[1] |
Mullighan, C.G., Goorha, S., Radtke, I., Miller, C.B., Coustan-Smith, E., Dalton, J.D., et al. (2007) Genome-Wide Analysis of Genetic Alterations in Acute Lymphoblastic Leukaemia. Nature, 446, 758-764. https://doi.org/10.1038/nature05690 |
[2] |
Gu, Z., Churchman, M.L., Roberts, K.G., Moore, I., Zhou, X., Nakitandwe, J., et al. (2019) Pax5-Driven Subtypes of B-Progenitor Acute Lymphoblastic Leukemia. Nature Genetics, 51, 296-307. https://doi.org/10.1038/s41588-018-0315-5 |
[3] |
Li, Z., Lee, S.H.R., Chin, W.H.N., Lu, Y., Jiang, N., Lim, E.H., et al. (2021) Distinct Clinical Characteristics of DUX4-and PAX5-Altered Childhood B-Lymphoblastic Leukemia. Blood Advances, 5, 5226-5238. https://doi.org/10.1182/bloodadvances.2021004895 |
[4] |
Simmons, S., Knoll, M., Drewell, C., Wolf, I., Mollenkopf, H., Bouquet, C., et al. (2012) Biphenotypic B-Lymphoid/Myeloid Cells Expressing Low Levels of PAX5: Potential Targets of BAL Development. Blood, 120, 3688-3698. https://doi.org/10.1182/blood-2012-03-414821 |
[5] |
Mikkola, I., Heavey, B., Horcher, M. and Busslinger, M. (2002) Reversion of B Cell Commitment Upon Loss of PAX5 Expression. Science, 297, 110-113. https://doi.org/10.1126/science.1067518 |
[6] |
Schebesta, A., McManus, S., Salvagiotto, G., Delogu, A., Busslinger, G.A. and Busslinger, M. (2007) Transcription Factor PAX5 Activates the Chromatin of Key Genes Involved in B Cell Signaling, Adhesion, Migration, and Immune Function. Immunity, 27, 49-63. https://doi.org/10.1016/j.immuni.2007.05.019 |
[7] |
Chan, L.N., Chen, Z., Braas, D., Lee, J., Xiao, G., Geng, H., et al. (2017) Metabolic Gatekeeper Function of B-Lymphoid Transcription Factors. Nature, 542, 479-483. https://doi.org/10.1038/nature21076 |
[8] |
Somasundaram, R., Jensen, C.T., Tingvall-Gustafsson, J., Åhsberg, J., Okuyama, K., Prasad, M., et al. (2021) EBF1 and PAX5 Control Pro-B Cell Expansion via Opposing Regulation of the Myc Gene. Blood, 137, 3037-3049. https://doi.org/10.1182/blood.2020009564 |
[9] |
Ramamoorthy, S., Kometani, K., Herman, J.S., Bayer, M., Boller, S., Edwards-Hicks, J., et al. (2020) EBF1 and PAX5 Safeguard Leukemic Transformation by Limiting IL-7 Signaling, Myc Expression, and Folate Metabolism. Genes & Development, 34, 1503-1519. https://doi.org/10.1101/gad.340216.120 |
[10] |
Familiades, J., Bousquet, M., Lafage-Pochitaloff, M., Béné, M., Beldjord, K., de Vos, J., et al. (2009) PAX5 Mutations Occur Frequently in Adult B-Cell Progenitor Acute Lymphoblastic Leukemia and PAX5 Haploinsufficiency Is Associated with BCR-ABL1 and TCF3-PBX1 Fusion Genes: A GRAALL Study. Leukemia, 23, 1989-1998. https://doi.org/10.1038/leu.2009.135 |
[11] |
Kim, M., Choi, J.E., She, C.J., Hwang, S.M., Shin, H.Y., Ahn, H.S., et al. (2011) PAX5 Deletion Is Common and Concurrently Occurs with CDKN2A Deletion in B-Lineage Acute Lymphoblastic Leukemia. Blood Cells, Molecules, and Diseases, 47, 62-66. https://doi.org/10.1016/j.bcmd.2011.04.003 |
[12] |
Heltemes-Harris, L.M., Willette, M.J.L., Ramsey, L.B., Qiu, Y.H., Neeley, E.S., Zhang, N., et al. (2011) Ebf1 or Pax5 Haploinsufficiency Synergizes with STAT5 Activation to Initiate Acute Lymphoblastic Leukemia. Journal of Experimental Medicine, 208, 1135-1149. https://doi.org/10.1084/jem.20101947 |
[13] |
Prasad, M.A.J., Ungerbäck, J., Åhsberg, J., Somasundaram, R., Strid, T., Larsson, M., et al. (2015) Ebf1 Heterozygosity Results in Increased DNA Damage in Pro-B Cells and Their Synergistic Transformation by Pax5 Haploinsufficiency. Blood, 125, 4052-4059. https://doi.org/10.1182/blood-2014-12-617282 |
[14] |
Martín-Lorenzo, A., Auer, F., Chan, L.N., García-Ramírez, I., González-Herrero, I., Rodríguez-Hernández, G., et al. (2018) Loss of Pax5 Exploits Sca1-Bcr-Ablp190 Susceptibility to Confer the Metabolic Shift Essential for Pb-All. Cancer Research, 78, 2669-2679. https://doi.org/10.1158/0008-5472.can-17-3262 |
[15] |
Kanayama, T., Imamura, T., Mayumi, A., Soma, E., Sakamoto, K., Hayakawa, F., et al. (2020) Functional Analysis of a Novel Fusion Protein PAX5-KIDINS220 Identified in a Pediatric Ph-Like ALL Patient. International Journal of Hematology, 112, 714-719. https://doi.org/10.1007/s12185-020-02944-4 |
[16] |
Poppe, B., de Paepe, P., Michaux, L., Dastugue, N., Bastard, C., Herens, C., et al. (2005) PAX5/IGH Rearrangement Is a Recurrent Finding in a Subset of Aggressive B-NHL with Complex Chromosomal Rearrangements. Genes, Chromosomes and Cancer, 44, 218-223. https://doi.org/10.1002/gcc.20214 |
[17] |
Jurado, S., Fedl, A.S., Jaritz, M., Kostanova-Poliakova, D., Malin, S.G., Mullighan, C.G., et al. (2022) The PAX5-JAK2 Translocation Acts as Dual-Hit Mutation That Promotes Aggressive B-cell Leukemia via Nuclear STAT5 Activation. The EMBO Journal, 41, e108397. https://doi.org/10.15252/embj.2021108397 |
[18] |
Smeenk, L., Fischer, M., Jurado, S., Jaritz, M., Azaryan, A., Werner, B., et al. (2017) Molecular Role of the PAX5-ETV6 Oncoprotein in Promoting B-Cell Acute Lymphoblastic Leukemia. The EMBO Journal, 36, 718-735. https://doi.org/10.15252/embj.201695495 |
[19] |
Fortschegger, K., Anderl, S., Denk, D. and Strehl, S. (2014) Functional Heterogeneity of PAX5 Chimeras Reveals Insight for Leukemia Development. Molecular Cancer Research, 12, 595-606. https://doi.org/10.1158/1541-7786.mcr-13-0337 |
[20] |
Imoto, N., Hayakawa, F., Kurahashi, S., Morishita, T., Kojima, Y., Yasuda, T., et al. (2016) B Cell Linker Protein (BLNK) Is a Selective Target of Repression by PAX5-PML Protein in the Differentiation Block That Leads to the Development of Acute Lymphoblastic Leukemia. Journal of Biological Chemistry, 291, 4723-4731. https://doi.org/10.1074/jbc.m115.637835 |
[21] |
Jean, J., Kovach, A.E., Doan, A., Oberley, M., Ji, J., Schmidt, R.J., et al. (2022) Characterization of PAX5 Intragenic Tandem Multiplication in Pediatric B-Lymphoblastic Leukemia by Optical Genome Mapping. Blood Advances, 6, 3343-3346. https://doi.org/10.1182/bloodadvances.2021006328 |
[22] |
Zaliova, M., Stuchly, J., Winkowska, L., Musilova, A., Fiser, K., Slamova, M., et al. (2019) Genomic Landscape of Pediatric B-Other Acute Lymphoblastic Leukemia in a Consecutive European Cohort. Haematologica, 104, 1396-1406. https://doi.org/10.3324/haematol.2018.204974 |
[23] |
Busslinger, M., Klix, N., Pfeffer, P., Graninger, P.G. and Kozmik, Z. (1996) Deregulation of PAX-5 by Translocation of the Emu Enhancer of the IgH Locus Adjacent to Two Alternative PAX-5 Promoters in a Diffuse Large-Cell Lymphoma. Proceedings of the National Academy of Sciences, 93, 6129-6134. https://doi.org/10.1073/pnas.93.12.6129 |
[24] |
Sadakane, Y., Zaitsu, M., Nishi, M., Sugita, K., Mizutani, S., Matsuzaki, A., et al. (2006) Expression and Production of Aberrant PAX5 with Deletion of Exon 8 in B-Lineage Acute Lymphoblastic Leukaemia of Children. British Journal of Haematology, 136, 297-300. https://doi.org/10.1111/j.1365-2141.2006.06425.x |
[25] |
Santoro, A., Bica, M.G., Dagnino, L., Agueli, C., Salemi, D., Cannella, S., et al. (2009) Altered mRNA Expression of PAX5 Is a Common Event in Acute Lymphoblastic Leukaemia. British Journal of Haematology, 146, 686-689. https://doi.org/10.1111/j.1365-2141.2009.07815.x |
[26] |
Bastian, L., Schroeder, M.P., Eckert, C., Schlee, C., Tanchez, J.O., Kämpf, S., et al. (2019) PAX5 Biallelic Genomic Alterations Define a Novel Subgroup of B-Cell Precursor Acute Lymphoblastic Leukemia. Leukemia, 33, 1895-1909. https://doi.org/10.1038/s41375-019-0430-z |
[27] |
Nebral, K., Denk, D., Attarbaschi, A., König, M., Mann, G., Haas, O.A., et al. (2008) Incidence and Diversity of PAX5 Fusion Genes in Childhood Acute Lymphoblastic Leukemia. Leukemia, 23, 134-143. https://doi.org/10.1038/leu.2008.306 |
[28] |
Kwiatkowski, B.A., Zielinska-Kwiatkowska, A.G., Bauer, T.R. and Hickstein, D.D. (2000) The ETS Family Member Tel Antagonizes the Fli-1 Phenotype in Hematopoietic Cells. Blood Cells, Molecules, and Diseases, 26, 84-90. https://doi.org/10.1006/bcmd.2000.0282 |
[29] |
Coffer, P.J. and Burgering, B.M.T. (2004) Forkhead-Box Transcription Factors and Their Role in the Immune System. Nature Reviews Immunology, 4, 889-899. https://doi.org/10.1038/nri1488 |
[30] |
Katoh, M. and Katoh, M. (2004) Human FOX Gene Family (Review). International Journal of Oncology, 25, 1495-1500. https://doi.org/10.3892/ijo.25.5.1495 |
[31] |
Gray, W.R., Sandberg, L.B. and Foster, J.A. (1973) Molecular Model for Elastin Structure and Function. Nature, 246, 461-466. https://doi.org/10.1038/246461a0 |
[32] |
Bousquet, M., Broccardo, C., Quelen, C., Meggetto, F., Kuhlein, E., Delsol, G., et al. (2006) A Novel PAX5-ELN Fusion Protein Identified in B-Cell Acute Lymphoblastic Leukemia Acts as a Dominant Negative on Wild-Type PAX5. Blood, 109, 3417-3423. https://doi.org/10.1182/blood-2006-05-025221 |
[33] |
Jamrog, L., Chemin, G., Fregona, V., Coster, L., Pasquet, M., Oudinet, C., et al. (2018) PAX5-ELN Oncoprotein Promotes Multistep B-Cell Acute Lymphoblastic Leukemia in Mice. Proceedings of the National Academy of Sciences, 115, 10357-10362. https://doi.org/10.1073/pnas.1721678115 |
[34] |
Kurahashi, S., Hayakawa, F., Miyata, Y., Yasuda, T., Minami, Y., Tsuzuki, S., et al. (2011) PAX5-PML Acts as a Dual Dominant-Negative Form of Both PAX5 and PML. Oncogene, 30, 1822-1830. https://doi.org/10.1038/onc.2010.554 |
[35] |
Zhong, S., Salomoni, P., Ronchetti, S., Guo, A., Ruggero, D. and Pandolfi, P.P. (2000) Promyelocytic Leukemia Protein (PML) and Daxx Participate in a Novel Nuclear Pathway for Apoptosis. The Journal of Experimental Medicine, 191, 631-640. https://doi.org/10.1084/jem.191.4.631 |
[36] |
Liu, G.J., Cimmino, L., Jude, J.G., Hu, Y., Witkowski, M.T., McKenzie, M.D., et al. (2014) PAX5 Loss Imposes a Reversible Differentiation Block in B-Progenitor Acute Lymphoblastic Leukemia. Genes & Development, 28, 1337-1350. https://doi.org/10.1101/gad.240416.114 |
[37] |
Hart, M.R., Anderson, D.J., Porter, C.C., Neff, T., Levin, M. and Horwitz, M.S. (2018) Activating PAX Gene Family Paralogs to Complement PAX5 Leukemia Driver Mutations. PLOS Genetics, 14, e1007642. https://doi.org/10.1371/journal.pgen.1007642 |
[38] |
Jia, Z. and Gu, Z. (2022) PAX5 Alterations in B-Cell Acute Lymphoblastic Leukemia. Frontiers in Oncology, 12, Article 1023606. https://doi.org/10.3389/fonc.2022.1023606 |
[39] |
Iacobucci, I., Kimura, S. and Mullighan, C.G. (2021) Biologic and Therapeutic Implications of Genomic Alterations in Acute Lymphoblastic Leukemia. Journal of Clinical Medicine, 10, Article No. 3792. https://doi.org/10.3390/jcm10173792 |