延长π-共轭长度可以提高D-A相互作用。由于DPP-TPA的构型扭曲程度远高于其他三种光敏剂,2TPAVDPP、TPATPEVDPP和2TPEVDPP表现出明显的红移吸收。此外,增强的D-A相互作用有助于增强ΔEST,提高ROS生成效率(图8)。这些光敏剂的ROS生成能力符合预期,其顺序为2TPAVDPP NPs < TPATPEVDPP NPs < DPP-TPA NPs < 2TPEVDPP NPs。此外,通过引入乙烯基团,2TPAVDPP NPs、TPATPEVDPP NPs和2TPEVDPP NPs表现出了I型PDT活性。在光热转换方面,经计算,2TPEVDPP NPs的光热转换效率为66%,而TPATPEVDPP NPs和2TPAVDPP NPs的光热转换效率则略有降低。由于引入了具有更多转子数的四苯乙烯基团,2TPEVDPP NPs显示出最佳的光热转换能力。因此,2TPEVDPP NPs被用于进行后续的体外和体内实验。经不同处理后的HeLa细胞存活率数据表明,2TPEVDPP NPs具有PTT和PDT的协同作用。经2TPEVDPP NPs和激光照射治疗的小鼠,肿瘤区域的温度升高可达31℃。另一系列体内实验结果再次证实了2TPEVDPP NPs具有PTT和PDT协同的抗肿瘤功效。

Figure 5. (a) Simplified representation of in vivo multi-imaging guided synergistic PTT/PDT of FDPP-TPA NPs. (b) Schematic illustration of the enhanced D-A-D structured DPP-TPA NPs as theranostic agents for photoacoustic imaging (PAI)-guided PDT/PTT. (c) Schematic illustration of the formation and application of SeDPP-TPA NPs in dual-modal imaging-guided photodynamic and photothermal therapy

5. (a) FDPP-TPA NPs体内多种成像模式引导协同PTT/PDT的示意图。(b) D-A-D结构DPP-TPA NPs作为光声成像(PAI)引导的PTT/PDT治诊疗试剂的示意图。(c) SeDPP-TPA NPs在双模成像引导的光动力和光热治疗中的形成和应用示意图

Figure 6. (a) Chemical structures of DPP-TPA, 2TPAVDPP, TPATPEVDPP and 2TPEVDPP. (b) DFT-calculated singlet (S1) and triplet energy levels (T1) and ΔEST values of DPP-TPA, 2TPAVDPP, TPATPEVDPP and 2TPEVDPP

6. (a) DPP-TPA,2TPAVDPP,TPATPEVDPP和2TPEVDPP的化学结构。(b) DFT理论计算得到DPP-TPA、2TPAVDPP、TPATPEVDPP和2TPEVDPP的单重态能级(S1)和三重态能级(T1)和ΔEST

为了提高光治疗试剂的线粒体靶向性,Kim研究团队报道了一种两端带有三苯基膦(TPP)基团的基于DPP的光敏剂MsPDTT (图6)。TPP的引入不仅使MsPDTT具有线粒体靶向性,还增强了光敏剂的PTT和PDT活性[25]。除TPA外,其他电子给体单元如吩噻嗪衍生物、噻吩[2,3b]吲哚等,也已陆续被用于构建这种D-A-D结构光敏剂(图6) [26]-[29]。中总结了它们的光治疗表现。

2.2. 噻二唑类

Figure 7. Chemical structures of D-A-D structured photosensitizers based on thiadiazole derivatives

7. 基于噻二唑的D-A-D结构光敏剂的化学结构

作为电子受体的噻二唑在20世纪80年代首次得到研究[30] [31]。在此之后,它们的衍生物BT、BBTD和TBZ在有机半导体材料构建中得到了广泛应用[32] [33]。近年来,研究人员设计合成了一系列以这些分子为电子受体单元的D-A-D结构光敏剂(图7)。

在本节中,我们将强调扭曲的分子内电荷转移(TICT)对光热转换的影响[34] [35]。2019年,Tang研究团队合成了四种含有TPA (D单元)和BBTD (A单元)的D-A-D结构光敏剂,并以不同的3-烷基取代噻吩环作为π桥(图7) [36]。TICT的形态可以通过侧链工程简便调整。在黑暗条件下的TICT稳定性方面,拥有长烷基链的NIRb14优于短烷基链的NIR6。TICT有利于各种非辐射淬灭过程,这有利于提高光热转换效率。光热转换效率最终值与上述理论一致,以共聚物PEG-b-PCL为掺杂基体制备的NIRb14-PEG纳米粒子的光热转换效率为31.2%,高于以NIRb10 (29.8%)、NIRb6 (26.2%)和NIR6 (22.6%)为基体且以类似方法制备的纳米粒子。为了增加纳米药物在体内肿瘤的吸收和滞留,团队还制备了具有电荷转移特征的新型纳米粒子NIRb14-PAE/PEG NPs (图8(a))。由于NIRb14-PAE/PEG NPs具有更好的肿瘤内累积和滞留能力,其在4T1荷瘤小鼠中表现出比NIRb14-PEG NPs更好的光热效应(图8(b)图8(c))。因此,NIRb14-PAE/PEG NPs表现出最卓越的抗肿瘤功效(图8(d))。在后续研究中,该团队还证明了延长侧链长度也是提高PDT活性的有效手段,具有更长烷基链的TBFT1 NPs和TBFT2 NPs,ROS生成能力优于TBFT [37]

其他光敏剂的设计策略已经在前文多次提到(图7),不再赘述。本段意在讨论硒原子的应用[38] [39]。Lee研究团队报道了一种通过引入Se原子而表现出近红外II区吸收的D-A-D共轭小分子IR-SS (图7) [40]。在1064 nm激光照射下,基于IR-SS的IR-SS NPs光热转换效率为77%。IR-SS NPs在肿瘤移植小鼠中的光热性能也很显著。激光照射后,注射IR-SS NPs的小鼠肿瘤部位温度在5分钟内从34℃升高到63℃。因此,IR-SS NPs具有卓越的肿瘤生长抑制能力。这是少数在PTT中表现良好且具有近红外激发的有机光敏剂之一。其余以BT、BBTD或TBZ为电子受体单位的D-A-D共轭光敏剂的光治疗性能均在中得到总结[41]-[43]

Figure 8. (a) Schematic design of pH-responsive NIRb14-PAE/PEG NPs. (b) IR thermal images of 4T1 tumor-bearing mice under 808 nm laser irradiation (0.8 W·cm–2) for different times. The laser exposure was performed at 7 h after intravenous injection of 150 mL of NIRb14-PAE/PEG NPs, NIRb14-PEG NPs, and saline, respectively. [NIRb14-PAE/PEG NPs] = [NIRb14-PEG NPs] = 660 μM based on NIRb14. (c) Temperature changes at the tumor sites as a function of the 808 nm laser (0.8 W·cm–2) irradiation time, which are the quantitative data from (b). (d) Tumor-growth curves of mice in different treatment groups. Comparing the “NIRb14-PAE/PEG NPs + laser” and “NIRb14-PEG NPs + laser” groups

8. (a) pH响应NIRb14-PAE/PEG NPs的设计原理图。(b) 808 nm (0.8 W·cm–2)激光照射不同时间下4T1荷瘤小鼠的红外热成像图。激光照射分别在静脉注射150 μL NIRb14-PAE/PEG NPs、NIRb14-PEG NPs和生理盐水后的第7小时进行。NIRb14-PAE/PEG NPs、NIRb14-PEG NPs浓度均以NIRb14计算,为660 μM。(c) 肿瘤部位温度随808 nm激光(0.8 W·cm–2)照射时间的变化,其定量数据来自(b)。(d) 不同处理组小鼠肿瘤生长曲线。“NIRb14-PAE/PEG NPs +激光”组与“NIRb14-PEG NPs + 激光”组比较

3. 总结

尽管具有D-A结构的光敏剂在PTT或PDT中表现良好,但它们使用的光源通常局限于可见光或者近红外I区域,这意味着很难完成深层组织中的肿瘤根除。因此仍有许多工作亟待完善。我们相信,在众多仁人志士的不懈努力下,该类光敏剂将具有更好的应用前景。

NOTES

*通讯作者。

参考文献

[1] Popere, B.C., Della Pelle, A.M. and Thayumanavan, S. (2011) Bodipy-Based Donor-Acceptor Π-Conjugated Alternating Copolymers. Macromolecules, 44, 4767-4776.
https://doi.org/10.1021/ma200839q
[2] Luo, J., Xie, Z., Lam, J.W.Y., Cheng, L., Tang, B.Z., Chen, H., et al. (2001) Aggregation-Induced Emission of 1-Methyl-1,2,3,4,5-Pentaphenylsilole. Chemical Communications, 2001, 1740-1741.
https://doi.org/10.1039/b105159h
[3] Wang, D., Lee, M.M.S., Shan, G., Kwok, R.T.K., Lam, J.W.Y., Su, H., et al. (2018) Highly Efficient Photosensitizers with Far-Red/Near-Infrared Aggregation-Induced Emission for in Vitro and in Vivo Cancer Theranostics. Advanced Materials, 30, Article 1802105.
https://doi.org/10.1002/adma.201802105
[4] Xu, W., Lee, M.M.S., Nie, J., Zhang, Z., Kwok, R.T.K., Lam, J.W.Y., et al. (2020) Three-Pronged Attack by Homologous Far-Red/Nir Aiegens to Achieve 1 + 1 + 1 > 3 Synergistic Enhanced Photodynamic Therapy. Angewandte Chemie International Edition, 59, 9610-9616.
https://doi.org/10.1002/anie.202000740
[5] Wan, Q., Zhang, R., Zhuang, Z., Li, Y., Huang, Y., Wang, Z., et al. (2020) Molecular Engineering to Boost Aie-Active Free Radical Photogenerators and Enable High-Performance Photodynamic Therapy under Hypoxia. Advanced Functional Materials, 30, Article 2002057.
https://doi.org/10.1002/adfm.202002057
[6] Chen, D., Xu, Q., Wang, W., Shao, J., Huang, W. and Dong, X. (2021) Type I Photosensitizers Revitalizing Photodynamic Oncotherapy. Small, 17, Article 2006742.
https://doi.org/10.1002/smll.202006742
[7] Zhang, Z., Xu, W., Kang, M., Wen, H., Guo, H., Zhang, P., et al. (2020) An All-Round Athlete on the Track of Phototheranostics: Subtly Regulating the Balance between Radiative and Nonradiative Decays for Multimodal Imaging-Guided Synergistic Therapy. Advanced Materials, 32, Article 2003210.
https://doi.org/10.1002/adma.202003210
[8] Wen, H., Zhang, Z., Kang, M., Li, H., Xu, W., Guo, H., et al. (2021) One-for-All Phototheranostics: Single Component AIE Dots as Multi-Modality Theranostic Agent for Fluorescence-Photoacoustic Imaging-Guided Synergistic Cancer Therapy. Biomaterials, 274, Article 120892.
https://doi.org/10.1016/j.biomaterials.2021.120892
[9] Zhu, W., Kang, M., Wu, Q., Zhang, Z., Wu, Y., Li, C., et al. (2020) Zwitterionic Aiegens: Rational Molecular Design for NIR-II Fluorescence Imaging-Guided Synergistic Phototherapy. Advanced Functional Materials, 31, Article 2007026.
https://doi.org/10.1002/adfm.202007026
[10] Zhang, T., Zhang, J., Wang, F., Cao, H., Zhu, D., Chen, X., et al. (2022) Mitochondria-Targeting Phototheranostics by Aggregation-Induced NIR-II Emission Luminogens: Modulating Intramolecular Motion by Electron Acceptor Engineering for Multi-Modal Synergistic Therapy. Advanced Functional Materials, 32, Article 2110526.
https://doi.org/10.1002/adfm.202110526
[11] Wan, Y., Lu, G., Wei, W., Huang, Y., Li, S., Chen, J., et al. (2020) Stable Organic Photosensitizer Nanoparticles with Absorption Peak Beyond 800 Nanometers and High Reactive Oxygen Species Yield for Multimodality Phototheranostics. ACS Nano, 14, 9917-9928.
https://doi.org/10.1021/acsnano.0c02767
[12] Roncali, J. (1997) Synthetic Principles for Bandgap Control in Linear Π-Conjugated Systems. Chemical Reviews, 97, 173-206.
https://doi.org/10.1021/cr950257t
[13] Qian, G., Zhong, Z., Luo, M., Yu, D., Zhang, Z., Wang, Z.Y., et al. (2009) Simple and Efficient Near-Infrared Organic Chromophores for Light-Emitting Diodes with Single Electroluminescent Emission above 1000 nm. Advanced Materials, 21, 111-116.
https://doi.org/10.1002/adma.200801918
[14] Lin, Y. and Zhan, X. (2015) Oligomer Molecules for Efficient Organic Photovoltaics. Accounts of Chemical Research, 49, 175-183.
https://doi.org/10.1021/acs.accounts.5b00363
[15] Antaris, A.L., Chen, H., Cheng, K., Sun, Y., Hong, G., Qu, C., et al. (2015) A Small-Molecule Dye for NIR-II Imaging. Nature Materials, 15, 235-242.
https://doi.org/10.1038/nmat4476
[16] Farnum, D.G., Mehta, G., Moore, G.G.I. and Siegal, F.P. (1974) Attempted Reformatskii Reaction of Benzonitrile, 1,4-Diketo-3,6-Diphenylpyrrolo[3,4-C]pyrrole. A Lactam Analogue of Pentalene. Tetrahedron Letters, 15, 2549-2552.
https://doi.org/10.1016/s0040-4039(01)93202-2
[17] Grzybowski, M. and Gryko, D.T. (2015) Diketopyrrolopyrroles: Synthesis, Reactivity, and Optical Properties. Advanced Optical Materials, 3, 280-320.
https://doi.org/10.1002/adom.201400559
[18] Kaur, M. and Choi, D.H. (2015) Diketopyrrolopyrrole: Brilliant Red Pigment Dye-Based Fluorescent Probes and Their Applications. Chemical Society Reviews, 44, 58-77.
https://doi.org/10.1039/c4cs00248b
[19] Molina, D., Álvaro-Martins, M.J. and Sastre-Santos, Á. (2021) Diketopyrrolopyrrole-Based Single Molecules in Photovoltaic Technologies. Journal of Materials Chemistry C, 9, 16078-16109.
https://doi.org/10.1039/d1tc01872h
[20] Ma, Q., Sun, X., Wang, W., Yang, D., Yang, C., Shen, Q., et al. (2022) Diketopyrrolopyrrole-Derived Organic Small Molecular Dyes for Tumor Phototheranostics. Chinese Chemical Letters, 33, 1681-1692.
https://doi.org/10.1016/j.cclet.2021.10.054
[21] Liang, P., Wang, Y., Wang, P., Zou, J., Xu, H., Zhang, Y., et al. (2017) Triphenylamine Flanked Furan-Diketopyrrolopyrrole for Multi-Imaging Guided Photothermal/photodynamic Cancer Therapy. Nanoscale, 9, 18890-18896.
https://doi.org/10.1039/c7nr07204j
[22] Cai, Y., Liang, P., Tang, Q., Yang, X., Si, W., Huang, W., et al. (2017) Diketopyrrolopyrrole-Triphenylamine Organic Nanoparticles as Multifunctional Reagents for Photoacoustic Imaging-Guided Photodynamic/Photothermal Synergistic Tumor Therapy. ACS Nano, 11, 1054-1063.
https://doi.org/10.1021/acsnano.6b07927
[23] Cai, Y., Liang, P., Si, W., Zhao, B., Shao, J., Huang, W., et al. (2018) A Selenophene Substituted Diketopyrrolopyrrole Nanotheranostic Agent for Highly Efficient Photoacoustic/infrared-Thermal Imaging-Guided Phototherapy. Organic Chemistry Frontiers, 5, 98-105.
https://doi.org/10.1039/c7qo00755h
[24] Feng, L., Li, C., Liu, L., Wang, Z., Chen, Z., Yu, J., et al. (2022) Acceptor Planarization and Donor Rotation: A Facile Strategy for Realizing Synergistic Cancer Phototherapy via Type I PDT and PTT. ACS Nano, 16, 4162-4174.
https://doi.org/10.1021/acsnano.1c10019
[25] Shin, J., Xu, Y., Koo, S., Lim, J.H., Lee, J.Y., Sharma, A., et al. (2021) Mitochondria-Targeted Nanotheranostic: Harnessing Single-Laser-Activated Dual Phototherapeutic Processing for Hypoxic Tumor Treatment. Matter, 4, 2508-2521.
https://doi.org/10.1016/j.matt.2021.05.022
[26] Cai, Y., Si, W., Tang, Q., Liang, P., Zhang, C., Chen, P., et al. (2016) Small-Molecule Diketopyrrolopyrrole-Based Therapeutic Nanoparticles for Photoacoustic Imaging-Guided Photothermal Therapy. Nano Research, 10, 794-801.
https://doi.org/10.1007/s12274-016-1332-2
[27] Yang, J., Cai, Y., Zhou, Y., Zhang, C., Liang, P., Zhao, B., et al. (2017) Highly Effective Thieno[2,3-B]indole-Diketopyrrolopyrrole Near-Infrared Photosensitizer for Photodynamic/Photothermal Dual Mode Therapy. Dyes and Pigments, 147, 270-282.
https://doi.org/10.1016/j.dyepig.2017.08.023
[28] Zong, S., Wang, X., Lin, W., Liu, S. and Zhang, W. (2018) Simple D-A-D Structural Bisbithiophenyl Diketopyrrolopyrrole as Efficient Bioimaging and Photothermal Agents. Bioconjugate Chemistry, 29, 2619-2627.
https://doi.org/10.1021/acs.bioconjchem.8b00333
[29] Yang, X., Yu, Q., Yang, N., Xue, L., Shao, J., Li, B., et al. (2019) Thieno[3,2-b]thiophene-dpp Based Near-Infrared Nanotheranostic Agent for Dual Imaging-Guided Photothermal/Photodynamic Synergistic Therapy. Journal of Materials Chemistry B, 7, 2454-2462.
https://doi.org/10.1039/c8tb03185a
[30] Suzuki, T., Fujii, H., Yamashita, Y., Kabuto, C., Tanaka, S., Harasawa, M., et al. (1992) Clathrate Formation and Molecular Recognition by Novel Chalcogen-Cyano Interactions in Tetracyanoquinodimethanes Fused with Thiadiazole and Selenadiazole Rings. Journal of the American Chemical Society, 114, 3034-3043.
https://doi.org/10.1021/ja00034a041
[31] Karikomi, M., Kitamura, C., Tanaka, S. and Yamashita, Y. (1995) New Narrow-Bandgap Polymer Composed of Benzobis(1,2,5-Thiadiazole) and Thiophenes. Journal of the American Chemical Society, 117, 6791-6792.
https://doi.org/10.1021/ja00130a024
[32] Qian, G., Dai, B., Luo, M., Yu, D., Zhan, J., Zhang, Z., et al. (2008) Band Gap Tunable, Donor-Acceptor-Donor Charge-Transfer Heteroquinoid-Based Chromophores: Near Infrared Photoluminescence and Electroluminescence. Chemistry of Materials, 20, 6208-6216.
https://doi.org/10.1021/cm801911n
[33] Chen, J. and Cao, Y. (2009) Development of Novel Conjugated Donor Polymers for High-Efficiency Bulk-Heterojunction Photovoltaic Devices. Accounts of Chemical Research, 42, 1709-1718.
https://doi.org/10.1021/ar900061z
[34] Grabowski, Z.R., Rotkiewicz, K. and Rettig, W. (2003) Structural Changes Accompanying Intramolecular Electron Transfer: Focus on Twisted Intramolecular Charge-Transfer States and Structures. Chemical Reviews, 103, 3899-4032.
https://doi.org/10.1021/cr940745l
[35] Sasaki, S., Drummen, G.P.C. and Konishi, G. (2016) Recent Advances in Twisted Intramolecular Charge Transfer (TICT) Fluorescence and Related Phenomena in Materials Chemistry. Journal of Materials Chemistry C, 4, 2731-2743.
https://doi.org/10.1039/c5tc03933a
[36] Liu, S., Zhou, X., Zhang, H., Ou, H., Lam, J.W.Y., Liu, Y., et al. (2019) Molecular Motion in Aggregates: Manipulating TICT for Boosting Photothermal Theranostics. Journal of the American Chemical Society, 141, 5359-5368.
https://doi.org/10.1021/jacs.8b13889
[37] Song, S., Zhao, Y., Kang, M., Zhang, Z., Wu, Q., Fu, S., et al. (2021) Side-Chain Engineering of Aggregation-Induced Emission Molecules for Boosting Cancer Phototheranostics. Advanced Functional Materials, 31, Article 2107545.
https://doi.org/10.1002/adfm.202107545
[38] Lin, F., Zuo, L., Gao, K., Zhang, M., Jo, S.B., Liu, F., et al. (2019) Regio-Specific Selenium Substitution in Non-Fullerene Acceptors for Efficient Organic Solar Cells. Chemistry of Materials, 31, 6770-6778.
https://doi.org/10.1021/acs.chemmater.9b01242
[39] Wen, K., Tan, H., Peng, Q., Chen, H., Ma, H., Wang, L., et al. (2022) Achieving Efficient NIR-II Type-I Photosensitizers for Photodynamic/Photothermal Therapy Upon Regulating Chalcogen Elements. Advanced Materials, 34, Article 2108146.
https://doi.org/10.1002/adma.202108146
[40] Li, S., Deng, Q., Zhang, Y., Li, X., Wen, G., Cui, X., et al. (2020) Rational Design of Conjugated Small Molecules for Superior Photothermal Theranostics in the NIR-II Biowindow. Advanced Materials, 32, Article 2001146.
https://doi.org/10.1002/adma.202001146
[41] Alifu, N., Zebibula, A., Qi, J., Zhang, H., Sun, C., Yu, X., et al. (2018) Single-Molecular Near-Infrared-II Theranostic Systems: Ultrastable Aggregation-Induced Emission Nanoparticles for Long-Term Tracing and Efficient Photothermal Therapy. ACS Nano, 12, 11282-11293.
https://doi.org/10.1021/acsnano.8b05937
[42] Guo, B., Huang, Z., Shi, Q., Middha, E., Xu, S., Li, L., et al. (2019) Organic Small Molecule Based Photothermal Agents with Molecular Rotors for Malignant Breast Cancer Therapy. Advanced Functional Materials, 30, Article 1907093.
https://doi.org/10.1002/adfm.201907093
[43] Cheng, Z., Zhang, T., Wang, W., Shen, Q., Hong, Y., Shao, J., et al. (2021) D-A-D Structured Selenadiazolesbenzothiadiazole-Based Near-Infrared Dye for Enhanced Photoacoustic Imaging and Photothermal Cancer Therapy. Chinese Chemical Letters, 32, 1580-1585.
https://doi.org/10.1016/j.cclet.2021.02.017

Baidu
map