基于叶绿体基因组的单核苷酸多态位点的松属(松科)植物资源遗传多样性的分子鉴定新方法
A Novel Method for Molecular Identification of Genetic Diversity of Plant Resources in Pinus L. (Pinaceae) Based on Single Nucleotide Polymorphism (SNP) Sites from Complete Chloroplast Genomes
DOI: 10.12677/br.2024.136061, PDF, HTML, XML,    科研立项经费支持
作者: 刘美辰:北京市食品检验研究院(北京市食品安全监控和风险评估中心),北京;郑勇奇, 李 斌*:中国林业科学研究院林业研究所,北京;中国林业科学研究院林木遗传和育种国家重点实验室,北京;左云娟:中国科学院东南亚生物多样性研究中心,云南 勐腊;中国科学院西双版纳热带植物园综合保护中心,云南 勐腊;靳晓白:国家植物园,北京;杨志荣:中国科学院植物研究所植物标本馆,北京;田 宏:内蒙古大青山国家级自然保护区管理局包头分局,内蒙古 包头;郭明星:汉中市茶业发展中心,陕西 汉中;索志立*:中国科学院植物研究所系统与进化植物学国家重点实验室,北京
关键词: 松科松属遗传多样性叶绿体基因组单核苷酸多态位点分子鉴定Pinaceae Pinus L. Genetic Diversity Chloroplast Genome Single Nucleotide Polymorphism Site Molecular Identification
摘要: 遗传多样性的精准鉴定是资源可持续利用的基础。我们利用松属的3个种的叶绿体基因组序列中的物种特有的535个单核苷酸多态位点作为分子性状首次编制分子鉴定检索表,供试样品得到成功鉴定。物种特有的单核苷酸多态位点的数量和核苷酸构成存在种间差异。马尾松 Pinus massoniana Lamb. (252)的特有单核苷酸多态位点的数量最多,随后依次是赤松 P . densiflora Siebold & Zucc . (175)和黑松 P . thunbergii Parl. (108)。马尾松的特有单核苷酸多态位点中,T的比例(29.37%)最高,随后依次是C (25.79%)、A (22.62%)和G (22.22%),G的比例最低,总体上差异较小。黑松的特有单核苷酸多态位点中,T (36.11%)的比例较C (12.96%)的比例高2.7倍,较G (20.37%)的比例高1.7倍;A (30.56%)的比例略低于T的比例,是G的1.5倍,是C的2.3倍。赤松的特有单核苷酸多态位点中,T (31.43%)和A (28.57%)的比例明显高于C (18.86%)或G (21.14%)的比例。结果显示,叶绿体基因组的单核苷酸多态位点信息,可用于松属植物资源遗传多样性的分子鉴定。调查了中国过去120多年来松属植物标本的采集和馆藏现状,讨论了存在的问题和对策。本研究对于松属植物的分类修订、种质资源的保护与利用具有重要价值。
Abstract: Accurate identification of genetic diversity is essential for sustainable utilization of plant resources. In this paper, 535 single nucleotide polymorphism (SNP) sites in the chloroplast genomes of 3 species from the genus Pinus L . were used as molecular traits to identify the plant genetic resource diversity of this plant genus and to compile a molecular classification key for the first time. There are differences in aspects of amount and base composition of SNPs among the species. The amount of SNPs in Pinus massoniana Lamb. (252) is the highest, being higher than that in P . densiflora Siebold & Zucc . (175) or P . thunbergii Parl. (108). In P . massoniana , the proportion of T (29.37%) is the highest, larger than that of C (25.79), and that of A (22.62%) or G (22.62%) is the lowest. In P . thunbergii, the proportion of T (36.11%) is 2.7 times that of C (12.96%), and 1.7 times that of G (20.37%). A (30.56%) is a little bit smaller than that of T, being 1.5 times that of G, and 2.3 times that of C. In P . densiflora , the proportion of T (31.43%) or A (28.57%) is significantly higher than that of C (18.86%) or G (21.14%). Our results indicated that single nucleotide polymorphism sites from the chloroplast genomes could be used for distinguishing different species successfully in the genus Pinus. The status of Pinus plant specimens collected in the past over 120 years in China is investigated, and problems and possible strategies are discussed. This study is valuable for taxonomic revision, conservation and utilization of Pinus plant germplasm resources.
文章引用:刘美辰, 郑勇奇, 李斌, 左云娟, 靳晓白, 杨志荣, 田宏, 郭明星, 索志立. 基于叶绿体基因组的单核苷酸多态位点的松属(松科)植物资源遗传多样性的分子鉴定新方法[J]. 植物学研究, 2024, 13(6): 574-590. https://doi.org/10.12677/br.2024.136061

1. 引言

松属是松科最大的属,全球约120种,主要分布于北半球(最北至北极地区),是北亚热带、北温带高山针叶林及干旱林地的主要成分,仅苏门达腊松(Pinus merkusii Jungh. & de Vriese)一个种分布于印度尼西亚的苏门答腊岛(Sumatra Island)。苏门答腊岛也是世界上第6大岛屿,面积47万平方公里,位于北纬7度与南纬7度之间,赤道穿过岛的中部,年降雨量在4000 mm以上,常年高温多雨,为热带雨林气候。在北半球白垩纪(1.45亿年前至6600万年前)和新生代地层(6500万年前至今)中,发现了大量的松属植物化石,当时应该是北半球森林的主要构成成分。松树的树脂被埋藏于地下,经过数千万年的地质演变,有可能转化为琥珀。琥珀内可能包裹有蜜蜂、蜻蜓、苍蝇、蚂蚁、树叶、果实、种子等,具有考古价值。松属植物凭借分化出遗传多样的物种,在全球多样的生态系统中扩张[1]-[7]

松属植物是重要的造林和绿化树种,是木材、纸浆、松脂、家具等工业材料的来源[1]-[7]。松花粉、松针等可药用。种子可榨油。松子仁中含有100多种营养成分,是有机食品。纯烘烤、非油炸的松子仁,松香浓郁,是每日坚果中的佳品,如,赤松Pinus densiflora的种仁。利用松子仁制作的美食种类很多,例如,松子鲈鱼、松仁八宝饭、核桃松子粥、松仁意面、松子糕等。松仁也可加入到饼干、巧克力、法式坚果面包棒、燕麦酸奶杯(减脂早餐)中,制成各种甜食。松子仁已有3000多年的食用和药用历史。松仁、叶、根、花粉、幼枝等也是中药材。松属植物具有重要的食用、药用、生态和科学研究价值[1]-[7]

Table 1. Samples and GenBank accession numbers of chloroplast genome sequences used in this study

1. 供试样品及叶绿体基因组序列号

拉丁学名Latin name

中文名称Chinese name

序列号GenBank accession no.

1

Pinus densiflora Siebold & Zucc.

赤松

MK285358.1

2

Pinus densiflora Siebold & Zucc.

赤松

MF990371.1

3

Pinus densiflora Siebold & Zucc.

赤松

MZ677091.1

4

Pinus massoniana Lamb.

马尾松

KC427272.1

5

Pinus massoniana Lamb.

马尾松

MF564195.1

6

Pinus thunbergii Parl.

黑松

MW599991.1

7

Pinus thunbergii Parl.

黑松

MH612862.1

8

Larix himalaica W. C. Cheng & L. K. Fu

喜马拉雅红杉*

MN822883.1

9

Larix sibirica Ledeb.

新疆落叶松*

MF795085.1

10

Picea jezoensis (Siebold & Zucc.) Carrière

鱼鳞云杉*

OR522708.1

11

Picea jezoensis (Siebold & Zucc.) Carrière

鱼鳞云杉*

OR528865.1

注:*外类群。

松属植物根据表型特征(针叶及每束内针叶的数目、叶鞘、树脂道、维管束、种鳞及鳞脐、雌雄球果、种子、种皮、种翅等)分类,由于表型性状的表现存在个体间差异以及季节和地区间差异,不同学者擅长的知识和技术领域不同,对形态特征的理解和判断不同,对活植物或标本的名称鉴定结果有可能不一致,前人提出过多个属下分类方案,争议较大[1]-[7]。松属植物的物种鉴定研究经历了形态学、细胞学、孢粉学、化学成分、PCR-RFLP、SSR标记、DNA条形码技术等阶段,上述方法的信息量较少、分辨能力有限[1]-[11]。近年,叶绿体全基因组序列数据已广泛应用于植物的物种鉴定和系统发生学研究,信息量较大,增加了物种分辨率[4] [7]-[29]。为促进松属植物的资源保护和可持续利用,本文报道在分子水平上鉴定松属植物资源遗传多样性的一种新方法。

2. 材料与方法

选取7份样品代表松属的3个种。供试样品名称及其叶绿体基因组的序列号如表1 (https://www.ncbi.nlm.nih.gov)。根据本团队研发的方法[19]-[29]编制分子分类检索表。利用MAFFT v7.055b软件[30] (http://mafft.cbrc.jp/alignment/software)获得比对序列矩阵。比对后的序列矩阵的长度为120,576个核苷酸,由左向右,左端(5’-端)起的第1个核苷酸字母的位置编号为1,最右端的核苷酸字母的位置编号为120,576。用MEGA 7.0 [31]和DnaSP v6软件[32]检测核苷酸变异位点(图1表2)。每个物种的特有单核苷酸多态位点作为分子分类性状,用于编写松属供试样品的分子分类检索表(见图1)。松科云杉属Picea A. Dietr.的鱼鳞云杉Picea jezoensis (Siebold & Zucc.) Carrière、喜马拉雅红杉Larix himalaica以及新疆落叶松L. sibirica为外类群(表1图2)。用MEGA 7.0软件[31]的Tamura 3-parameter model参数模型推断系统发生关系(图2)。

Table 2. The amount and base composition of the single nucleotide polymorphism (SNP) sites for classification of the three species from the genus Pinus L. of the Pinaceae

2. 松属植物3种的具有分类价值的核苷酸变异位点数目及碱基构成

*

A (%)**

T (%)**

C (%)**

G (%)**

Total***

合计(%)

1a

57 (22.62)

74 (29.37)

65 (25.79)

56 (22.22)

252 (47.10/39.87)

1b

80 (31.75)

59 (23.41)

43 (17.06)

70 (27.78)

252 (47.10/39.87)

2a

33 (30.56)

39 (36.11)

14 (12.96)

22 (20.37)

108 (20.19/17.09)

2b

19 (17.59)

20 (18.52)

35 (32.41)

34 (31.48)

108 (20.19/17.09)

3a

50 (28.57)

55 (31.43)

33 (18.86)

37 (21.14)

175 (32.71/27.69)

3b

49 (28.00)

27 (15.43)

49 (28.00)

50 (28.57)

175 (32.71/27.69)

合计

535/632

注:*该列的序号与检索表内的序号对应;1a:马尾松Pinus massoniana,2a:黑松P. thunbergii,3a:赤松P. densiflora。**核苷酸变异位点数(在4种碱基中的占比);***此列括号中,前一个数字是在物种特有变异位点总数(535)中所占的比例;后一个数字是在全部核苷酸变异位点总数(632)中所占的比例。

3. 结果

松属供试样品的叶绿体基因组的长度为119,718 (MW599991.1,黑松Pinus thunbergii Parl.)~119,875 (MK285358.1,赤松P. densiflora Siebold & Zucc.)个核苷酸。在比对序列中,共检测到632个核苷酸变异位点,占叶绿体基因组序列全长的约0.53%。其中,各物种的特有单核苷酸多态位点数目合计为535个,占变异位点总数的84.65%。马尾松(252)的特有单核苷酸多态位点的数量最多,随后依次是赤松(175)和黑松(108)。马尾松的特有单核苷酸多态位点中,T的比例(29.37%)最高,随后依次是C (25.79%)、A (22.62%)和G (22.22%),G的比例最低,总体上差异较小。黑松的特有单核苷酸多态位点中,T (36.11%)的比例较C (12.96%)的比例高2.7倍,较G (20.37%)的比例高1.7倍。A (30.56%)的比例略低于T的比例,是G的比例的1.5倍C的比例的2.3倍。赤松的特有单核苷酸多态位点中,T (31.43%)和A (28.57%)的比例明显高于CG的比例(表2)。物种特有的单核苷酸多态位点的数量和核苷酸构成存在种间差异。利用物种特有的单核苷酸多态位点,编制分子分类检索表,供试样品得到精准鉴定(图1图2)。

Figure 1. Molecular classification key to three species of the genus Pinus L. (Pinaceae) based on the single nucleotide polymorphism sites from the complete chloroplast genome

1. 基于叶绿体基因组的物种特有的单核苷酸多态位点的松属3个种的分子分类检索表

Figure 2. Phylogenetic relationship of the three Pinus species based on chloroplast genome sequences using the neighbor-joining method with the Tamura 3-parameter model. The numbers near the branches are bootstrap support values (%) of 1000 replications

2. 利用邻接法和Tamura 3参数模型获得的基于叶绿体全基因组序列的松属3个种的系统发生关系。图中分支附近的数字为1000次重复抽样的自展支持率

4. 讨论

中国数字植物标本库(http://www.cvh.ac.cn/)的数据显示,中国采集松属植物标本的最早记录是1901年,经过120余年的积累,来自国内外的松属植物标本数量共计17,899份,160个种/亚种/变种,包括形态特征图片和文字描述。存在同名异物和同物异名现象(https://tnrs.biendata.org/https://powo.science.kew.org/),例如,Pinus cooperi C.E. Blanco是库氏亚利桑那黄松(变种)Pinus arizonica var. cooperi Farjon的异名;Pinus balfouriana var. austrina (R.J. Mastrog. & J.D. Mastrog.) Silba是内华达狐尾松(亚种)Pinus balfouriana subsp. austrina R.J. Mastrog. & J.D. Mastrog.的异名;Pinus stankewiczii (Sukaczev) Fomin是秕糠土耳其松(变种)Pinus brutia var. pityusa (Steven) Silba的异名;Pinus caribaea subsp. hondurensis (Loock) Silba是洪都拉斯松(变种)Pinus caribaea var. hondurensis (Sénécl.) W.H. Barrett & Golfari的异名;Pinus discolor D.K. Bailey & Hawksw.以及Pinus johannis Rob.-Pass.是Pinus cembroides var. bicolor Little的异名;Pinus contorta subsp. latifolia (Engelm.) Critchf.是宽叶扭叶松(变种)Pinus contorta var. latifolia Engelm.的异名;Pinus murrayana Balf.是加州扭叶松Pinus contorta var. murrayana (Balf.) S. Watson的异名;Pinus fenzeliana var. dabeshanensis (W.C. Cheng & Y.W. Law) L.K. Fu & Nan Li是大别山五针松Pinus dabeshanensis W.C. Cheng & Y.W. Law的异名;Pinus prominens Mast.以及Pinus tabuliformis var. densata (Mast.) Rehder是高山松Pinus densata Mast.的异名;Pinus funebris Kom.是长白松Pinus densiflora Siebold & Zucc.的异名;Pinus michoacana Martínez是德文松Pinus devoniana Lindl.的异名;Pinus durangensis form quinquefoliata Martínez是杜兰戈松Pinus durangensis Martínez的异名;Pinus kwangtungensis Chun ex. Tsiang、Pinus kwangtungensis var. varifolia Nan Li & Y.C. Zhong是海南五针松Pinus fenzeliana Hand.-Mazz.的异名;Pinus reflexa (Engelm.) Engelm.是反折五针松Pinus flexilis var. reflexa Engelm.的异名;Pinus maritima Aiton是阿勒颇松Pinus halepensis Mill.的异名;Pinus rudis Endl.以及Pinus wilsonii Roezl是灰叶山松Pinus hartwegii Lindl.的异名;Pinus leucodermis Antoine是波斯尼亚松Pinus heldreichii H. Christ的异名;Pinus massoniana var. henryi (Mast.) C.L. Wu、Pinus massoniana var. wulingensis C.J. Qi & Q.Z. Lin以及Pinus tabuliformis var. henryi (Mast.)

Table 3. Specimens of Pinus in the Chinese Virtual Herbarium

3. 中国数字植物标本库馆藏的松属植物的标本

/亚种/变种

Species/Subspecies/Varietals

中文名

Chinese name

标本份数

Amount of herbarium sheets

1

Pinus albicaulis Engelm.

白皮五针松

7

2

Pinus aristata Engelm.

刺果松

5

3

Pinus arizonica Engelm.

亚利桑那黄松

3

4

Pinus arizonica var. cooperi Farjon

库氏亚利桑那黄松

5

5

Pinus arizonica var. stormiae Martínez

4

6

Pinus armandii Franch.

华山松

2141

7

Pinus armandii var. armandii

华山松(原变种)

8

8

Pinus attenuata Lemmon

瘤果松

24

9

Pinus ayacahuite Ehrenb. ex. Schltdl.

墨西哥五针松

11

10

Pinus ayacahuite var. veitchii (Roezl) Shaw

1

11

Pinus balfouriana Balf.

狐尾松

6

12

Pinus balfouriana subsp. austrina R.J. Mastrog. & J.D. Mastrog.

内华达狐尾松

1

13

Pinus banksiana Lamb.

北美短叶松

110

14

Pinus bhutanica Grierson, D.G. Long & C.N. Page

不丹松

9

15

Pinus brutia Ten.

1

16

Pinus brutia var. pityusa (Steven) Silba

秕糠土耳其松

2

17

Pinus bungeana Zucc. ex. Endl.

白皮松

572

18

Pinus canariensis C. Sm.

加那利松

5

19

Pinus caribaea Morelet

加勒比松

21

20

Pinus caribaea subsp. hondurensis

洪都拉斯松

1

21

Pinus cembra L.

瑞士五针松

7

22

Pinus cembroides Zucc.

墨西哥果松

19

23

Pinus cembroides subsp. orizabensis D.K. Bailey

奥里萨巴果松

11

24

Pinus cembroides var. bicolor Little

4

25

Pinus chiapensis (Martínez) Andresen

恰帕松

10

26

Pinus clausa (Chapm. ex. Engelm.) Vasey ex. Sarg.

沙松

6

27

Pinus contorta Douglas ex. Loudon

扭叶松

22

28

Pinus contorta var. latifolia Engelm.

宽叶扭叶松

9

29

Pinus contorta var. murrayana (Balf.) S. Watson

加州扭叶松

12

30

Pinus coulteri D. Don

大果松

10

31

Pinus culminicola Andresen & Beaman

波托西果松

6

32

Pinus dabeshanensis W.C. Cheng & Y.W. Law

大别山五针松

19

33

Pinus dalatensis Ferré

越南五针松

3

34

Pinus densata Mast.

高山松

927

35

Pinus densiflora Siebold & Zucc.

长白松

623

36

Pinus densiflora var. brevifolia

4

37

Pinus densiflora var. fragieformis

1

38

Pinus densiflora var. liaotungensis

辽东赤松

4

39

Pinus densiflora f. nigricorticalis

2

40

Pinus densiflora var. pendula

2

41

Pinus densiflora var. rubesens

1

42

Pinus densiflora var. sylvestriformis

2

43

Pinus densiflora f. umbraculifera

7

44

Pinus devoniana Lindl.

德文松

15

45

Pinus douglasiana Martínez

道格拉斯松

19

46

Pinus durangensis Martínez

杜兰戈松

7

47

Pinus durangensis var. quinquefoliata

1

48

Pinus echinata Mill.

萌芽松

18

49

Pinus edulis Engelm.

科罗拉多果松

10

50

Pinus edulis var. fallax

1

51

Pinus elliottii Engelm.

湿地松

129

52

Pinus engelmannii Carrière

阿帕奇松

5

53

Pinus fenzeliana Hand.-Mazz.

海南五针松

809

54

Pinus flexilis E. James

软叶五针松

25

55

Pinus flexilis var. reflexa Engelm.

反折五针松

1

56

Pinus gerardiana Wall. ex. D. Don

喜马拉雅白皮松

5

57

Pinus glabra Walter

光松

13

58

Pinus greggii Engelm. ex. Parl.

东马德雷松

1

59

Pinus halepensis Mill.

阿勒颇松

15

60

Pinus hartwegii Lindl.

灰叶山松

34

61

Pinus heldreichii H. Christ

波斯尼亚松

10

62

Pinus henryi Mast.

巴山松

248

63

Pinus henryi var. longhianensis

1

64

Pinus herrerae Mast.

长卵果松

12

65

Pinus hwangshanensis W.Y. Hsai

黄山松

65

66

Pinus jeffreyi A. Murray bis

加州黄松

21

67

Pinus kesiya Royle ex. Gordon

卡西松

188

68

Pinus koraiensis Siebold & Zucc.

红松

382

69

Pinus krempfii Lecomte

杉叶松

3

70

Pinus lambertiana Douglas

美国糖松

16

71

Pinus latteri Mason

南亚松

48

72

Pinus lawsonii Roezl ex. Gordon

灰叶卵果松

47

73

Pinus lawsonii var. gracilis

8

74

Pinus leiophylla Schiede ex. Schltdl. & Cham.

滑叶松

35

75

Pinus leiophylla var. chihuahuana (Engelm.) Shaw

奇瓦瓦松

3

76

Pinus longaeva D.K. Bailey

毛松

5

77

Pinus luchuensis Mayr

琉球松

17

78

Pinus lumholtzii B.L.Rob. & Fernald

悲松

6

79

Pinus massoniana Lamb.

马尾松

3456

80

Pinus massoniana var. davidii

7

81

Pinus massoniana var. glaucescens

粉果马尾松

6

82

Pinus massoniana var. hainanensis W.C. Cheng & L.K. Fu

雅加松

9

83

Pinus massoniana var. massoniana

马尾松(原变种)

9

84

Pinus mastersiana Hayata

台湾果松

10

85

Pinus maximartinezii Rzed.

大籽果松

5

86

Pinus maximinoi H.E. Moore

薄叶松

6

87

Pinus merkusii Jungh. & de Vriese

苏门答腊松

56

88

Pinus monophylla Torr. & Frém.

单叶果松

17

89

Pinus montezumae Lamb.

蒙特苏马松

12

90

Pinus monticola Douglas ex. D. Don

银叶五针松

11

91

Pinus morrisonicola Hayata

台湾五针松

24

92

Pinus mugo Turra

欧洲山松(矮赤松)

15

93

Pinus muricata D. Don

糙果松

6

94

Pinus nelsonii Shaw

红果松

8

95

Pinus nigra J.F. Arnold

欧洲黑松

26

96

Pinus nigra subsp. laricio (Poir.) Maire

南欧黑松

17

97

Pinus nigra subsp. nigra

欧洲黑松(原变种)

2

98

Pinus nigra subsp. pallasiana (Lamb.) Holmboe

克里米亚黑松

2

99

Pinus nigra subsp. salzmannii (Dunal) Franco

西欧黑松

1

100

Pinus nigra var. zebenensis

1

101

Pinus oocarpa Schiede

印果松

21

102

Pinus palustris Mill.

长叶松

53

103

Pinus parviflora Siebold & Zucc.

日本五针松

203

104

Pinus parviflora var. pentaphylla (Mayr) A. Henry

北日本五针松

17

105

Pinus patula Schiede ex. Schltdl. & Cham.

展枝柏

26

106

Pinus patula var. longipedunculata Loock ex. Martínez

1

107

Pinus pentaphylla var. himekomatsu

2

108

Pinus peuce Griseb.

马其顿五针松

5

109

Pinus pinaster Aiton

海岸松

40

110

Pinus pinaster var. scopalorum

1

111

Pinus pinceana Gordon

垂枝果松

11

112

Pinus pinea L.

意大利松

10

113

Pinus ponderosa Douglas ex. C. Lawson

西黄松

55

114

Pinus ponderosa var. ponderosa

西黄松(原变种)

2

115

Pinus ponderosa var. scopulorum Engelm.

岩生西黄松

4

116

Pinus pringlei Shaw

长叶卵果松

12

117

Pinus pseudostrobus Lindl.

滑皮松

26

118

Pinus pseudostrobus var. apulcensis (Lindl.) Shaw

阿普尔科滑皮松

40

119

Pinus pseudostrobus var. pseudostrobus

滑皮松(原变种)

9

120

Pinus pumila (Parl.) Regel

偃松

192

121

Pinus pungens Lamb.

刺松

9

122

Pinus quadrifolia Parl. ex. Sudw.

四叶果松

4

123

Pinus radiata D. Don

辐射松

21

124

Pinus resinosa Aiton

多脂松

12

125

Pinus rigida Mill.

刚松

109

126

Pinus rigida var. rigida

1

127

Pinus roxburghii Sarg.

西藏长叶松

45

128

Pinus rzedowskii Madrigal & M.Caball.

4

129

Pinus sabiniana Douglas

14

130

Pinus schwerinii Fitschen

1

131

Pinus serotina Michx.

晚松

26

132

Pinus sibirica Du Tour

新疆五针松

82

133

Pinus squamata X.W. Li

巧家五针松

6

134

Pinus strobiformis Engelm.

奇瓦瓦五针松

9

135

Pinus strobus L.

北美乔松

86

136

Pinus sylvestris L.

欧洲赤松

191

137

Pinus sylvestris var. hamata Steven

钩刺松

2

138

Pinus sylvestris var. mongholica Litv.

樟子松

360

139

Pinus sylvestris var. sylvestris

欧洲赤松(原变种)

37

140

Pinus tabuliformis Carrière

油松

2439

141

Pinus tabuliformis var. mukdensis (Uyeki ex. Nakai) Uyeki

黑皮油松

14

142

Pinus tabuliformis var. tabuliformis

油松 (原变种)

4

143

Pinus tabuliformis var. umbraculifera Liou & Z. Wang

扫帚油松

10

144

Pinus taeda L.

火炬松

133

145

Pinus taiwanensis Hayata

台湾松

784

146

Pinus taiwanensis var. damingshanensis W.C. Cheng & L.K. Fu

大明松

48

147

Pinus taiwanensis var. taiwanensis

1

148

Pinus tecunumanii F. Schwerdtf. ex. Eguiluz & J.P. Perry

纸松

3

149

Pinus teocote Schied. ex. Schltdl. & Cham.

阿兹特克松

28

150

Pinus thunbergii Parl.

黑松

682

151

Pinus torreyana Parry ex. Carrière

托里松

2

152

Pinus uncinata Ramond ex. DC.

山赤松

12

153

Pinus uncinata subsp. uncinata

山赤松(原变种)

3

154

Pinus virginiana Mill.

矮松

66

155

Pinus wallichiana (Wall. ex. D. Don) A.B. Jacks.

乔松

134

156

Pinus wangii Hu & W.C. Cheng

毛枝五针松

86

157

Pinus wangii subsp. kwangtungensis (Chun ex. Tsiang) Businsky

华南毛枝五针松

3

158

Pinus yunnanensis Franch.

云南松

991

159

Pinus yunnanensis var. pygmaea (Hsueh ex. C.Y. Cheng, W.C. Cheng & L.K. Fu) Hsueh

地盘松

45

160

Pinus yunnanensis var. yunnanensis

云南松(原变种)

85

合计

17,899

C.T. Kuan是巴山松Pinus henryi Mast.的异名;Pinus luchuensis var. hwangshanensis (W.Y. Hsai) C.L. Wu是黄山松Pinus hwangshanensis W.Y. Hsai的异名;Pinus ponderosa var. jeffreyi (A. Murray bis) Vasey是加州黄松Pinus jeffreyi A. Murray bis的异名;Pinus insularis Endl.、Pinus khasia Engelm.、Pinus khasya Royle ex Gord.以及Pinus khasyana Griff.是卡西松Pinus kesiya Royle ex. Gordon的异名;Pinus ikedae Yamam.是南亚松Pinus latteri Mason的异名;Pinus lawsonii var. gracilis Debreczy & I. Rácz是灰叶卵果松Pinus lawsonii Roezl ex. Gordon的异名;Pinus chihuahuana Engelm.是奇瓦瓦松Pinus leiophylla var. chihuahuana (Engelm.) Shaw的异名;Pinus crassicorticea Y.C. Zhong & K.X. Huang及Pinus sinensis D. Don是马尾松Pinus massoniana Lamb.的异名;Pinus argyi Lemée & H. Lév.、Pinus argyi var. longivaginans H. Lév.以及Pinus cavaleriei Lemée & H. Lév.是马尾松(原变种)Pinus massoniana var. massoniana的异名;Pinus armandii var. mastersiana (Hayata) Hayata是台湾果松Pinus mastersiana Hayata的异名;Pinus tenuifolia Benth.是薄叶松Pinus maximinoi H.E. Moore的异名;Pinus finlaysoniana Wall. ex. Blume是苏门答腊松Pinus merkusii Jungh. & de Vriese的异名;Pinus formosana Hayata及Pinus uyematsui Hayata是台湾五针松Pinus morrisonicola Hayata的异名;Pinus mugho Laichard.是欧洲山松(矮赤松)Pinus mugo Turra的异名;Pinus remorata H. Mason是糙果松Pinus muricata D. Don的异名;Pinus laricio Poir.、Pinus laricio var. corsicana Loudon以及Pinus nigra var. maritima (Aiton) Melville是南欧黑松(亚种)Pinus nigra subsp. laricio (Poir.) Maire的异名;Pinus austriaca Höss及Pinus nigra var. austriaca (Höss) Badoux是欧洲黑松(原亚种)Pinus nigra subsp. nigra的异名;Pinus pallasiana D. Don是克里米亚黑松Pinus nigra subsp. pallasiana (Lamb.) Holmboe的异名;Pinus salzmannii Dunal是西欧黑松(亚种)Pinus nigra subsp. salzmannii (Dunal) Franco的异名;Pinus pentaphylla var. himekomatsu (Miyabe & Kudô) Makino是日本五针松Pinus parviflora Siebold & Zucc.的异名;Pinus pentaphylla Mayr是北日本五针松(变种)Pinus parviflora var. pentaphylla (Mayr) A. Henry的异名;Pinus washoensis H. Mason & Stockw.是西黄松(原变种)Pinus ponderosa var. ponderosa的异名;Pinus brachyptera Engelm.是岩生西黄松(变种)Pinus ponderosa var. scopulorum Engelm.的异名;Pinus estevezii (Martínez) J.P. Perry是滑皮松Pinus pseudostrobus Lindl.的异名;Pinus apulcensis Lindl.及Pinus oaxacana Mirov是阿普尔科滑皮松Pinus pseudostrobus var. apulcensis (Lindl.) Shaw的异名;Pinus yecorensis Debreczy & I. Rácz及Pinus yecorensis var. sinaloensis Debreczy & I. Rácz是滑皮松(原变种)Pinus pseudostrobus var. pseudostrobus的异名;Pinus insignis Douglas ex. Loudon及Pinus tuberculata D. Don是辐射松Pinus radiata D. Don的异名;Pinus rigida var. rigida是刚松(英国短叶松)Pinus rigida Mill.的异名;Pinus longifolia Roxb. ex. Lamb.是西藏长叶松Pinus roxburghii Sarg的异名;Pinus rigida var. serotina (Michx.) Loudon ex. Hoopes是晚松Pinus serotina Michx.的异名;Pinus coronans Litv.及Pinus hingganensis H.J. Zhang是新疆五针松Pinus sibirica Du Tour的异名;Pinus ayacahuite var. brachyptera Shaw是奇瓦瓦五针松Pinus strobiformis Engelm.的异名;Pinus krylovii Serg. & Kondr.及Pinus mughus Jacq.是欧洲赤松Pinus sylvestris L.的异名;Pinus hamata (Steven) Sosn.及Pinus kochiana Klotzsch ex. K. Koch是钩刺松(变种) Pinus sylvestris var. hamata Steven的异名;Pinus densiflora var. ussuriensis Liou & Z. Wang ex. Mayr及Pinus ussuriensis (Liou & Z. Wang ex. Mayr) W.C. Cheng & Y.W. Law是樟子松(变种)Pinus sylvestris var. mongholica Litv.的异名;Pinus lapponica (Hartm.) Mayr、Pinus montana Hoffm.以及Pinus sylvestris var. turfosa Willk. ex. Woerl.是欧洲赤松(原变种)Pinus sylvestris var. sylvestris的异名;Pinus leucosperma Maxim.、Pinus takahasii Nakai、Pinus tabuliformis form jeholensis Liou & Z. Wang、Pinus tabuliformis form purpurea Liou & Z. Wang以及Pinus tabuliformis var. rubescens Uyeki是油松Pinus tabuliformis Carrière的异名;Pinus mukdensis Uyeki ex. Nakai是黑皮油松(变种)Pinus tabuliformis var. mukdensis (Uyeki ex. Nakai) Uyeki的异名;Pinus taihangshanensis Hu & T.T. Yao是油松(原变种)Pinus tabuliformis var. tabuliformis的异名;Pinus tabuliformis form umbraculifera (Liou & Z. Wang) Q.L. Wang是扫帚油松Pinus tabuliformis var. umbraculifera Liou & Z. Wang的异名;Pinus mugo subsp. uncinata (Ramond ex. DC.) Domin是山赤松Pinus uncinata Ramond ex. DC.的异名;Pinus mugo var. rotundata (Link) Hoopes及Pinus rotundata Link是山赤松 (原亚种)Pinus uncinata subsp. uncinata的异名;Pinus wangii var. kwangtungensis (Chun ex. Tsiang) Silba是华南毛枝五针松Pinus wangii subsp. kwangtungensis (Chun ex. Tsiang) Businsky的异名;Pinus densata var. pygmaea Hsueh ex. C.Y. Cheng, W.C. Cheng & L.K. Fu是地盘松Pinus yunnanensis var. pygmaea (Hsueh ex. C.Y. Cheng, W.C. Cheng & L.K. Fu) Hsueh的异名;Pinus yunnanensis var. tenuifolia W.C. Cheng & Y.W. Law是云南松(原变种)Pinus yunnanensis var. yunnanensis的异名。

有些名称实际上是松属以外的其它属的物种的异名,例如,Pinus griffithii (Hook.f.) Parl.是落叶松属的红杉Larix griffithii Hook. f.的异名;Pinus chinensis Voss是落叶松属的秦岭红杉Larix potaninii var. chinensis (Voss) L.K. Fu & Nan Li的异名或杉木属的软叶杉木Cunninghamia lanceolata (Lamb.) Hook.的异名;Pinus excelsa Lam.是云杉属的欧洲云杉Picea abies (L.) H. Karst.的异名;Pinus rubra (Du Roi) D. Don是云杉属红云杉Picea rubens Sarg.的异名;Pinus tsuga (Siebold & Zucc.) Antoine是铁杉属的日本铁杉Tsuga sieboldii (Siebold & Zucc.) Carrière的异名。

松属植物标本的257个名称中,存在异名的名称(97个)占37.74%。异名的混乱使用制约了科研和相关产业发展。51%以上的松属植物标本的采集日期为50年以前。华山松(2141份)、油松(2439份)以及马尾松(3456份)的标本份数最多。大于3份(含)标本的有132种/亚种/变种,小于3份标本的有28种/亚种/变种。目前的标本材料不足以支持研究松属全球物种的分子鉴定和系统发生关系。对21国40个植物标本馆的4500份标本的取样调查结果显示,50%以上的热带植物标本存在名称鉴定错误[33]。应该从全球视角思考存在的问题,寻求解决难题、提升工作效率的对策。如果将收集保存各科属植物的全球所有物种的标本作为预期目标或完成工作的标准,阶段性进展只能获得有局限的认识。只有把松属的全部物种(包括标本和活植物材料)放在一起,结合DNA等多种特征和技术进行比较分析,才能有效澄清异名混乱问题,揭示进化格局的全貌和实态,评估不同学派的物种概念(至少有26种物种概念)的合理性和价值,工作量仍然巨大[34]-[36]

在全球公共数据库中,仍然存在未通过GenBank工作人员(专家)核准的叶绿体基因组序列数据或不完整的叶绿体基因组数据,例如,MK782762.1 (UNVERIFIED: Pinus kesiya var. langbianensis chloroplast sequence)、MT583787.1 (UNVERIFIED: Pinus armandii voucher Pa413 chloroplast sequence)、MT583779.1 (UNVERIFIED: Pinus armandii voucher Pa51 chloroplast sequence)、OP581022.1 (Pinus koraiensis chloroplast, partial genome)、FJ899563.2 (Pinus torreyana subsp. insularis chloroplast, partial genome)等。松属以外的其它植物科属中也存在类似的情况,例如,OR415832.1 (Camellia costata voucher YSX50954 chloroplast, partial genome)、ON491576.1 (UNVERIFIED: Camellia sinensis chloroplast, complete genome)、OK375437.1 (UNVERIFIED: Rosa rugosa chloroplast sequence)等。公共数据库中的叶绿体基因组序列数据的质量有待提升。植物各科属之间,叶绿体基因组序列变异较大。科学论文和数据不仅仅是一个科研团队在完成项目任务,数据本身可以从不同角度加以分析,具有应用于其它科学领域的潜力。经过其他独立研究团队验证的数据和结论才能成为加速科学发展的基石。应该通过公益性高级培训班和研修班机制,普及叶绿体基因组序列的精确组装方法和相关技术,促进对叶绿体基因组的深度理解。高质量数据生产体系的建设与维护应该是科学发展战略的重要组成部分之一。

叶绿体是植物细胞中的“能量工厂”,它们利用阳光、二氧化碳和水,进行光合作用,产生我们赖以生存的氧气和糖分。这个过程不仅仅是植物的生存方式,更是整个生态系统的基础。叶绿体基因组序列的构成组分的功能验证研究已进入新阶段[37]-[39],例如,德国专家Ralph Bock教授的团队利用一种精巧的实验方法来探索质体(包括叶绿体、白色体和有色体)基因组中反向重复区(a large inverted repeat (IR) region)的功能重要性。他们删除了烟草Nicotiana tabacum叶绿体基因组中的反向重复区的一个完整的拷贝(长度为25.3-kb),获得了拥有长度变短的质体基因组的烟草植株。实验结果显示,反向重复区具有强化质体翻译能力的功能。在叶绿体和非光合作用质体中,IR区的删除导致了烟草植株体内质体基因组数目显著增多。删除IR区序列、基因组长度随之变短之后,烟草植株的耐受性良好。删除IR区之后的烟草植株可以提供一种简化的质体基因组结构[37],该方法在质体合成生物学和合成基因组学方面具有应用前景。利用质体基因组转化作为“分子农业”的工具,可用来大量生产有价值的蛋白质和代谢物质[38]

科研项目实施过程中,通常会涌现出大量的思考半成品,经过补充,可以提升认识高度,发表论文。科研人员的大量半成品思考没有发表出来。应该创造多种机制,促进科研人员之间充分交流,开展多样化的互通有无式的协作,不仅有助于提升项目的完成质量,也可以促进项目审批方和项目执行者更加聚焦重大、关键科学难题,从而提高科研经费的利用效率,推动经济社会高速发展。长期以来,科普教育效果受到场地空间狭窄、展示内容篇幅有限、从业人员数量不足、学历不高、交通距离较远、参观期间时间较为仓促等不利条件的制约。大学优秀教科书内容,例如,植物科学概论、植物分类学概论、普通地质学等,如果能够在网上免费阅读,将促进科学教育和科普工作更加系统地提升到一个新的高度、广度和深度。全民总体科学认知水平的提升,有助于消除异名的混乱使用。分子检索表中揭示物种差异的、具有分类价值的单核苷酸多态位点的产生机制,可能与地质历史事件、自然环境变化以及基因组本身的遗传变异规律存在较复杂的关系,有待结合地质学、分子遗传学、化学和量子科学领域的最新进展和新技术深入研究。

5. 结论

我们的新方法对于松属植物资源遗传多样性的分类修订、保护和利用具有重要价值。建立松属全部物种的分子检索表,需要全球取样和国际协作。全球植物的物种数量众多,叶绿体基因组组装方法的公益性培训和普及有助于大规模产出更多的精确数据,加快全球植物生命之树的重建速度。科学文献包括优秀教科书的全球免费开放阅读(Open Access)是消除异名混乱使用现象的有效途径之一。从叶绿体基因组大数据中提取有物种分类价值的关键特征数据,在应用人工智能分析、管理和利用植物资源多样性方面可节省算力、提高效率。深入理解分子检索表中具有分类价值的单核苷酸多态位点的产生机制,是未来研究的重要方向之一。

致 谢

天津市人力资源建设服务中心、上海计算技术培训中心、中国科学技术大学、包头钢铁职业技术学院、沈阳农业大学、中国科协科学技术创新部、中国标准化协会教育培训部、国家纳米科学中心、中国科学院微生物研究所、北方工业大学以及朱嘉老师和祖敏老师对本研究的推进予以热情支持。在本调查过程中,得到国家植物标本资源库(National Plant Specimen Resource Center)平台的支持。

基金项目

国家自然科学基金项目(No. 31770744)。

NOTES

*通讯作者。

参考文献

[1] 中国科学院中国植物志编辑委员会. 中国植物志第7卷: 松科[M]. 北京: 科学出版社, 1978.
http://www.cn-flora.ac.cn/
[2] Wu, Z.Y., Hong, D.Y. and Raven, P.H. (1999) Flora of China, Vol. 4, Pinaceae. Science Press, Beijing and Missouri Botanical Garden Press, 11-25.
https://www.iplant.cn/info/Pinus?t=foc
[3] Mirov, N.T. (1967) The Genus Pinus. The Ronald Press Company.
[4] Li, B. and Gu, W.C. (2003) Review on Genetic Diversity in Pinus. Hereditas, 25, 740-748.
http://www.chinagene.cn/CN/Y2003/V25/I6/740
[5] Liu, Y.Y., Liu, C. and Wei, X.X. (2022) Current Status of Taxonomy, Systematics and Conservation of the White Pines in China and Adjacent Regions. Biodiversity Science, 30, 21344.
https://doi.org/10.17520/biods.2021344
[6] Richardson, D.M. (1998) Ecology and Biogeography of Pinus. Cambridge University Press, 3-91.
[7] Hu, Y., Liang, L.N., Xiao, L. and Li, X.C. (2022) Fossils History of Pinus and Its Implications in Biogeography. Journal of Earth Environment, 13, 243-256.
[8] Li, J. and Li, Q. (2022) Complete Chloroplast Genome Sequence and Analysis of Pinus ponderosa P. Lawson & C. Lawson and Picea pungens Engelm. Plant Science Journal, 40, 791-800.
[9] 杨辰. 松属五针松组物种的分子鉴定研究[D]: [硕士学位论文]. 兰州: 兰州大学, 2014.
[10] 刘占林. 松属植物rRNA基因的变异模式及其进化生物学意义[D]: [博士学位论文]. 北京: 中国科学院研究生院, 2002.
[11] Wang, L., Li, J., Xi, Y.J., Wu, J.J., Guo, M.X., Li, X.F. and Zhang, Y. (2018) Analysis on Genetic Diversity of Tea Germplasm in Shaanxi Based on SCoT Markers. Acta Agriculturae Borealioccidentalis Sinica, 27, 244-252.
[12] Dong, W.P., Xu, C., Li, D.L., Jin, X.B., Li, R.L., Lu, Q. and Suo, Z.L. (2016) Comparative Analysis of the Complete Chloroplast Genome Sequences in Psammophytic Haloxylon Species (Amaranthaceae). PeerJ, 4, e2699.
https://doi.org/10.7717/peerj.2699
[13] Dong, W.P., Xu, C., Li, W.Q., Xie, X.M., Lu, Y.Z., Liu, Y.L., Jin, X.B. and Suo, Z.L. (2017) Phylogenetic Resolution in Juglans Based on Complete Chloroplast Genomes and Nuclear DNA Sequences. Frontiers in Plant Science, 8, Article 1148.
https://doi.org/10.3389/fpls.2017.01148
[14] Xu, C., Dong, W.P., Li, W.Y., Lu, Y.Z., Xie, X.M., Jin, X.B., Shi, J.P., He, K.H. and Suo, Z.L. (2017) Comparative Analysis of Six Lagerstroemia Complete Chloroplast Genomes. Frontiers in Plant Science, 8, Article 15.
https://doi.org/10.3389/fpls.2017.00015
[15] Li, W.Q., Liu, Y.L., Yang, Y., Xie, X.M., Lu, Y.Z., Yang, Z.R., Jin, X.B., Dong, W.P. and Suo, Z.L. (2018) Interspecific Chloroplast Genome Sequence Diversity and Genomic Resources in Diospyros. BMC Plant Biology, 18, Article No. 210.
https://doi.org/10.1186/s12870-018-1421-3
[16] Dong, W.P., Xu, C., Liu, Y.L., Shi, J.P., Li, W.Y. and Suo, Z.L. (2021) Chloroplast Phylogenomics and Divergence Times of Lagerstroemia (Lythraceae). BMC Genomics, 22, Article No. 434.
https://doi.org/10.1186/s12864-021-07769-x
[17] Guo, C., Liu, K.J., Li, E.Z., Chen, Y.F., He, J.Y., Li, W.Y., Dong, W.P. and Suo, Z.L. (2023) Maternal Donor and Genetic Variation of Lagerstroemia indica Cultivars. International Journal of Molecular Sciences, 24, Article 3606.
https://doi.org/10.3390/ijms24043606
[18] Liu, K.J., Li, E.Z., Cui, X.Y., Wang, Y.S., Xu, C., Suo, Z.L., Dong, W.P. and Zhang, Z.X. (2024) Key Innovations and Niche Variation Promoted Rapid Diversification of the Widespread Juniperus (Cupressaceae). Communications Biology, 7, Article No. 1002.
https://doi.org/10.1038/s42003-024-06687-4
[19] Suo, Z.L., Zhang, C.H., Zheng, Y.Q., He, L.X., Jin, X.B., Hou, B.X. and Li, J.J. (2012) Revealing Genetic Diversity of Tree Peonies at Micro-Evolution Level with Hyper-Variable Chloroplast Markers and Floral Traits. Plant Cell Reports, 31, 2199-2213.
https://doi.org/10.1007/s00299-012-1330-0
[20] Suo, Z.L., Chen, L.N., Pei, D., Jin, X.B. and Zhang, H.J. (2015) A New Nuclear DNA Marker from Ubiquitin Ligase Gene Region for Genetic Diversity Detection of Walnut Germplasm Resources. Biotechnology Reports, 5, 40-45.
https://doi.org/10.1016/j.btre.2014.11.003
[21] Suo, Z.L., Li, W.Y., Jin, X.B. and Zhang, H.J. (2016) A New Nuclear DNA Marker Revealing Both Microsatellite Variations and Single Nucleotide Polymorphic Loci: A Case Study on Classification of Cultivars in Lagerstroemia indica L. Journal of Microbial & Biochemical Technology, 8, Article 266.
https://doi.org/10.4172/1948-5948.1000296
[22] Suo, Z.L., Gu, C.H., Zuo, Y.J., Yang, Z.R., Sun, Z.M., Yang, Q.F. and Jin, X.B. (2022) A Novel Method for Identification of Lagerstroemia and Sargassum Taxa Using Single Nucleotide Polymorphic Characters from the Large Single-Copy Region of Complete Chloroplast Genomes. Botanical Research, 11, 218-228.
https://doi.org/10.12677/BR.2022.112026
[23] Li, B., Zuo, Y.J. Liu, Y.L., Yang, Z.R., Jin, X.B., Pan, B.R., Chang, Q. and Suo, Z.L. (2023) A Novel Method for Molecular Identification of Plants in Larix Mill. Using Single Nucleotide Polymorphic Characters from Complete Chloroplast Genomes: Analysis on Eight Species/Varieties as An Example. Botanical Research, 12, 227-239.
https://doi.org/10.12677/BR.2023.124030
[24] Liu, M.C., Zuo, Y.J., Liu, Y.L., Yang, Z.R., Jin, X.B. and Suo, Z.L. (2024) A Novel Method for Molecular Identification at Species Level in Glycine Willd. Based on Variable Nucleotide Characters from Complete Chloroplast Genomes. Botanical Research, 13, 124-142.
https://doi.org/10.12677/BR.2024.132015
[25] Liu, M.C., Zhang, J.N., Zuo, Y.J., Yang, Z.R., Jin, X.B., Pan, B.R., Chang, Q. and Suo, Z.L. (2024) A Novel Method for Molecular Identification of Genetic Diversity of Plant Resources in Cucurbitaceae Based on Taxon-Specific Variable Nucleotide Characters from Complete Chloroplast Genomes. Botanical Research, 13, 289-314.
https://doi.org/10.12677/br.2024.133032
[26] Liu, M.C., Li, B., Zuo, Y.J., Jin, X.B. and Suo, Z.L. (2024) A Novel Method for Molecular Identification of Genetic Diversity of Plant Resources in Abies Mill. and Keteleeria Carrière (Pinaceae) Based on Taxon-Specific Variable Nucleotide Characters from Complete Plastomes. Botanical Research, 13, 434-445.
https://doi.org/10.12677/br.2024.134046
[27] Liu, M.C., Liu, Y.X., Zuo, Y.J., Jin, X.B., Yang, Z.R. and Suo, Z.L. (2024) A Novel Method for Molecular Identification of Genetic Diversity of Plant Resources in Lilium L. (Liliaceae) Based on Taxon-Specific Variable Nucleotide Characters from Whole Plastome Sequences. Botanical Research, 13, 469-486.
https://doi.org/10.12677/br.2024.134050
[28] Liu, M.C., Zuo, Y.J., Jin, X.B., Yang, Z.R. and Suo, Z.L. (2024) A Novel Method for Molecular Identification of Genetic Diversity of Plant Resources in Cymbidium Sw. (Orchidaceae) Based on Taxon-Specific Variable Nucleotide Characters from Complete Chloroplast Genome. Hans Journal of Computational Biology, 14, 13-28.
https://doi.org/10.12677/hjcb.2024.142002
[29] Liu, M.C., Wang, X.C., Li, D.F., Yan, Z.H., Zuo, Y.J., Jin, X.B., Yang, Z.R. and Suo, Z.L. (2024) A Novel Method for Molecular Identification of Genetic Diversity of Plant Resources in Pueraria DC. (Fabaceae) Based on Variable Base Sites of Complete Chloroplast Genome. Advances in Analytical Chemistry, 14, 164-175.
https://doi.org/10.12677/aac.2024.143020
[30] Katoh, K. and Standley, D.M. (2013) MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution, 30, 772-780.
https://doi.org/10.1093/molbev/mst010
[31] Kumar, S., Stecher, G. and Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33, 1870-1874.
https://doi.org/10.1093/molbev/msw054
[32] Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J.C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S.E., et al. (2017) DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Molecular Biology and Evolution, 34, 3299-3302.
https://doi.org/10.1093/molbev/msx248
[33] Goodwin, Z.A., Harris, D.J., Filer, D., Wood, J.R.I. and Scotland, R.W. (2015) Widespread Mistaken Identity in Tropical Plant Collections. Current Biology, 25, R1066-R1067.
https://doi.org/10.1016/j.cub.2015.10.002
[34] Hong, D.Y. (2016) Biodiversity Pursuits Need a Scientific and Operative Species Concept. Biodiversity Science, 24, 979-999.
https://doi.org/10.17520/biods.2016203
[35] 王文采, 等. 世界植物简志[M]. 北京: 北京出版集团北京出版社, 2021: 1-172.
[36] Tian, Y. and Li, J.S. (2024) Analysis of the Connotation and Implementation Path for the 30 by 30 Target in the Kunming-Montreal Global Biodiversity Framework. Biodiversity Science, 32, 24086.
https://doi.org/10.17520/biods.2024086
[37] Krämer, C., Boehm, C.R., Liu, J.H., Ting, M.K.Y., Hertle, A.P., Forner, J., Ruf, S., Schöttler, M.A., Zoschke, R. and Bock, R. (2024) Removal of the Large Inverted Repeat from the Plastid Genome Reveals Gene Dosage Effects and Leads to Increased Genome Copy Number. Nature Plants, 10, 923-935.
https://doi.org/10.1038/s41477-024-01709-9
[38] Fuentes, P., Zhou, F., Erban, A., Karcher, D., Kopka, J. and Bock, R. (2016) A New Synthetic Biology Approach Allows Transfer of an Entire Metabolic Pathway from a Medicinal Plant to a Biomass Crop. Elife, 5, e13664.
https://doi.org/10.7554/eLife.13664
[39] Singhal, R., Pal, R. and Dutta, S. (2023) Chloroplast Engineering: Fundamental Insights and Its Application in Amelioration of Environmental Stress. Applied Biochemistry and Biotechnology, 195, 2463-2482.
https://doi.org/10.1007/s12010-022-03930-8

Baidu
map