犬猫碳水化合物营养研究进展
Research Progress of Carbohydrate Nutrition in Cats and Dogs
DOI: 10.12677/hjfns.2024.134055, PDF, HTML, XML,   
作者: 张赛赛:上海宠济生物科技有限公司,上海
关键词: 碳水化合物加工淀粉膳食纤维Carbohydrate Processing Starch Dietary Fiber
摘要: 碳水化合物是一类具有不同性质的异质化合物,尽管犬猫对于碳水化合物没有营养方面的需求,但碳水化合物是宠物食品加工过程中起重要作用的功能性成分,其中淀粉是葡萄糖的重要膳食来源,膳食纤维具有多种生理特性,有助于肠道健康和调节微生物群。本文综述了犬猫碳水化合物营养的研究进展,旨在为合理调整粮食中碳水化合物的组成和比例、提高犬猫健康水平提供参考。
Abstract: Carbohydrates are a class of heterogeneous compounds with different properties. Dogs and cats have no nutritional needs for carbohydrates, but carbohydrates are functional ingredients that play an important role in the processing of pet food, among which starch is an important dietary source of glucose, and dietary fiber has a wide range of physiological properties contributing to intestinal health and regulation of the microbiota. This article reviews the research progress on carbohydrate nutrition of dogs and cats, aiming to provide a reference for reasonably adjusting the composition and proportion of carbohydrates in food and improving the health level of dogs and cats.
文章引用:张赛赛. 犬猫碳水化合物营养研究进展[J]. 食品与营养科学, 2024, 13(4): 442-448. https://doi.org/10.12677/hjfns.2024.134055

1. 引言

犬猫等伴侣动物在人们日常生活中发挥着越来越重要的作用,现在全球大多数家庭中都将犬猫视为家庭成员,这种行为被称为“种间家庭”现象[1]。因此,人类和宠物食品的趋势多年来一直在趋同,导致宠物食品市场对宠物健康和长寿的重视程度不断提高。在营养类别中,碳水化合物(CHO)在宠物食品行业中重新引起了人们的兴趣,因为它们在能量代谢、肠道运动调节、免疫功能和肠道微生物群特征中发挥着重要作用[2]

2. 碳水化合物的定义

根据联合国粮食及农业组织(FAO)/世界卫生组织(WHO)的提议,CHO主要是根据分子大小进行分类,分子大小由聚合度(DP)决定。三个主要的CHO基团根据DP进行划分:单糖(DP1至2)、寡糖(DP3至9)和多糖(DP ≥ 10) [3]。CHO存在于植物细胞内容物和细胞壁中,它们的化学结构和性质不同,因此不能简单地转化为营养素[4]。CHO还可以根据其在上消化道或下消化道中消化、吸收或发酵的程度进行分类[5]。可吸收的CHO包括单糖(如葡萄糖、果糖和半乳糖),可在小肠中吸收;而可消化的CHO包括二糖(如蔗糖和麦芽糖)和多糖(如淀粉),可被分解通过宿主酶促作用转化为单糖然后被吸收,并在代谢途径中进一步利用以产生能量。另一方面,由于缺乏宿主消化酶,难消化的CHO分为两大类:可发酵的(如可溶性纤维、抗性淀粉和一些半纤维素)和不可/难发酵的CHO (如纤维素、木质素) [4] [5]。在过去的几十年中,难消化的CHO作为膳食纤维,由于具有多种生理和食品加工益处,引起了食品学家和技术人员的兴趣[6],本综述将进一步讨论这些益处。

3. 碳水化合物的需要量

犬猫对于食物中的CHO没有明确需求,相反,他们对代谢葡萄糖有需求。与其他物种一样,特定组织(例如大脑)和特定细胞类型(例如红细胞)依赖葡萄糖来满足能量需求。因此,严格将猫的血糖浓度控制在3.9~6.7 mmol/L (70~120 mg/dl)范围内,将犬的血糖浓度控制在3.3~6.2 mmol//L (60~110 mg/dl)范围内,以维持这些组织的葡萄糖供应对于身体来说至关重要[7] [8]。CHO在宠物食品中提供宝贵的葡萄糖来源;然而,当CHO的供应量不足时,葡萄糖可以通过糖异生途径代谢供应[9]。某些生命阶段,例如妊娠期和哺乳期,需要增加能量水平,因此,提供低CHO的饮食将促使糖异生代谢途径的激活,利用必需营养素(例如用于葡萄糖生产的氨基酸),这可能导致幼犬死亡率增加、低血糖和丙酮血症。Romsos等[10]比较了饲喂含有0%或40% CHO的粮食的犬的繁殖性能。他们观察到,食用不含CHO粮食的雌犬的幼犬存活率严重降低(只有三分之一的幼犬存活了3天)。饲喂两种粮食的雌犬血浆葡萄糖浓度相似,但在产仔前一周除外,当饲喂含有0% CHO代谢能的粮食时,雌犬的血浆葡萄糖浓度下降至15~20 mg/dl的浓度(参考值血糖范围在60~120 mg/dl之间) [8]。该研究中雌犬的低血糖状态是由于胎儿发育过程中对葡萄糖的需求不匹配而导致的,导致幼犬的存活率较低。

哺乳期的幼犬和幼猫不应该食用含有淀粉的牛奶替代品,因为它们缺乏胰淀粉酶[11]。就乳糖酶而言,成年犬的活性有限,仅为3.3 Ug−1蛋白,而幼犬则为96 Ug−1蛋白[12]。因此,成年犬粮中的乳糖含量应受到限制,而幼犬可以消化、吸收和代谢乳糖。猫通过内源性肠道酶消化淀粉的能力很差,小肠粘膜中的双糖酶活性不受粮食影响[7] [12]。因此,摄入过量的可消化CHO (>5g/kg BW)不仅会导致血糖升高,而且会为结肠中的微生物发酵提供底物,导致胃肠道不良反应。考虑到不同的CHO具有不同的生理作用,其在粮食中的推荐含量取决于消耗的粮食量、粮食的热量密度和动物的能量需求[13]。尽管已经建议了成年犬和猫维持粮食中所选CHO的安全上限(即犬粮中蔗糖350 g/kg、猫粮中蔗糖50~150 g/kg;犬粮中乳糖100 g/kg、猫粮中乳糖50 g/kg;犬粮中麦麸128 g/kg、猫粮中麦麸100 g/kg,均以干物质为基础),但没有制定最低要求。

4. 可消化碳水化合物(淀粉)

玉米、小麦和大米等谷物已被纳入商业伴侣动物粮食中,作为复杂CHO (特别是淀粉)的主要来源。近年来“无谷物”配方的产品在宠物食品市场上大行其道。然而需要注意的是,“无谷物”并不等于“无碳水化合物”,其中许多产品仍然含有替代淀粉来源,例如豆类和根类蔬菜和管类植物(例如木薯、红薯、土豆)。因此,无谷物粮食实际上可能含有与含有谷物的宠物食品相似或更高的淀粉含量。

除了为动物提供葡萄糖来源外,淀粉在商业宠物食品的制造中也发挥着重要作用。这些产品大部分是通过挤压生产干和半湿产品,或通过蒸煮生产湿产品。这两个过程都提供了理想的水分和热量条件,以引起淀粉颗粒的糊化。在热处理过程中,淀粉的膨胀和结构变化会增加膨胀并增强食品基质的粘合性能[14]。淀粉含量随配方的不同而变化,“低碳水化合物”粮食中几乎不含淀粉,而脂肪含量降低的粮食中淀粉含量可能高达50% [15]。这两个极端情况都对加工考虑提出了挑战,低淀粉产品的耐久性较差,配方中淀粉含量超过65%将导致挤出物太粘并对加工流程产生负面影响[14]。评估挤压宠物食品的研究表明,水分含量、加工温度和淀粉来源是极大影响这些产品糊化程度以及最终产品特性的因素[16]-[20],例如,有试验表明,其他工艺条件相同,在96℃调质温度下生产的饲粮糊化度极显著高于100℃调质温度下生产的饲粮,但在96℃调质温度下生产的饲粮容重显著低于100℃调质温度下生产的饲粮[21]。另有研究表明,淀粉糊化度在水分为26%后显著升高,当水分含量为30%时,容重最低,膨化度最大,但在此水分含量条件下,物料经挤压膨化出模孔后,会黏结成团,所以此水分含量对实际生产的参考意义不大[22]。另外,也有研究也报道了不同CHO来源的加入会如何影响挤出过程中的加工条件[23]

从营养角度来说,糊化程度很重要,因为它会影响淀粉的消化率。不同成分来源的淀粉结构和分子特性(例如颗粒大小和结晶度)可能差异很大,并影响消化动力学[24]。物理屏障,例如植物细胞壁或蛋白质基质,可能会阻碍消化酶的进入。然而,淀粉的糊化可以破坏这些障碍,并有助于克服酶作用的抑制[25]。一项使用体外犬模型评估可消化淀粉组分浓度的研究报告称,低温(79℃~93℃)和高温(124℃~140℃)挤压均增加了大麦、玉米、水稻、马铃薯、高粱和小麦[16]。其他人在蚕豆和芸豆等豆类中也报告了类似的结果[26]。逃逸消化且不被吸收的淀粉被称为抗性淀粉,它们会传递到下消化道,在那里发挥膳食纤维的作用[15]。到达结肠的抗性淀粉水平是一个需要重点考虑的因素,因为它会刺激细菌发酵,较高的浓度会对粪便质量产生负面影响[27]。相比之下,抗性淀粉还可以有益地调节宠物的肠道微生物群和粪便代谢物[28] [29]。随着标记为“原始”或“微加工”的宠物食品越来越受欢迎,有必要确定这些加工方法如何影响淀粉糊化和消化率,以避免潜在的胃肠道不耐受。

5. 膳食纤维

虽然膳食纤维不是必需的,但由于其不同的理化特性以及引发不同生理反应和对健康有益的作用的能力,膳食纤维来源已被包含在犬科动物和猫科动物的配方中。随着人们对膳食纤维摄入对健康有益的认识越来越广泛,将这些原理应用于宠物物种的兴趣也随之增长。营养学家和配方设计师正在努力将消费者对纤维成分的看法从“填充剂”转变为饮食的功能成分。FDA将“纤维”定义为“不可消化的可溶性和不溶性CHO (具有3个或更多单体单元)以及植物固有的完整木质素;分离或合成的不可消化的CHO (具有3个或更多单体单元)”被FDA确定为具有“有益于人类健康的生理作用”[30] (FDA, 2016)。这些健康益处包括降低血液胆固醇、降低餐后血糖、帮助通便、降低血压、增加与减少能量摄入相关的饱腹感以及增加矿物质吸收[30]。满足这些定义标准并被视为膳食纤维的化合物之间仍然存在很大差异。在描述纤维时可以使用几种分类方法,包括来源(即动物、植物、真菌和化学合成)和化学结构(即不易消化的低聚糖、非淀粉多糖和抗性淀粉)。它们还可以根据某些特征进行分类,这些特征有助于确定它们的功能和作用机制。这些特性可以是相互关联的,通常包括粘度、发酵性和溶解度。虽然一些传统的纤维来源(例如纯化纤维素)的成分可能非常均匀,但宠物食品中使用的大多数纤维成分通常由独特且多样化的纤维分布组成,从而产生了这些特性的组合。例如,甜菜浆被认为是宠物食品行业的黄金标准纤维来源之一,其纤维特征包括各种纤维类型,其发酵性、溶解度和粘度水平均降低,例如纤维素,以及果胶是一种高粘性和可发酵的纤维[31] [32]。最近,研究人员致力于评估大量新型纤维成分,包括鳄梨粉、大豆皮、芒草、椰子纤维、菊苣、柑橘果肉和橙子纤维等[23]-[34]。这些研究的主要目标是确定富含纤维的成分,这些成分既经济又对环境有利,否则可能会造成当前食品系统中的食物浪费,同时对这些纤维来源和混合物的潜在功能进行了描述。

纤维类型和特性的多样性使其能够在宠物食品行业提供多种功能。使用纤维来调节产品密度并充当维生素和矿物质预混料等次要成分的载体,使其成为宠物食品加工和制造的功能成分[35]。此外,树胶和果胶等亲水胶体纤维的水结合特性对于湿食品(例如肉酱或肉汁产品中的块)的质地开发至关重要[36]。虽然宠物食品配方设计师和制造商对这些加工特性越来越感兴趣,但纤维作为动物的功能性成分也具有巨大的潜力。功能性成分的目标是为动物提供基本营养之外的健康益处[37]。人类研究致力于阐明纤维消耗对代谢作用和胃肠道健康的生理影响,以及益生元纤维在维持多个生物系统中的作用[38]。虽然有关伴侣动物的数据较少,但研究人员已开始评估是否可以在宠物物种中观察到相同的益处。随着宠物肥胖发生率的上升,评估膳食纤维消耗与减轻代谢紊乱症状之间的关系变得越来越重要。一些研究报道了纤维通过减慢食糜通过胃肠道的运动以及胰腺消化和随后的营养吸收的速度来促进狗的血糖控制的好处[39]-[42]。然而,人们对猫的这些影响知之甚少,文献报道的结果好坏参半[43] [44]。增加纤维含量,尤其是不溶性纤维,是一种常见策略,用于降低热量密度而不影响注重促进减肥的饮食摄入量[45]。虽然一些研究假设纤维可能有助于促进饱腹感并进一步帮助控制体重,但不同宠物品种的结果各不相同,并且似乎取决于测试粮食中其他常量营养素(例如蛋白质和脂肪)的成分,在未来的研究中提出进一步的评估[46]-[48]。纤维在维持胃肠道健康和治疗肠道不适症状方面的作用已得到更广泛的研究。众所周知,纤维摄入可以通过多种机制帮助通便并促进理想的粪便质量。可溶性和不溶性纤维都有助于粪便的体积和稠度。抵抗发酵的不溶性纤维有助于增加粪便干物质体积,而可溶性纤维则结合水,有助于增加粪便重量并软化粪便,增加粪便体积和重量有助于维持定期排泄频率[31]-[49]

6. 小结

尽管犬猫没有明确的CHO营养需求,但它们除了支持消化功能和整体健康之外,还提供宝贵的能量来源。除了为饮食提供葡萄糖来源外,CHO在商业宠物食品的生产中也发挥着至关重要的作用。考虑到大多数这些产品是通过干和半湿产品的挤出或湿产品的蒸煮来生产的,这两种工艺都受益于淀粉颗粒的糊化。此外,由于膳食纤维与肠道健康密切相关,不可消化的CHO在伴侣动物营养中变得越来越重要。膳食纤维表现出多种理化特性和相应的生理效应。溶解度、发酵性和粘度等特性是纤维在体内影响的重要决定因素。需要进一步的研究来确定食品加工的影响以及这些纤维针对狗和猫的生理状态的最佳包含水平。测序和计算技术的进步使人们开始了解营养物–宿主–微生物组之间的相互作用。然而,许多重要问题仍未得到解答。

参考文献

[1] Owens, N. and Grauerholz, L. (2018) Interspecies Parenting: How Pet Parents Construct Their Roles. Humanity & Society, 43, 96-119.
https://doi.org/10.1177/0160597617748166
[2] Thompson, A. (2008) Ingredients: Where Pet Food Starts. Topics in Companion Animal Medicine, 23, 127-132.
https://doi.org/10.1053/j.tcam.2008.04.004
[3] Cummings, J.H. and Stephen, A.M. (2007) Carbohydrate Terminology and Classification. European Journal of Clinical Nutrition, 61, S5-S18.
https://doi.org/10.1038/sj.ejcn.1602936
[4] Kaushik, S.J., Panserat, S. and Schrama, J.W. (2022) Carbohydrates. In: Hardy, R.W. and Kaushik, S.J., Eds., Fish Nutrition, Academic Press, 555-591.
https://doi.org/10.1016/b978-0-12-819587-1.00008-2
[5] Adebowale, T.O., Yao, K. and Oso, A.O. (2019) Major Cereal Carbohydrates in Relation to Intestinal Health of Monogastric Animals: A Review. Animal Nutrition, 5, 331-339.
https://doi.org/10.1016/j.aninu.2019.09.001
[6] Mudgil, D. and Barak, S. (2013) Composition, Properties and Health Benefits of Indigestible Carbohydrate Polymers as Dietary Fiber: A Review. International Journal of Biological Macromolecules, 61, 1-6.
https://doi.org/10.1016/j.ijbiomac.2013.06.044
[7] Verbrugghe, A. and Hesta, M. (2017) Cats and Carbohydrates: The Carnivore Fantasy? Veterinary Sciences, 4, Article 55.
https://doi.org/10.3390/vetsci4040055
[8] Idowu, O. and Heading, K. (2018) Hypoglycemia in Dogs: Causes, Management, and Diagnosis. Canadian Veterinary Journal, 59, 642-649.
[9] Nelson, D.L., and Cox, M.M. (2008) Carbohydrates and Glycobiology. In: Ahr, K., Ed., Principles of Biochemistry, W.H. Freeman and Company, 235-270.
[10] Romsos, D.R., Palmer, H.J., Muiruri, K.L. and Bennink, M.R. (1981) Influence of a Low Carbohydrate Diet on Performance of Pregnant and Lactating Dogs. The Journal of Nutrition, 111, 678-689.
https://doi.org/10.1093/jn/111.4.678
[11] Kienzle, E., Meyer, H., Burger, I.H., et al. (1989) The Effects of Carbohydrate-Free Diets Containing Different Levels of Protein on Reproduction in the Bitch. Cambridge University Press.
[12] Kienzle, E. (1993) Carbohydrate Metabolism of the Cat. 4. Activity of Maltase, Isomaltase, Sucrase and Lactase in the Gastrointestinal Tract in Relation to Age and Diet. Journal of Animal Physiology and Animal Nutrition, 70, 89-96.
https://doi.org/10.1111/j.1439-0396.1993.tb00310.x
[13] Legrand-Defretin, V. (1994) Differences between Cats and Dogs: A Nutritional View. Proceedings of the Nutrition Society, 53, 15-24.
https://doi.org/10.1079/pns19940004
[14] Riaz, M.N. and Rokey, G.J. (2012) Impact of Protein, Starch, Fat and Fiber on Extruded Foods and Feeds. In: Riaz, M.N. and Rokey, G.J., Eds., Extrusion Problems Solved, Elsevier, 43-54.
https://doi.org/10.1533/9780857095206.43
[15] Spears, J.K. and Fahey, G.C. (2004) Resistant Starch as Related to Companion Animal Nutrition. Journal of AOAC INTERNATIONAL, 87, 787-791.
https://doi.org/10.1093/jaoac/87.3.787
[16] Murray, S.M., Flickinger, E.A., Patil, A.R., Merchen, N.R., Brent, J.L. and Fahey, G.C. (2001) In Vitro Fermentation Characteristics of Native and Processed Cereal Grains and Potato Starch Using Ileal Chyme from Dogs. Journal of Animal Science, 79, 435-444.
https://doi.org/10.2527/2001.792435x
[17] Lankhorst, C., Tran, Q.D., Havenaar, R., Hendriks, W.H. and van der Poel, A.F.B. (2007) The Effect of Extrusion on the Nutritional Value of Canine Diets as Assessed by in vitro Indicators. Animal Feed Science and Technology, 138, 285-297.
https://doi.org/10.1016/j.anifeedsci.2006.11.015
[18] Pezzali, J.G. and Aldrich, C.G. (2019) Effect of Ancient Grains and Grain-Free Carbohydrate Sources on Extrusion Parameters and Nutrient Utilization by Dogs. Journal of Animal Science, 97, 3758-3767.
https://doi.org/10.1093/jas/skz237
[19] Corsato Alvarenga, I. and Aldrich, C.G. (2020) Starch Characterization of Commercial Extruded Dry Pet Foods. Translational Animal Science, 4, 1017-1022.
https://doi.org/10.1093/tas/txaa018
[20] Perry, E.B., Valach, A.A., Fenton, J.M. and Moore, G.E. (2022) An Assessment of Starch Content and Gelatinization in Traditional and Non-Traditional Dog Food Formulations. Animals, 12, Article 3357.
https://doi.org/10.3390/ani12233357
[21] 张文珍, 付京杰, 王钰飞, 等 膨化机的喂料速度对宠物食品常规营养成分及适口性的影响[J]. 饲料工业, 2014, 35(1): 28-31.
[22] 李重阳, 董颖超, 李军国, 等. 挤压膨化工艺参数对犬粮加工质量的影响研究[J]. 饲料工业, 2018, 39(21): 9-14.
[23] Dainton, A.N., He, F., Bingham, T.W., Sarlah, D., Detweiler, K.B., Mangian, H.J., et al. (2022) Nutritional and Physico-Chemical Implications of Avocado Meal as a Novel Dietary Fiber Source in an Extruded Canine Diet. Journal of Animal Science, 100, skac026.
https://doi.org/10.1093/jas/skac026
[24] Martens, B.M.J., Gerrits, W.J.J., Bruininx, E.M.A.M. and Schols, H.A. (2018) Amylopectin Structure and Crystallinity Explains Variation in Digestion Kinetics of Starches across Botanic Sources in an in vitro Pig Model. Journal of Animal Science and Biotechnology, 9, Article No. 91.
https://doi.org/10.1186/s40104-018-0303-8
[25] Dhital, S., Warren, F.J., Butterworth, P.J., Ellis, P.R. and Gidley, M.J. (2016) Mechanisms of Starch Digestion by α-Amylase—Structural Basis for Kinetic Properties. Critical Reviews in Food Science and Nutrition, 57, 875-892.
https://doi.org/10.1080/10408398.2014.922043
[26] Alonso, R., Aguirre, A. and Marzo, F. (2000) Effects of Extrusion and Traditional Processing Methods on Antinutrients and in vitro Digestibility of Protein and Starch in Faba and Kidney Beans. Food Chemistry, 68, 159-165.
https://doi.org/10.1016/s0308-8146(99)00169-7
[27] Goudez, R., Weber, M., Biourge, V. and Nguyen, P. (2011) Influence of Different Levels and Sources of Resistant Starch on Faecal Quality of Dogs of Various Body Sizes. British Journal of Nutrition, 106, S211-S215.
https://doi.org/10.1017/s0007114511003345
[28] Jackson, M.I., Waldy, C. and Jewell, D.E. (2020) Dietary Resistant Starch Preserved through Mild Extrusion of Grain Alters Fecal Microbiome Metabolism of Dietary Macronutrients While Increasing Immunoglobulin a in the Cat. PLOS ONE, 15, e0241037.
https://doi.org/10.1371/journal.pone.0241037
[29] Beloshapka, A.N., Cross, T.L. and Swanson, K.S. (2020) Graded Dietary Resistant Starch Concentrations on Apparent Total Tract Macronutrient Digestibility and Fecal Fermentative End Products and Microbial Populations of Healthy Adult Dogs. Journal of Animal Science, 99, skaa409.
https://doi.org/10.1093/jas/skaa409
[30] Food and Drug Administration (2016) Food Labeling: Revision of the Nutrition and Supplement Facts Labels. Federal Register, 81, 33743-33999.
[31] Fahey, G.C., Merchen, N.R., Corbin, J.E., Hamilton, A.K., Serbe, K.A., Lewis, S.M., et al. (1990) Dietary Fiber for Dogs: I. Effects of Graded Levels of Dietary Beet Pulp on Nutrient Intake, Digestibility, Metabolizable Energy and Digesta Mean Retention Time. Journal of Animal Science, 68, 4221-4228.
https://doi.org/10.2527/1990.68124221x
[32] De Godoy, M., Kerr, K. and Fahey Jr., G. (2013) Alternative Dietary Fiber Sources in Companion Animal Nutrition. Nutrients, 5, 3099-3117.
https://doi.org/10.3390/nu5083099
[33] de Godoy, M.R.C., Mitsuhashi, Y., Bauer, L.L., Fahey, G.C., Buff, P.R. and Swanson, K.S. (2015) In vitro Fermentation Characteristics of Novel Fibers, Coconut Endosperm Fiber and Chicory Pulp, Using Canine Fecal Inoculum. Journal of Animal Science, 93, 370-376.
https://doi.org/10.2527/jas.2014-7962
[34] Finet, S.E., Southey, B.R., Rodriguez-Zas, S.L., He, F. and de Godoy, M.R.C. (2021) Miscanthus Grass as a Novel Functional Fiber Source in Extruded Feline Diets. Frontiers in Veterinary Science, 8, Article 668288.
https://doi.org/10.3389/fvets.2021.668288
[35] Donadelli, R.A., Dogan, H. and Aldrich, G. (2021) The Effects of Fiber Source on Extrusion Parameters and Kibble Structure of Dry Dog Foods. Animal Feed Science and Technology, 274, Article ID: 114884.
https://doi.org/10.1016/j.anifeedsci.2021.114884
[36] Dainton, A.N., Dogan, H. and Aldrich, C.G. (2021) The Effects of Select Hydrocolloids on the Processing of Pâté-Style Canned Pet Food. Foods, 10, Article 2506.
https://doi.org/10.3390/foods10102506
[37] Kruger, C.L. and Mann, S.W. (2003) Safety Evaluation of Functional Ingredients. Food and Chemical Toxicology, 41, 793-805.
https://doi.org/10.1016/s0278-6915(03)00018-8
[38] Carlson, J.L., Erickson, J.M., Lloyd, B.B. and Slavin, J.L. (2018) Health Effects and Sources of Prebiotic Dietary Fiber. Current Developments in Nutrition, 2, nzy005.
https://doi.org/10.1093/cdn/nzy005
[39] Nguyen, P., Dumon, H., Biourge, V. and Pouteau, E. (1998) Glycemic and Insulinemic Responses after Ingestion of Commercial Foods in Healthy Dogs: Influence of Food Composition. The Journal of Nutrition, 128, S2654-S2658.
https://doi.org/10.1093/jn/128.12.2654s
[40] Graham, P.A., Maskell, I.E., Rawlings, J.M., Nash, A.S. and Markwell, P.J. (2002) Influence of a High Fibre Diet on Glycaemic Control and Quality of Life in Dogs with Diabetes Mellitus. Journal of Small Animal Practice, 43, 67-73.
https://doi.org/10.1111/j.1748-5827.2002.tb00031.x
[41] Müller, M., Canfora, E. and Blaak, E. (2018) Gastrointestinal Transit Time, Glucose Homeostasis and Metabolic Health: Modulation by Dietary Fibers. Nutrients, 10, Article 275.
https://doi.org/10.3390/nu10030275
[42] Rankovic, A., Adolphe, J.L., Ramdath, D.D., Shoveller, A.K. and Verbrugghe, A. (2020) Glycemic Response in Nonracing Sled Dogs Fed Single Starch Ingredients and Commercial Extruded Dog Foods with Different Carbohydrate Sources. Journal of Animal Science, 98, skaa241.
https://doi.org/10.1093/jas/skaa241
[43] Nelson, R.W., Scott-Moncrieff, J.C., Feldman, E.C., DeVries-Concannon, S.E., Kass, P.H., Davenport, D.J., et al. (2000) Effect of Dietary Insoluble Fiber on Control of Glycemia in Cats with Naturally Acquired Diabetes Mellitus. Journal of the American Veterinary Medical Association, 216, 1082-1088.
https://doi.org/10.2460/javma.2000.216.1082
[44] Bennett, N., Greco, D.S., Peterson, M.E., Kirk, C., Mathes, M. and Fettman, M.J. (2006) Comparison of a Low Carbohydrate-Low Fiber Diet and a Moderate Carbohydrate-High Fiber Diet in the Management of Feline Diabetes Mellitus. Journal of Feline Medicine and Surgery, 8, 73-84.
https://doi.org/10.1016/j.jfms.2005.08.004
[45] 张赛赛. 膳食纤维在治疗猫常见病方面的研究进展[J]. 食品与营养科学, 2024, 13(2): 221-226.
[46] Fekete, S., Hullár, I., Andrásofszky, E., Rigó, Z. and Berkényi, T. (2001) Reduction of the Energy Density of Cat Foods by Increasing Their Fibre Content with a View to Nutrients’ Digestibility. Journal of Animal Physiology and Animal Nutrition, 85, 200-204.
https://doi.org/10.1046/j.1439-0396.2001.00332.x
[47] Jewell, D.E., Toll, P.W., Azain, M.J., et al. (2006) Fiber but Not Conjugated Linoleic Acid Influences Adiposity in Dogs. Veterinary Therapeutics: Research in Applied Veterinary Medicine, 7, 78-85.
[48] Weber, M., Bissot, T., Servet, E., Sergheraert, R., Biourge, V. and German, A.J. (2007) A High‐Protein, High‐Fiber Diet Designed for Weight Loss Improves Satiety in Dogs. Journal of Veterinary Internal Medicine, 21, 1203-1208.
https://doi.org/10.1111/j.1939-1676.2007.tb01939.x
[49] Moreno, A.A., Parker, V.J., Winston, J.A. and Rudinsky, A.J. (2022) Dietary Fiber Aids in the Management of Canine and Feline Gastrointestinal Disease. Journal of the American Veterinary Medical Association, 260, S33-S45.
https://doi.org/10.2460/javma.22.08.0351

Baidu
map