[1] |
Wang, X., Wang, Y., Li, X., Yu, Z., Song, C. and Du, Y. (2021) Nitrile-Containing Pharmaceuticals: Target, Mechanism of Action, and Their SAR Studies. RSC Medicinal Chemistry, 12, 1650-1671. https://doi.org/10.1039/d1md00131k |
[2] |
Wang, Y., Du, Y. and Huang, N. (2018) A Survey of the Role of Nitrile Groups in Protein-Ligand Interactions. Future Medicinal Chemistry, 10, 2713-2728. https://doi.org/10.4155/fmc-2018-0252 |
[3] |
Norsworthy, J.K., Talbert, R.E. and Hoagland, R.E. (1999) Chlorophyll Fluorescence Evaluation of Agrochemical Interactions with Propanil on Propanil-Resistant Barnyardgrass (Echinochloa crus-galli). Weed Science, 47, 13-19. https://doi.org/10.1017/s0043174500090597 |
[4] |
Smith, R.J. and Tugwell, N.P. (1975) Propanil-Carbofuran Interactions in Rice. Weed Science, 23, 176-178. https://doi.org/10.1017/s0043174500052784 |
[5] |
Liu, T., Xu, M., Bai, Z., Xu, X., Ren, D., Chen, W., et al. (2022) Toughening Effect of Poly (Arylene Ether Nitrile) on Phthalonitrile Resin and Fiber Reinforced Composites. Journal of Materials Science, 57, 18343-18355. https://doi.org/10.1007/s10853-022-07780-x |
[6] |
Leader, H., Smejkal, R.M., Payne, C.S., Padilla, F.N., Doctor, B.P., Gordon, R.K., et al. (1989) Binary Antidotes for Organophosphate Poisoning: Aprophen Analogs That Are Both Antimuscarinics and Carbamates. Journal of Medicinal Chemistry, 32, 1522-1528. https://doi.org/10.1021/jm00127a020 |
[7] |
Trivedi, B.K., Holmes, A., Stoeber, T.L., Blankley, C.J., Roark, W.H., Picard, J.A., et al. (1993) Inhibitors of Acyl-CoA: Cholesterol Acyltransferase. 4. A Novel Series of Urea ACAT Inhibitors as Potential Hypocholesterolemic Agents. Journal of Medicinal Chemistry, 36, 3300-3307. https://doi.org/10.1021/jm00074a011 |
[8] |
Tiecco, M., Testaferri, L., Tingoli, M. and Bartoli, D. (1990) Iodine (III) Mediated Acetoxy-Lactonization of Unsaturated Nitriles. Tetrahedron, 46, 7139-7150. https://doi.org/10.1016/s0040-4020(01)87896-0 |
[9] |
Bush, E.J. and Jones, D.W. (1997) Control of Stereochemistry in an Intramolecular Diels-Alder Reaction by the Phenylsulfonyl Group; an Improved Synthesis of Pisiferol. Journal of the Chemical Society, Perkin Transactions 1, No. 23, 3531-3536. https://doi.org/10.1039/a702761c |
[10] |
Bromidge, S.M., Brown, F., Cassidy, F., Clark, M.S.G., Dabbs, S., Hawkins, J., et al. (1992) A Novel and Selective Class of Azabicyclic Muscarinic Agonists Incorporating an N-Methoxy Imidoyl Halide or Nitrile Functionality. Bioorganic & Medicinal Chemistry Letters, 2, 791-796. https://doi.org/10.1016/s0960-894x(00)80533-8 |
[11] |
Dei, S., Romanelli, M.N., Scapecchi, S., Teodori, E., Chiarini, A. and Gualtieri, F. (1991) Verapamil Analog with Restricted Molecular Flexibility. Journal of Medicinal Chemistry, 34, 2219-2225. https://doi.org/10.1021/jm00111a043 |
[12] |
Mitani, K., Sakurai, S., Suzuki, T., Morikawa, K., Koshinaka, E., Kato, H., et al. (1988) Novel Phenoxyalkylamine Derivatives. V. Synthesis, α-Blocking Activity and Quantitative Structure-Activity Analysis of α-[(Phenoxyethyl-amino)propyy]-α-phenyyacetonitrile Derivatives. Chemical and Pharmaceutical Bulletin, 36, 4121-4135. https://doi.org/10.1248/cpb.36.4121 |
[13] |
Theodore, L.J. and Nelson, W.L. (1987) Stereospecific Synthesis of the Enantiomers of Verapamil and Gallopamil. The Journal of Organic Chemistry, 52, 1309-1315. https://doi.org/10.1021/jo00383a026 |
[14] |
Loupy, A., Philippon, N., Pigeon, P., Sansoulet, J. and Galons, H. (1990) Solid-Liquid Phase Transfer Catalysis without Solvent: Further Improvement in SNAr Reactions. Synthetic Communications, 20, 2855-2864. https://doi.org/10.1080/00397919008051499 |
[15] |
Sommer, M.B., Begtrup, M. and Boegesoe, K.P. (1990) Displacement of Halogen of 2-Halo-Substituted Benzonitriles with Carbanions. Preparation of (2-Cyanoaryl)arylacetonitriles. The Journal of Organic Chemistry, 55, 4817-4821. https://doi.org/10.1021/jo00303a011 |
[16] |
Zhang, X., Yang, D. and Liu, Y. (1993) Effects of Electron Acceptors and Radical Scavengers on Nonchain Radical Nucleophilic Substitution Reactions. The Journal of Organic Chemistry, 58, 224-227. https://doi.org/10.1021/jo00053a040 |
[17] |
Makosza, M., Podraza, R. and Kwast, A. (1994) Does the Nucleophilic Substitution of Halogen in O-and P-Halonitrobenzenes with Cyanoacetate Carbanions Proceed via Single Electron Transfer and a Nonchain Radical Process? The Journal of Organic Chemistry, 59, 6796-6799. https://doi.org/10.1021/jo00101a046 |
[18] |
Plevey, R.G. and Sampson, P. (1987) The Synthesis of 3-(4-Aminotetrafluorophenyl)-3-Ethylpiperidine-2,6-Dione; a Fluorinated Derivative of Aminoglutethimide. Journal of the Chemical Society, Perkin Transactions 1, 2129-2136. https://doi.org/10.1039/p19870002129 |
[19] |
Caron, S., Vazquez, E. and Wojcik, J.M. (2000) Preparation of Tertiary Benzylic Nitriles from Aryl Fluorides. Journal of the American Chemical Society, 122, 712-713. https://doi.org/10.1021/ja9933846 |
[20] |
Okuro, K., Furuune, M., Miura, M. and Nomura, M. (1993) Copper-Catalyzed Reaction of Aryl Iodides with Active Methylene Compounds. The Journal of Organic Chemistry, 58, 7606-7607. https://doi.org/10.1021/jo00078a053 |
[21] |
Stauffer, S.R., Beare, N.A., Stambuli, J.P. and Hartwig, J.F. (2001) Palladium-Catalyzed Arylation of Ethyl Cyanoacetate. Fluorescence Resonance Energy Transfer as a Tool for Reaction Discovery. Journal of the American Chemical Society, 123, 4641-4642. https://doi.org/10.1021/ja0157402 |
[22] |
Beare, N.A. and Hartwig, J.F. (2001) Palladium-Catalyzed Arylation of Malonates and Cyanoesters Using Sterically Hindered Trialkyl-and Ferrocenyldialkylphosphine Ligands. The Journal of Organic Chemistry, 67, 541-555. https://doi.org/10.1021/jo016226h |
[23] |
Culkin, D.A. and Hartwig, J.F. (2003) Palladium-Catalyzed Α-Arylation of Carbonyl Compounds and Nitriles. Accounts of Chemical Research, 36, 234-245. https://doi.org/10.1021/ar0201106 |
[24] |
Wu, L. and Hartwig, J.F. (2005) Mild Palladium-Catalyzed Selective Monoarylation of Nitriles. Journal of the American Chemical Society, 127, 15824-15832. https://doi.org/10.1021/ja053027x |
[25] |
Velcicky, J., Soicke, A., Steiner, R. and Schmalz, H. (2011) Palladium-Catalyzed Cyanomethylation of Aryl Halides through Domino Suzuki Coupling-isoxazole Fragmentation. Journal of the American Chemical Society, 133, 6948-6951. https://doi.org/10.1021/ja201743j |
[26] |
Shang, R., Ji, D., Chu, L., Fu, Y. and Liu, L. (2011) Synthesis of Α‐Aryl Nitriles through Palladium‐Catalyzed Decarboxylative Coupling of Cyanoacetate Salts with Aryl Halides and Triflates. Angewandte Chemie International Edition, 50, 4470-4474. https://doi.org/10.1002/anie.201006763 |
[27] |
Chen, Y., Xu, L., Jiang, Y. and Ma, D. (2021) Assembly of Α‐(hetero)aryl Nitriles via Copper‐Catalyzed Coupling Reactions with (Hetero)aryl Chlorides and Bromides. Angewandte Chemie, 133, 7158-7162. https://doi.org/10.1002/ange.202014638 |
[28] |
Wu, G., Deng, Y., Wu, C., Zhang, Y. and Wang, J. (2014) Synthesis of Α‐Aryl Esters and Nitriles: Deaminative Coupling of Α‐Aminoesters and Α‐Aminoacetonitriles with Arylboronic Acids. Angewandte Chemie International Edition, 53, 10510-10514. https://doi.org/10.1002/anie.201406765 |
[29] |
Ye, S., Wang, H., Liang, G., Hu, Z., Wan, K., Zhang, L., et al. (2024) Ortho-Cyanomethylation of Aryl Fluoroalkyl Sulfoxides via a Sulfonium-Claisen Rearrangement. Organic & Biomolecular Chemistry, 22, 1495-1499. https://doi.org/10.1039/d3ob02102e |
[30] |
Culkin, D.A. and Hartwig, J.F. (2002) Synthesis, Characterization, and Reactivity of Arylpalladium Cyanoalkyl Complexes: Selection of Catalysts for the Α-Arylation of Nitriles. Journal of the American Chemical Society, 124, 9330-9331. https://doi.org/10.1021/ja026584h |
[31] |
You, J. and Verkade, J.G. (2003) A General Method for the Direct Α‐Arylation of Nitriles with Aryl Chlorides. Angewandte Chemie International Edition, 42, 5051-5053. https://doi.org/10.1002/anie.200351954 |
[32] |
Tian, J., Luo, F., Zhang, C., Huang, X., Zhang, Y., Zhang, L., et al. (2018) Selective ortho C-H Cyanoalkylation of (Diacetoxyiodo)arenes through [3,3]‐Sigmatropic Rearrangement. Angewandte Chemie International Edition, 57, 9078-9082. https://doi.org/10.1002/anie.201803455 |
[33] |
Wang, J., Li, H. and Zhang, Y. (2013) Reaction of Diazo Compounds with Organoboron Compounds. Synthesis, 45, 3090-3098. https://doi.org/10.1055/s-0033-1340041 |
[34] |
Lee, S., Zhu, C., Huang, K., Bau, J.A., Jia, J., Yue, H., et al. (2023) Photoinduced Nickel-Catalyzed Demethylative Cyanation and Decarboxylative Cyanomethylation of Aryl Halides. ACS Catalysis, 13, 16279-16285. https://doi.org/10.1021/acscatal.3c04745 |
[35] |
Lindsay-Scott, P.J., Clarke, A. and Richardson, J. (2015) Two-Step Cyanomethylation Protocol: Convenient Access to Functionalized Aryl-and Heteroarylacetonitriles. Organic Letters, 17, 476-479. https://doi.org/10.1021/ol503479g |
[36] |
Su, W., Raders, S., Verkade, J.G., Liao, X. and Hartwig, J.F. (2006) Pd‐Catalyzed Α‐Arylation of Trimethylsilyl Enol Ethers with Aryl Bromides and Chlorides: A Synergistic Effect of Two Metal Fluorides as Additives. Angewandte Chemie International Edition, 45, 5852-5855. https://doi.org/10.1002/anie.200601887 |
[37] |
Pasto, D.J. and Wojtkowski, P.W. (1970) Transfer Reactions Involving Boron. XXI Intermediates Formed in the Alkylation of Diazocompounds and Dimethylsulfonium Phenacylide via Organoboranes. Tetrahedron Letters, 11, 215-218. https://doi.org/10.1016/0040-4039(70)80029-6 |
[38] |
Tanaka, D. and Myers, A.G. (2004) Heck-Type Arylation of 2-Cycloalken-1-Ones with Arylpalladium Intermediates Formed by Decarboxylative Palladation and by Aryl Iodide Insertion. Organic Letters, 6, 433-436. https://doi.org/10.1021/ol0363467 |
[39] |
Gooßen, L.J., Rodríguez, N., Lange, P.P. and Linder, C. (2010) Decarboxylative Cross‐Coupling of Aryl Tosylates with Aromatic Carboxylate Salts. Angewandte Chemie International Edition, 49, 1111-1114. https://doi.org/10.1002/anie.200905953 |