儿童急性淋巴细胞白血病PAX5基因的研究进展
Research Progress of PAX5 Gene in Children with Acute Lymphoblastic Leukemia
DOI: 10.12677/acrp.2024.123003, PDF, HTML, XML,   
作者: 罗雅心, 方睿涵, 吴学东*:南方医科大学南方医院儿科,广东 广州
关键词: 急性淋巴细胞白血病PAX5基因儿童Acute Lymphoblastic Leukemia PAX5 Gene Children
摘要: 急性淋巴细胞白血病是儿童常见的血液系统恶性肿瘤。最常见的遗传改变基因之一是PAX5基因。PAX5基因的表达贯穿B细胞发育的整个过程,其改变包括拷贝数变异、重排、基因内扩增、选择性剪切和点突变等。PAX5与伴侣基因产生融合蛋白通过干扰白血病细胞中正常PAX5蛋白的转录活性而发挥竞争性抑制剂的作用。PAX5基因相关的B-ALL亚型PAX5 P80R在儿童病例中与较差预后相关,PAX5alt亚型患者被归为高风险的频率高于标准风险。本文就PAX5基因在急性淋巴细胞白血病中的发病机制、融合基因及治疗策略进行综述。
Abstract: Acute lymphoblastic leukemia (ALL) is a common hematologic malignancy in children, with one of the most frequently altered genes being the PAX5 gene. The expression of the PAX5 gene is involved throughout the entire process of B-cell development, and its alterations include copy number variations, rearrangements, intragenic amplifications, alternative splicing, and point mutations. The fusion proteins formed by PAX5 and its partner genes act as competitive inhibitors by interfering with the normal transcriptional activity of the PAX5 protein in leukemic cells. The PAX5 gene-related B-ALL subtype PAX5 P80R was associated with a poorer prognosis in childhood cases, and patients with the PAX5alt subtype were classified as high risk more often than the standard risk. This review summarizes the role of the PAX5 gene in the pathogenesis of ALL, its fusion genes, and related therapeutic strategies.
文章引用:罗雅心, 方睿涵, 吴学东. 儿童急性淋巴细胞白血病PAX5基因的研究进展[J]. 亚洲儿科病例研究, 2024, 12(3): 13-19. https://doi.org/10.12677/acrp.2024.123003

1. 引言

PAX5基因属于paired-box (PAX)结构家族,包含9个高度保守的结构域,是B细胞发育和维持的主要调控因子,也是B细胞急性淋巴细胞白血病中最常见的遗传改变靶点之一。PAX基因在人类B细胞急性淋巴细胞白血病中被鉴定为单倍剂量不足的抑癌基因,即PAX单等位基因突变或缺失后,另一个等位基因正常表达翻译后的蛋白水平不足以维持正常的生理功能,导致特定表型出现[1]。全面的基因组研究强调PAX5是B-ALL中最常见的变异基因,大约三分之一的儿童和成人病例中存在PAX5的改变[2]。鉴于PAX5的多种基因变异,已经定义了两种不同的B-ALL基因亚型:PAX5 P80R和PAX5alt [2]。PAX5 P80R亚型在不同的队列研究中表现出不同的预后影响,表明需要进一步研究以准确阐明其临床意义。相反,PAX5alt亚型患者的预后一直较差,特别是在同时存在IKZF1缺失的情况下[3]。因此,了解PAX5基因的遗传背景和潜在机制对于揭示B-ALL的发病机制和探索其临床意义至关重要,本文现就近年来PAX5基因在儿童急性淋巴细胞白血病的研究进展进行综述。

2. PAX5在B细胞发育中的作用

PAX5基因的表达贯穿B细胞发育的整个过程,其表达水平与B细胞发育阶段相关[4]。造血过程中谱系限制性祖细胞的形成受到转录因子网络的严格控制,包括PAX5、IKZF1和EBF1等基因的协调作用,值得注意的是pro-B细胞在敲除PAX5基因的情况下保留了谱系混杂的能力,通过适当细胞因子刺激后可分化成其他谱系[5]。PAX5通过调整基因表达谱来保障B细胞的发育,一方面上调CD19和BLNK等B细胞特异基因的表达,另一方面下调FLT3和CCL3等不适合B细胞系的基因来抑制替代谱系的选择[6]。PAX5和IKZF1通常被描述为代谢守门人,其突变破坏了下游代谢相关基因的调节,如胰岛素受体、葡萄糖转运蛋白-1、葡萄糖转运蛋白-6、葡萄糖-6-磷酸脱氢酶和己糖激酶-2等,这些基因编码控制葡萄糖摄取和蛋白质利用[7]。葡萄糖的异常摄取和ATP的过量产生是促进肿瘤发展和致癌生长的主要因素,比如葡萄糖转运蛋白-1的过表达通过增加糖酵解和能量产生来维持癌细胞代谢,促进了B-ALL的恶性转化[7]。此外,PAX5和EBF1积极参与相互的正调节环,但在Myc调控中发挥相反的作用,并且协同调节IL-7信号和叶酸代谢[8] [9]

3. PAX5基因在ALL中的改变

3.1. 拷贝数变异

PAX5缺失是B-ALL中PAX5拷贝数改变最常见的形式,通常只影响一个等位基因,其转录物无表达或表达缺乏功能域截断蛋白,导致该等位基因功能丧失[10]。在B-ALL中,PAX5杂合性缺失通常伴随关键细胞周期调节因子CDKN2A或CDKN2B基因的完全缺失[11]。大量研究表明,PAX5杂合性缺失需要其他致癌病变才能引起明显的恶性转化[10]。成熟细胞中PAX5双等位基因缺失会导致白血病的分化和发展,中位发病时间为9个月,相反PAX5杂合缺失小鼠从未发生白血病,其与STAT5协同作用在小鼠中会迅速诱导白血病的发生,中位发病时间分别为55天和109天[12]。PAX5和EBF1的复合杂合突变在小鼠中过度激活IL-7信号通路从而增加ALL的发生频率[13]。与BCR::ABL1单独作用相比,PAX5杂合缺失与BCR::ABL1协同作用可产生潜伏期更短且发病率更高的B-ALL,这种协同效应可能是BCR::ABL1病例中PAX5频繁缺失的原因[14]

3.2. 重排

约有2.5%的儿童B-ALL患者发生PAX5重排与其他基因融合导致B细胞发育受阻,其转录物翻译得到的融合蛋白干扰正常B细胞的分化和成熟,影响PAX5的功能并促进白血病的发展[15] [16]。在ALL中,涉及PAX5基因的染色体易位已被确定为重要的遗传事件[17]。这些易位破坏了PAX5基因,并导致PAX5与来自其他染色体的伴侣基因形成融合基因,这些融合基因编码嵌合蛋白,可以破坏正常的B细胞发育并促进白血病的发生[15]。PAX5常见的伴侣基因有ETV6基因、ELN基因、FOXP1基因和PML基因等[18]-[20]。PAX5与不同伴侣基因产生的融合基因表现出不同的DNA结合和基因调控活性,其患病率和预后同样受到特定的融合基因和其他存在的遗传改变的影响。因此,检测PAX5的重排对于ALL的诊断和分类、风险分层和治疗选择至关重要。

3.3. 基因内扩增

PAX5基因内扩增(PAX5-iAmp)在B-ALL中发生率约为0.5%~1.4%,利用转录组基因表达谱进行无监督分层聚类,存在PAX5-iAmp的B-ALL病例形成了一个紧密的聚类,可以归入PAX5alt亚型[21] [22]。扩增大多发生在编码PAX5的DNA结合和八肽结构域的外显子2至5,考虑到PAX5-iAmp扩增的配对结构域,DNA结合区拷贝数的增加可能会改变与PAX5靶基因的结合,从而导致B细胞分化和转化失调[21]。PAX5-iAmp在B-ALL中的具体作用仍需进一步的功能研究。

3.4. 选择性剪接

在正常B细胞发育过程中发现了PAX5基因的选择性剪切。通过使用两个不同的启动子,PAX5基因可以产生两个不同的异构体PAX5A和PAX5B [23]。其中PAX5A仅在B细胞中表达,而PAX5B在所有表达PAX5的组织中均有活性,如神经系统、睾丸和B系细胞[23]。在B-ALL中,其他PAX5异构体缺失外显子2、外显子8-9或外显子5 [24] [25]。考虑到B-ALL中频繁的PAX5基因内缺失,B-ALL中观察到的异构体可能与局灶性缺失而非选择性剪切有关。

3.5. 点突变

点突变在B-ALL中的发生率为7%~10%,其中PAX5 P80R是PAX5最常见的序列突变,位于配对结构域,具有该突变的B-ALL患者被归类为以PAX5双等位基因改变、CDKN2A/B纯合缺失、RAS信号热点激活突变为特征的新亚型[26]。PAX5的双等位基因改变与缺失、拷贝中性的杂合性缺失或另一个等位基因的有害突变有关[2]。基因集富集分析提示B细胞特异性基因的失调,表明PAX5 P80R降低了PAX5的调节活性[2]。PAX5非同义性突变在PAX5alt亚型的发生率为30%,而在其他B-ALL中的发生率不到5%,其在PAX5alt亚型中最常见的两个突变是R38H和R140L,常富含RAS信号突变作为协同事件[2]

4. PAX5相关伴侣基因

PAX5融合蛋白被认为是通过干扰白血病细胞中正常PAX5蛋白的转录活性而发挥竞争性抑制剂的作用,不同的PAX5融合蛋白主要调控不同的基因,其转录活性由伴侣蛋白决定[27]。研究表明,与没有PAX5融合基因的患者相比,存在PAX5融合基因的患者具有独特的临床和遗传特征,他们往往更年轻,白细胞计数更高,更可能存在其他的基因异常[27]

4.1. ETV6基因

ETV6基因属于ETS转录因子家族,可以与超过30个染色体发生易位产生融合基因。在PAX5::ETV6融合基因中,ETV6的DNA结合域是白血病融合蛋白的一部分,这表明正常ETV6靶基因的表达改变参与了白血病的发病机制[28]。PAX5::ETV6是最常被描述的PAX5易位,PAX5结构域与几乎整个ETV6转录因子融合在一起[18]。小鼠实验表明PAX5::ETV6影响了部分B细胞特异性基因的表达,提示PAX5::ETV6在控制细胞存活和致癌STAT5信号传导方面发挥了作用[12]

4.2. FOXP1基因

FOXP1是FOX转录因子的其中一种,在免疫控制中起关键作用,调节淋巴细胞的存活到胸腺细胞的发育[29]。FOXP1的突变会引起B细胞发育的紊乱,其与PAX5的融合抑制了PAX5的活性,这可能通过阻止造血细胞转化为成熟的B细胞而导致白血病的发生[30]。PAX5::FOXP1在比较少的B-ALL病例中检测到[29]

4.3. ELN基因

ELN编码一种弹性纤维,其降解产物弹性因子可诱导单核细胞增殖,促进癌症进展[31]。在DG75细胞里,PAX5::ELN能够下调BLNK、LEF1和MB1,但不能影响CD19和BLK的转录[32]。PAX5::ELN发生时,pro-B细胞群明显增加,这与骨髓中未成熟B细胞和循环B细胞的减少有关,表明PAX5::ELN可能阻止了白血病前期的B细胞分化[33]

4.4. PML基因

PML基因定位于核小体,是转录因子和肿瘤抑制因子,参与维甲酸受体α基因的易位[34]。PAX5::PML融合蛋白在细胞核中发现,定位于被称为PML核体的离散亚核室中,对PAX5和PML均有负面影响[34]。尽管保留了PAX5的DNA结合结构域,PAX5::PML基因在体外几乎没有显示出DNA结合活性[35]。PAX5-PML的共表达抑制了PML的聚合化,破坏了PML核体,使HeLa细胞具有凋亡抗性,三氧化二砷处理可诱导PML核体重构,并克服PAX5-PML在HeLa细胞中的抗凋亡作用[35]

5. PAX5在治疗中的作用

持续的PAX5缺失对维持体内白血病细胞的恶性状态至关重要,重新激活白血病细胞的分化潜能有望克服分化障碍,提供新的治疗策略切入点。在小鼠B-ALL模型中,通过Tet-off转基因shPAX5恢复PAX5的表达能够重塑B细胞发育实现分化和免疫表型成熟,实现持久的疾病缓解[36]。此外,在携带PAX5缺失的B-ALL患者样本中恢复PAX5的表达能够导致能量危机和细胞死亡[7]。另一方面,强制表达PAX5的两个旁系同源基因PAX2或PAX8能够抑制PAX5杂合性突变的B-ALL细胞生长。这些同源基因调节PAX5靶基因,恢复B细胞分化,从而弥补B-ALL细胞中PAX5单倍体不足[37]。特异性生物标志物同样可以作为个体化治疗的靶点。MEGF10基因仅在PAX5 P80R B-ALL亚型中过表达,这可能是该亚型的生物标志物和潜在治疗靶点[2]。PAX5融合基因阳性的患者通常具有独特的临床和遗传特征,包括较年轻的发病年龄、更高的白细胞计数以及伴随其他遗传异常,靶向治疗如酪氨酸激酶抑制剂和免疫疗法在治疗PAX5融合阳性患者中展现出潜力,这些特征使得风险分层和个体化治疗成为可能。

6. PAX5对ALL预后的影响

PAX5基因相关的B-ALL亚型PAX5alt和PAX5 P80R在儿童病例中的复发率分别为7.1%和1.0% [38]。在成人B-ALL病例中,PAX5 P80R与良好的预后相关,而在儿童病例中PAX5 P80R与较差预后相关[38]。根据美国国家癌症研究所的标准,PAX5alt亚型患者被归为高风险的频率高于标准风险[39]

7. 结语与展望

PAX5基因是B细胞发育和维持的主要调控因子,贯穿B细胞发育的整个过程,其表达水平与B细胞发育阶段相关。目前在急性淋巴细胞白血病中发现了许多与PAX5基因相关的异常,包括缺失、基因重排、序列变异、基因内扩增,PAX5基因与伴侣基因产生的融合蛋白通过干扰白血病细胞中正常PAX5蛋白的转录活性而发挥竞争性抑制剂的作用。PAX5基因相关的B-ALL亚型PAX5 P80R在儿童病例中与较差预后相关,PAX5alt亚型患者被归为高风险的频率高于标准风险。持续的PAX5缺失对维持体内白血病细胞的恶性状态至关重要,重新激活白血病细胞的分化潜能有望为治疗提供新的切入点,不同亚型中特异性生物标志物也可以为风险分层和个体化治疗提供新方向。因此PAX5基因在急性淋巴细胞白血病中的发病机制和治疗靶点仍需要进一步的深入研究。

NOTES

*通讯作者。

参考文献

[1] Mullighan, C.G., Goorha, S., Radtke, I., Miller, C.B., Coustan-Smith, E., Dalton, J.D., et al. (2007) Genome-Wide Analysis of Genetic Alterations in Acute Lymphoblastic Leukaemia. Nature, 446, 758-764.
https://doi.org/10.1038/nature05690
[2] Gu, Z., Churchman, M.L., Roberts, K.G., Moore, I., Zhou, X., Nakitandwe, J., et al. (2019) Pax5-Driven Subtypes of B-Progenitor Acute Lymphoblastic Leukemia. Nature Genetics, 51, 296-307.
https://doi.org/10.1038/s41588-018-0315-5
[3] Li, Z., Lee, S.H.R., Chin, W.H.N., Lu, Y., Jiang, N., Lim, E.H., et al. (2021) Distinct Clinical Characteristics of DUX4-and PAX5-Altered Childhood B-Lymphoblastic Leukemia. Blood Advances, 5, 5226-5238.
https://doi.org/10.1182/bloodadvances.2021004895
[4] Simmons, S., Knoll, M., Drewell, C., Wolf, I., Mollenkopf, H., Bouquet, C., et al. (2012) Biphenotypic B-Lymphoid/Myeloid Cells Expressing Low Levels of PAX5: Potential Targets of BAL Development. Blood, 120, 3688-3698.
https://doi.org/10.1182/blood-2012-03-414821
[5] Mikkola, I., Heavey, B., Horcher, M. and Busslinger, M. (2002) Reversion of B Cell Commitment Upon Loss of PAX5 Expression. Science, 297, 110-113.
https://doi.org/10.1126/science.1067518
[6] Schebesta, A., McManus, S., Salvagiotto, G., Delogu, A., Busslinger, G.A. and Busslinger, M. (2007) Transcription Factor PAX5 Activates the Chromatin of Key Genes Involved in B Cell Signaling, Adhesion, Migration, and Immune Function. Immunity, 27, 49-63.
https://doi.org/10.1016/j.immuni.2007.05.019
[7] Chan, L.N., Chen, Z., Braas, D., Lee, J., Xiao, G., Geng, H., et al. (2017) Metabolic Gatekeeper Function of B-Lymphoid Transcription Factors. Nature, 542, 479-483.
https://doi.org/10.1038/nature21076
[8] Somasundaram, R., Jensen, C.T., Tingvall-Gustafsson, J., Åhsberg, J., Okuyama, K., Prasad, M., et al. (2021) EBF1 and PAX5 Control Pro-B Cell Expansion via Opposing Regulation of the Myc Gene. Blood, 137, 3037-3049.
https://doi.org/10.1182/blood.2020009564
[9] Ramamoorthy, S., Kometani, K., Herman, J.S., Bayer, M., Boller, S., Edwards-Hicks, J., et al. (2020) EBF1 and PAX5 Safeguard Leukemic Transformation by Limiting IL-7 Signaling, Myc Expression, and Folate Metabolism. Genes & Development, 34, 1503-1519.
https://doi.org/10.1101/gad.340216.120
[10] Familiades, J., Bousquet, M., Lafage-Pochitaloff, M., Béné, M., Beldjord, K., de Vos, J., et al. (2009) PAX5 Mutations Occur Frequently in Adult B-Cell Progenitor Acute Lymphoblastic Leukemia and PAX5 Haploinsufficiency Is Associated with BCR-ABL1 and TCF3-PBX1 Fusion Genes: A GRAALL Study. Leukemia, 23, 1989-1998.
https://doi.org/10.1038/leu.2009.135
[11] Kim, M., Choi, J.E., She, C.J., Hwang, S.M., Shin, H.Y., Ahn, H.S., et al. (2011) PAX5 Deletion Is Common and Concurrently Occurs with CDKN2A Deletion in B-Lineage Acute Lymphoblastic Leukemia. Blood Cells, Molecules, and Diseases, 47, 62-66.
https://doi.org/10.1016/j.bcmd.2011.04.003
[12] Heltemes-Harris, L.M., Willette, M.J.L., Ramsey, L.B., Qiu, Y.H., Neeley, E.S., Zhang, N., et al. (2011) Ebf1 or Pax5 Haploinsufficiency Synergizes with STAT5 Activation to Initiate Acute Lymphoblastic Leukemia. Journal of Experimental Medicine, 208, 1135-1149.
https://doi.org/10.1084/jem.20101947
[13] Prasad, M.A.J., Ungerbäck, J., Åhsberg, J., Somasundaram, R., Strid, T., Larsson, M., et al. (2015) Ebf1 Heterozygosity Results in Increased DNA Damage in Pro-B Cells and Their Synergistic Transformation by Pax5 Haploinsufficiency. Blood, 125, 4052-4059.
https://doi.org/10.1182/blood-2014-12-617282
[14] Martín-Lorenzo, A., Auer, F., Chan, L.N., García-Ramírez, I., González-Herrero, I., Rodríguez-Hernández, G., et al. (2018) Loss of Pax5 Exploits Sca1-Bcr-Ablp190 Susceptibility to Confer the Metabolic Shift Essential for Pb-All. Cancer Research, 78, 2669-2679.
https://doi.org/10.1158/0008-5472.can-17-3262
[15] Kanayama, T., Imamura, T., Mayumi, A., Soma, E., Sakamoto, K., Hayakawa, F., et al. (2020) Functional Analysis of a Novel Fusion Protein PAX5-KIDINS220 Identified in a Pediatric Ph-Like ALL Patient. International Journal of Hematology, 112, 714-719.
https://doi.org/10.1007/s12185-020-02944-4
[16] Poppe, B., de Paepe, P., Michaux, L., Dastugue, N., Bastard, C., Herens, C., et al. (2005) PAX5/IGH Rearrangement Is a Recurrent Finding in a Subset of Aggressive B-NHL with Complex Chromosomal Rearrangements. Genes, Chromosomes and Cancer, 44, 218-223.
https://doi.org/10.1002/gcc.20214
[17] Jurado, S., Fedl, A.S., Jaritz, M., Kostanova-Poliakova, D., Malin, S.G., Mullighan, C.G., et al. (2022) The PAX5-JAK2 Translocation Acts as Dual-Hit Mutation That Promotes Aggressive B-cell Leukemia via Nuclear STAT5 Activation. The EMBO Journal, 41, e108397.
https://doi.org/10.15252/embj.2021108397
[18] Smeenk, L., Fischer, M., Jurado, S., Jaritz, M., Azaryan, A., Werner, B., et al. (2017) Molecular Role of the PAX5-ETV6 Oncoprotein in Promoting B-Cell Acute Lymphoblastic Leukemia. The EMBO Journal, 36, 718-735.
https://doi.org/10.15252/embj.201695495
[19] Fortschegger, K., Anderl, S., Denk, D. and Strehl, S. (2014) Functional Heterogeneity of PAX5 Chimeras Reveals Insight for Leukemia Development. Molecular Cancer Research, 12, 595-606.
https://doi.org/10.1158/1541-7786.mcr-13-0337
[20] Imoto, N., Hayakawa, F., Kurahashi, S., Morishita, T., Kojima, Y., Yasuda, T., et al. (2016) B Cell Linker Protein (BLNK) Is a Selective Target of Repression by PAX5-PML Protein in the Differentiation Block That Leads to the Development of Acute Lymphoblastic Leukemia. Journal of Biological Chemistry, 291, 4723-4731.
https://doi.org/10.1074/jbc.m115.637835
[21] Jean, J., Kovach, A.E., Doan, A., Oberley, M., Ji, J., Schmidt, R.J., et al. (2022) Characterization of PAX5 Intragenic Tandem Multiplication in Pediatric B-Lymphoblastic Leukemia by Optical Genome Mapping. Blood Advances, 6, 3343-3346.
https://doi.org/10.1182/bloodadvances.2021006328
[22] Zaliova, M., Stuchly, J., Winkowska, L., Musilova, A., Fiser, K., Slamova, M., et al. (2019) Genomic Landscape of Pediatric B-Other Acute Lymphoblastic Leukemia in a Consecutive European Cohort. Haematologica, 104, 1396-1406.
https://doi.org/10.3324/haematol.2018.204974
[23] Busslinger, M., Klix, N., Pfeffer, P., Graninger, P.G. and Kozmik, Z. (1996) Deregulation of PAX-5 by Translocation of the Emu Enhancer of the IgH Locus Adjacent to Two Alternative PAX-5 Promoters in a Diffuse Large-Cell Lymphoma. Proceedings of the National Academy of Sciences, 93, 6129-6134.
https://doi.org/10.1073/pnas.93.12.6129
[24] Sadakane, Y., Zaitsu, M., Nishi, M., Sugita, K., Mizutani, S., Matsuzaki, A., et al. (2006) Expression and Production of Aberrant PAX5 with Deletion of Exon 8 in B-Lineage Acute Lymphoblastic Leukaemia of Children. British Journal of Haematology, 136, 297-300.
https://doi.org/10.1111/j.1365-2141.2006.06425.x
[25] Santoro, A., Bica, M.G., Dagnino, L., Agueli, C., Salemi, D., Cannella, S., et al. (2009) Altered mRNA Expression of PAX5 Is a Common Event in Acute Lymphoblastic Leukaemia. British Journal of Haematology, 146, 686-689.
https://doi.org/10.1111/j.1365-2141.2009.07815.x
[26] Bastian, L., Schroeder, M.P., Eckert, C., Schlee, C., Tanchez, J.O., Kämpf, S., et al. (2019) PAX5 Biallelic Genomic Alterations Define a Novel Subgroup of B-Cell Precursor Acute Lymphoblastic Leukemia. Leukemia, 33, 1895-1909.
https://doi.org/10.1038/s41375-019-0430-z
[27] Nebral, K., Denk, D., Attarbaschi, A., König, M., Mann, G., Haas, O.A., et al. (2008) Incidence and Diversity of PAX5 Fusion Genes in Childhood Acute Lymphoblastic Leukemia. Leukemia, 23, 134-143.
https://doi.org/10.1038/leu.2008.306
[28] Kwiatkowski, B.A., Zielinska-Kwiatkowska, A.G., Bauer, T.R. and Hickstein, D.D. (2000) The ETS Family Member Tel Antagonizes the Fli-1 Phenotype in Hematopoietic Cells. Blood Cells, Molecules, and Diseases, 26, 84-90.
https://doi.org/10.1006/bcmd.2000.0282
[29] Coffer, P.J. and Burgering, B.M.T. (2004) Forkhead-Box Transcription Factors and Their Role in the Immune System. Nature Reviews Immunology, 4, 889-899.
https://doi.org/10.1038/nri1488
[30] Katoh, M. and Katoh, M. (2004) Human FOX Gene Family (Review). International Journal of Oncology, 25, 1495-1500.
https://doi.org/10.3892/ijo.25.5.1495
[31] Gray, W.R., Sandberg, L.B. and Foster, J.A. (1973) Molecular Model for Elastin Structure and Function. Nature, 246, 461-466.
https://doi.org/10.1038/246461a0
[32] Bousquet, M., Broccardo, C., Quelen, C., Meggetto, F., Kuhlein, E., Delsol, G., et al. (2006) A Novel PAX5-ELN Fusion Protein Identified in B-Cell Acute Lymphoblastic Leukemia Acts as a Dominant Negative on Wild-Type PAX5. Blood, 109, 3417-3423.
https://doi.org/10.1182/blood-2006-05-025221
[33] Jamrog, L., Chemin, G., Fregona, V., Coster, L., Pasquet, M., Oudinet, C., et al. (2018) PAX5-ELN Oncoprotein Promotes Multistep B-Cell Acute Lymphoblastic Leukemia in Mice. Proceedings of the National Academy of Sciences, 115, 10357-10362.
https://doi.org/10.1073/pnas.1721678115
[34] Kurahashi, S., Hayakawa, F., Miyata, Y., Yasuda, T., Minami, Y., Tsuzuki, S., et al. (2011) PAX5-PML Acts as a Dual Dominant-Negative Form of Both PAX5 and PML. Oncogene, 30, 1822-1830.
https://doi.org/10.1038/onc.2010.554
[35] Zhong, S., Salomoni, P., Ronchetti, S., Guo, A., Ruggero, D. and Pandolfi, P.P. (2000) Promyelocytic Leukemia Protein (PML) and Daxx Participate in a Novel Nuclear Pathway for Apoptosis. The Journal of Experimental Medicine, 191, 631-640.
https://doi.org/10.1084/jem.191.4.631
[36] Liu, G.J., Cimmino, L., Jude, J.G., Hu, Y., Witkowski, M.T., McKenzie, M.D., et al. (2014) PAX5 Loss Imposes a Reversible Differentiation Block in B-Progenitor Acute Lymphoblastic Leukemia. Genes & Development, 28, 1337-1350.
https://doi.org/10.1101/gad.240416.114
[37] Hart, M.R., Anderson, D.J., Porter, C.C., Neff, T., Levin, M. and Horwitz, M.S. (2018) Activating PAX Gene Family Paralogs to Complement PAX5 Leukemia Driver Mutations. PLOS Genetics, 14, e1007642.
https://doi.org/10.1371/journal.pgen.1007642
[38] Jia, Z. and Gu, Z. (2022) PAX5 Alterations in B-Cell Acute Lymphoblastic Leukemia. Frontiers in Oncology, 12, Article 1023606.
https://doi.org/10.3389/fonc.2022.1023606
[39] Iacobucci, I., Kimura, S. and Mullighan, C.G. (2021) Biologic and Therapeutic Implications of Genomic Alterations in Acute Lymphoblastic Leukemia. Journal of Clinical Medicine, 10, Article No. 3792.
https://doi.org/10.3390/jcm10173792

Baidu
map