[1] |
Johansson, C.C.C. and Colacot, T.J. (2010) Metallkatalysierte α‐Arylierungen von Carbonylen und verwandten Molekülen: aktuelle Trends bei der C‐C‐Kupplung über C‐H‐Funktionalisierung. Angewandte Chemie, 122, 686-718. https://doi.org/10.1002/ange.200903424 |
[2] |
Bellina, F. and Rossi, R. (2009) Transition Metal-Catalyzed Direct Arylation of Substrates with Activated sp3-Hybridized C-H Bonds and Some of Their Synthetic Equivalents with Aryl Halides and Pseudohalides. Chemical Reviews, 110, 1082-1146. https://doi.org/10.1021/cr9000836 |
[3] |
Ma, D. and Cai, Q. (2008) Copper/Amino Acid Catalyzed Cross-Couplings of Aryl and Vinyl Halides with Nucleophiles. Accounts of Chemical Research, 41, 1450-1460. https://doi.org/10.1021/ar8000298 |
[4] |
Culkin, D.A. and Hartwig, J.F. (2003) Palladium-Catalyzed α-Arylation of Carbonyl Compounds and Nitriles. Accounts of Chemical Research, 36, 234-245. https://doi.org/10.1021/ar0201106 |
[5] |
Mąkosza, M. (2010) Nucleophilic Substitution of Hydrogen in Electron-Deficient Arenes, a General Process of Great Practical Value. Chemical Society Reviews, 39, 2855-2868. https://doi.org/10.1039/b822559c |
[6] |
Xu, Q., Gao, H., Yousufuddin, M., Ess, D.H. and Kürti, L. (2013) Aerobic, Transition-Metal-Free, Direct, and Regiospecific Mono-α-Arylation of Ketones: Synthesis and Mechanism by DFT Calculations. Journal of the American Chemical Society, 135, 14048-14051. https://doi.org/10.1021/ja4074563 |
[7] |
Thompson, A.D. and Huestis, M.P. (2012) Cyanide Anion as a Leaving Group in Nucleophilic Aromatic Substitution: Synthesis of Quaternary Centers at Azine Heterocycles. The Journal of Organic Chemistry, 78, 762-769. https://doi.org/10.1021/jo302307y |
[8] |
Beyer, A., Buendia, J. and Bolm, C. (2012) Transition-Metal-Free Synthesis of Oxindoles by Potassium tert-Butoxide-Promoted Intramolecular α-Arylation. Organic Letters, 14, 3948-3951. https://doi.org/10.1021/ol301704z |
[9] |
Merritt, E.A. and Olofsson, B. (2009) Diaryliodoniumsalze-aus dem Nichts ins Rampenlicht. Angewandte Chemie, 121, 9214-9234. https://doi.org/10.1002/ange.200904689 |
[10] |
Zhdankin, V.V. and Stang, P.J. (2008) Chemistry of Polyvalent Iodine. Chemical Reviews, 108, 5299-5358. https://doi.org/10.1021/cr800332c |
[11] |
Elliott, G.I. and Konopelski, J.P. (2001) Arylation with Organolead and Organobismuth Reagents. Tetrahedron, 57, 5683-5705. https://doi.org/10.1016/s0040-4020(01)00385-4 |
[12] |
Barton, D.H.R. and Finet, J. (1987) Bismuth(V) Reagents in Organic Synthesis. Pure and Applied Chemistry, 59, 937-946. https://doi.org/10.1351/pac198759080937 |
[13] |
Xia, J., Brown, L.E. and Konopelski, J.P. (2007) Welwistatin Support Studies: Expansion and Limitation of Aryllead(IV) Coupling Reactions. The Journal of Organic Chemistry, 72, 6885-6890. https://doi.org/10.1021/jo071156l |
[14] |
Elliott, G.I., Konopelski, J.P. and Olmstead, M.M. (1999) Diastereoselectivity in the Formation of Quaternary Centers with Aryllead(IV) Tricarboxylates. Organic Letters, 1, 1867-1870. https://doi.org/10.1021/ol991143x |
[15] |
Morgan, J., Pinhey, J.T. and Rowe, B.A. (1997) α-Arylation of Ketones by Aryllead Triacetates. Effect of Methyl and Phenyl Substitution at the Α Position. Journal of the Chemical Society, Perkin Transactions 1, 1, 1005-1008. https://doi.org/10.1039/a607543f |
[16] |
Orito, K., Sasaki, T. and Suginome, H. (1995) Photoinduced Molecular Transformations. 158. A Total Synthesis of (.+-.)-Methyl Piperitol: An Unsymmetrically Substituted 2,6-Diaryl-3,7-Dioxabicyclo[3.3.0]Octane Lignan. The Journal of Organic Chemistry, 60, 6208-6210. https://doi.org/10.1021/jo00124a045 |
[17] |
Dhokale, R.A., Thakare, P.R. and Mhaske, S.B. (2012) Transition-Metal-Free C-Arylation at Room Temperature by Arynes. Organic Letters, 14, 3994-3997. https://doi.org/10.1021/ol301768r |
[18] |
Lennox, A.J.J. (2018) Meisenheimer Complexes in SNAr Reactions: Intermediates or Transition States? Angewandte Chemie International Edition, 57, 14686-14688. https://doi.org/10.1002/anie.201809606 |
[19] |
Tadross, P.M., Gilmore, C.D., Bugga, P., Virgil, S.C. and Stoltz, B.M. (2010) Regioselective Reactions of Highly Substituted Arynes. Organic Letters, 12, 1224-1227. https://doi.org/10.1021/ol1000796 |
[20] |
Liu, Y., Liang, Y., Pi, S. and Li, J. (2009) Selective Synthesis of o-Acylbenzylphosphonates by Insertion Reactions of Arynes into Β-Ketophosphonates. The Journal of Organic Chemistry, 74, 5691-5694. https://doi.org/10.1021/jo900847u |
[21] |
Tambar, U.K. and Stoltz, B.M. (2005) The Direct Acyl-Alkylation of Arynes. Journal of the American Chemical Society, 127, 5340-5341. https://doi.org/10.1021/ja050859m |
[22] |
Jensen, K.L., Franke, P.T., Nielsen, L.T., Daasbjerg, K. and Jørgensen, K.A. (2009) Anodic Oxidation and Organocatalysis: Direct Regio‐ and Stereoselective Access to Meta‐Substituted Anilines by α‐Arylation of Aldehydes. Angewandte Chemie, 122, 133-137. https://doi.org/10.1002/ange.200904754 |
[23] |
Beringer, F.M. and Forgione, P.S. (1963) Diaryliodonium Salts. XVIII. the Phenylation of Esters in T-Butyl Alcohol1-3. The Journal of Organic Chemistry, 28, 714-717. https://doi.org/10.1021/jo01038a028 |
[24] |
Norrby, P., Petersen, T.B., Bielawski, M. and Olofsson, B. (2010) α‐Arylation by Rearrangement: On the Reaction of Enolates with Diaryliodonium Salts. Chemistry—A European Journal, 16, 8251-8254. https://doi.org/10.1002/chem.201001110 |
[25] |
Jia, Z., Gálvez, E., Sebastián, R.M., Pleixats, R., Álvarez‐Larena, Á., Martin, E., et al. (2014) An Alternative to the Classical α‐Arylation: The Transfer of an Intact 2‐Iodoaryl from Ari(O2CCF3)2. Angewandte Chemie International Edition, 53, 11298-11301. https://doi.org/10.1002/anie.201405982 |
[26] |
Wu, Y., Arenas, I., Broomfield, L.M., Martin, E. and Shafir, A. (2015) Hypervalent Activation as a Key Step for Dehydrogenative ortho C-C Coupling of Iodoarenes. Chemistry—A European Journal, 21, 18779-18784. https://doi.org/10.1002/chem.201503987 |
[27] |
Huang, X. and Maulide, N. (2011) Sulfoxide-Mediated α-Arylation of Carbonyl Compounds. Journal of the American Chemical Society, 133, 8510-8513. https://doi.org/10.1021/ja2031882 |
[28] |
Peng, B., Geerdink, D., Farès, C. and Maulide, N. (2014) Chemoselective Intermolecular α‐Arylation of Amides. Angewandte Chemie International Edition, 53, 5462-5466. https://doi.org/10.1002/anie.201402229 |
[29] |
Bhunia, S., Ghosh, S., Dey, D. and Bisai, A. (2013) DDQ-Mediated Direct Intramolecular-Dehydrogenative-Coupling (IDC): Expeditious Approach to the Tetracyclic Core of Ergot Alkaloids. Organic Letters, 15, 2426-2429. https://doi.org/10.1021/ol400899e |
[30] |
Stewart, J.D., Fields, S.C., Kochhar, K.S. and Pinnick, H.W. (1987) α-Arylation of Pyrrolidinones. The Journal of Organic Chemistry, 52, 2110-2113. https://doi.org/10.1021/jo00386a045 |
[31] |
Rossi, R.A. and Alonso, R.A. (1980) Photostimulated Reactions of N, N-Disubstituted Amide Enolate Anions with Haloarenes by the SRN1 Mechanism in Liquid Ammonia. The Journal of Organic Chemistry, 45, 1239-1241. https://doi.org/10.1021/jo01295a015 |
[32] |
Ghosh, S., De, S., Kakde, B.N., Bhunia, S., Adhikary, A. and Bisai, A. (2012) Intramolecular Dehydrogenative Coupling of Sp2 C-H and Sp3 C-H Bonds: An Expeditious Route to 2-Oxindoles. Organic Letters, 14, 5864-5867. https://doi.org/10.1021/ol302767w |
[33] |
Jia, Y. and Kündig, E.P. (2009) Oxindole Synthesis by Direct Coupling of Csp2-H and Csp2-H Centers. Angewandte Chemie International Edition, 48, 1636-1639. https://doi.org/10.1002/anie.200805652 |
[34] |
Perry, A. and Taylor, R.J.K. (2009) Oxindole Synthesis by Direct C-H, Ar-H Coupling. Chemical Communications, 2009, 3249-3251. https://doi.org/10.1039/b903516h |
[35] |
Hama, T., Liu, X., Culkin, D.A. and Hartwig, J.F. (2003) Palladium-Catalyzed α-Arylation of Esters and Amides under More Neutral Conditions. Journal of the American Chemical Society, 125, 11176-11177. https://doi.org/10.1021/ja036792p |
[36] |
Shaaban, S., Tona, V., Peng, B. and Maulide, N. (2017) Hydroxamic Acids as Chemoselective (Ortho‐Amino)Arylation Reagents via Sigmatropic Rearrangement. Angewandte Chemie International Edition, 56, 10938-10941. https://doi.org/10.1002/anie.201703667 |
[37] |
Johnson, S., Kovács, E. and Greaney, M.F. (1964) Arylation and Alkenylation of Activated Alkyl Halides Using Sulfonamides. Chemical Communications, 56, 3222-3224. https://doi.org/10.1039/D0CC00220H |
[38] |
Barlow, H.L., Rabet, P.T.G., Durie, A., Evans, T. and Greaney, M.F. (2019) Arylation Using Sulfonamides: Phenylacetamide Synthesis through Tandem Acylation-Smiles Rearrangement. Organic Letters, 21, 9033-9035. https://doi.org/10.1021/acs.orglett.9b03429 |
[39] |
Liu, J., Ba, D., Lv, W., Chen, Y., Zhao, Z. and Cheng, G. (2019) Base-Promoted Michael Addition/Smiles Rearrangement/N-Arylation Cascade: One-Step Synthesis of 1,2,3-Trisubstituted 4-Quinolones from Ynones and Sulfonamides. Advanced Synthesis and Catalysis, 362, 213-223. |
[40] |
Zhang, H., Xiao, Y., Lemmerer, M., Bortolato, T. and Maulide, N. (2024) Domino Conjugate Addition-1,4-Aryl Migration for the Synthesis of α, β-Difunctionalized Amides. JACS Au, 4, 2456-2461. https://doi.org/10.1021/jacsau.4c00378 |