[1] |
Fukuda, S., Fukuda, Y., Ishitsuka, M., Itow, Y., Kajita, T., Kameda, J.,et al. (2001) Solar8Band Hep Neutrino Measurements from 1258 Days of Super-Kamiokande Data.Physical Review Letters, 86, 5651-5655. https://doi.org/10.1103/physrevlett.86.5651 |
[2] |
Ahmad, Q.R., Allen, R.C., Andersen, T.C., D.Anglin, J., Barton, J.C., Beier, E.W.,et al. (2002) Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions in the Sudbury Neutrino Observatory.Physical Review Letters, 89, Article 011301. https://doi.org/10.1103/physrevlett.89.011301 |
[3] |
Gribov, V. and Pontecorvo, B. (1969) Neutrino Astronomy and Lepton Charge.Physics Letters B, 28, 493-496. https://doi.org/10.1016/0370-2693(69)90525-5 |
[4] |
肖雨奇, 刘泽坤, 陈绍龙. 中微子和暗物质物理的关联研究[J]. 中国科学: 物理学、力学、天文学, 2023, 53(9): 49-67. |
[5] |
Esteban, I., Gonzalez-Garcia, M.C., Maltoni, M., Schwetz, T. and Zhou, A. (2020) The Fate of Hints: Updated Global Analysis of Three-Flavor Neutrino Oscillations.Journal of High Energy Physics, 2020, Article No. 178. https://doi.org/10.1007/jhep09(2020)178 |
[6] |
Aker, M., Beglarian, A., Behrens, J., Berlev, A., Besserer, U., Bieringer, B.,et al. (2022) Direct Neutrino-Mass Measurement with Sub-Electronvolt Sensitivity.Nature Physics, 18, 160-166. https://doi.org/10.1038/s41567-021-01463-1 |
[7] |
Alam, S., Aubert, M., Avila, S., Balland, C., Bautista, J.E., Bershady, M.A.,et al. (2021) Completed SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Cosmological Implications from Two Decades of Spectroscopic Surveys at the Apache Point Observatory.Physical Review D, 103, Article 083533. https://doi.org/10.1103/physrevd.103.083533 |
[8] |
Palanque-Delabrouille, N., Yèche, C., Schöneberg, N., Lesgourgues, J., Walther, M., Chabanier, S.,et al. (2020) Hints, Neutrino Bounds, and WDM Constraints from SDSS DR14 Lyman-Α and Planck Full-Survey Data.Journal of Cosmology and Astroparticle Physics, 2020, Article 38. https://doi.org/10.1088/1475-7516/2020/04/038 |
[9] |
Abbott, T.M.C., Aguena, M., Alarcon, A., Allam, S., Alves, O., Amon, A.,et al. (2022) Dark Energy Survey Year 3 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing.Physical Review D, 105, Article 023520. https://doi.org/10.1103/physrevd.105.023520 |
[10] |
Hinshaw, G., Larson, D., Komatsu, E., Spergel, D.N., Bennett, C.L., Dunkley, J.,et al. (2013) Nine-YearWilkinsonMicrowaveAnisotropyProbe(WMAP) Observations: Cosmological Parameter Results.The Astrophysical Journal Supplement Series, 208, Article 19. https://doi.org/10.1088/0067-0049/208/2/19 |
[11] |
Sievers, J.L., Hlozek, R.A., Nolta, M.R., Acquaviva, V., Addison, G.E., Ade, P.A.R.,et al. (2013) The Atacama Cosmology Telescope: Cosmological Parameters from Three Seasons of Data.Journal of Cosmology and Astroparticle Physics, 2013, Article 60. https://doi.org/10.1088/1475-7516/2013/10/060 |
[12] |
Hou, Z.,et al. (2014) Constraints on Cosmology from the Cosmic Microwave Background Power Pectrum of the 2500 Deg2SPT-SZ Survey.Astrophys Journal, 782, Article 74. https://doi.org/10.1088/0004-637X/782/2/74 |
[13] |
Riess, A.G., Filippenko, A.V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P.M.,et al. (1998) Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant.The Astronomical Journal, 116, 1009-1038. https://doi.org/10.1086/300499 |
[14] |
Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R.A., Nugent, P., Castro, P.G.,et al. (1999) Measurements of Ω and Λ from 42 High‐Redshift Supernovae.The Astrophysical Journal, 517, 565-586. https://doi.org/10.1086/307221 |
[15] |
Frieman, J.A., Turner, M.S. and Huterer, D. (2008) Dark Energy and the Accelerating Universe.Annual Review of Astronomy and Astrophysics, 46, 385-432. https://doi.org/10.1146/annurev.astro.46.060407.145243 |
[16] |
Weinberg, D.H., Mortonson, M.J., Eisenstein, D.J., Hirata, C., Riess, A.G. and Rozo, E. (2013) Observational Probes of Cosmic Acceleration.Physics Reports, 530, 87-255. https://doi.org/10.1016/j.physrep.2013.05.001 |
[17] |
Caldwell, R.R., Dave, R. and Steinhardt, P.J. (1998) Cosmological Imprint of an Energy Component with General Equation of State.Physical Review Letters, 80, 1582-1585. https://doi.org/10.1103/physrevlett.80.1582 |
[18] |
Sean, M. (2003) Can the Dark Energy Equation-of-State ParameterwBe Less Than −1?Physical Review D, 68, Article 023509. https://doi.org/10.1103/PhysRevD.68.023509 |
[19] |
Guo, Z., Piao, Y., Zhang, X. and Zhang, Y. (2005) Cosmological Evolution of a Quintom Model of Dark Energy.Physics Letters B, 608, 177-182. https://doi.org/10.1016/j.physletb.2005.01.017 |
[20] |
Spergel, D.N., Verde, L., Peiris, H.V., Komatsu, E., Nolta, M.R., Bennett, C.L.,et al. (2003) First‐YearWilkinsonMicrowaveAnisotropyProbe(WMAP) Observations: Determination of Cosmological Parameters.The Astrophysical Journal Supplement Series, 148, 175-194. https://doi.org/10.1086/377226 |
[21] |
Bennett, C.L., Halpern, M., Hinshaw, G., Jarosik, N., Kogut, A., Limon, M.,et al. (2003) First‐YearWilkinsonMicrowaveAnisotropyProbe(WMAP) Observations: Preliminary Maps and Basic Results.The Astrophysical Journal Supplement Series, 148, 1-27. https://doi.org/10.1086/377253 |
[22] |
Tegmark, M., Strauss, M.A., Blanton, M.R., Abazajian, K., Dodelson, S., Sandvik, H.,et al. (2004) Cosmological Parameters from SDSS and WMAP.Physical Review D, 69, Article 103501. https://doi.org/10.1103/physrevd.69.103501 |
[23] |
Abazajian, K., Adelman-McCarthy, J.K., Agüeros, M.A., Allam, S.S., Anderson, K.S.J., Anderson, S.F.,et al. (2004) The Second Data Release of the Sloan Digital Sky Survey.The Astronomical Journal, 128, 502-512. https://doi.org/10.1086/421365 |
[24] |
Motta, V., García-Aspeitia, M.A., Hernández-Almada, A., Magaña, J. and Verdugo, T. (2021) Taxonomy of Dark Energy Models.Universe, 7, Article 163. https://doi.org/10.3390/universe7060163 |
[25] |
Alves, J., Bertout, C., Combes, F., Ferrara, A., Forveille, T., Guillot, T.,et al. (2014) Planck 2013 Results.Astronomy & Astrophysics, 571, Article E1. https://doi.org/10.1051/0004-6361/201425195 |
[26] |
Alves, J., Combes, F., Ferrara, A., Forveille, T. and Shore, S. (2016) Planck 2015 Results.Astronomy & Astrophysics, 594, Article E1. https://doi.org/10.1051/0004-6361/201629543 |
[27] |
Sahni, V. and Starobinsky, A. (2000) The Case for a Positive Cosmological Λ-Term.International Journal of Modern Physics D, 9, 373-443. https://doi.org/10.1142/s0218271800000542 |
[28] |
Bean, R., Carroll, S. and Trodden, M. (2005) Insights into Dark Energy: Interplay between Theory and Observation. arXiv: astro-ph/0510059. https://doi.org/10.48550/arXiv.astro-ph/0510059 |
[29] |
Guo, R., Zhang, J. and Zhang, X. (2018) Exploring Neutrino Mass and Mass Hierarchy in the Scenario of Vacuum Energy Interacting with Cold Dark Matter.Chinese Physics C, 42, Article 095103. https://doi.org/10.1088/1674-1137/42/9/095103 |
[30] |
Geng, C., Lee, C., Myrzakulov, R., Sami, M. and Saridakis, E.N. (2016) Observational Constraints on Varying Neutrino-Mass Cosmology.Journal of Cosmology and Astroparticle Physics, 2016, Article 49. https://doi.org/10.1088/1475-7516/2016/01/049 |
[31] |
Chen, Y. and Xu, L. (2016) Galaxy Clustering, CMB and Supernova Data Constraints onΦCDM Model with Massive Neutrinos.Physics Letters B, 752, 66-75. https://doi.org/10.1016/j.physletb.2015.11.022 |
[32] |
Vagnozzi, S., Dhawan, S., Gerbino, M., Freese, K., Goobar, A. and Mena, O. (2018) Constraints on the Sum of the Neutrino Masses in Dynamical Dark Energy Models withw(z) ≥ −1 Are Tighter than Those Obtained in ΛCDM.Physical Review D, 98, Article 083501. https://doi.org/10.1103/physrevd.98.083501 |
[33] |
Riess, A.G., Casertano, S., Yuan, W., Macri, L.M. and Scolnic, D. (2019) Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM.The Astrophysical Journal, 876, Article 85. https://doi.org/10.3847/1538-4357/ab1422 |
[34] |
Wang, L., Zhang, X., Zhang, J. and Zhang, X. (2018) Impacts of Gravitational-Wave Standard Siren Observation of the Einstein Telescope on Weighing Neutrinos in Cosmology.Physics Letters B, 782, 87-93. https://doi.org/10.1016/j.physletb.2018.05.027 |
[35] |
Zhao, M., Li, Y., Zhang, J. and Zhang, X. (2017) Constraining Neutrino Mass and Extra Relativistic Degrees of Freedom in Dynamical Dark Energy Models Using Planck 2015 Data in Combination with Low-Redshift Cosmological Probes: Basic Extensions to ΛCDM Cosmology.Monthly Notices of the Royal Astronomical Society, 469, 1713-1724. https://doi.org/10.1093/mnras/stx978 |
[36] |
Zhang, X. (2016) Impacts of Dark Energy on Weighing Neutrinos after Planck 2015.Physical Review D, 93, Article 083011. https://doi.org/10.1103/physrevd.93.083011 |
[37] |
Li, H. and Zhang, X. (2012) Constraining Dynamical Dark Energy with a Divergence-Free Parametrization in the Presence of Spatial Curvature and Massive Neutrinos.Physics Letters B, 713, 160-164. https://doi.org/10.1016/j.physletb.2012.06.030 |
[38] |
Zhang, J., Li, Y. and Zhang, X. (2014) Cosmological Constraints on Neutrinos after BICEP2.The European Physical Journal C, 74, Article No. 2954. https://doi.org/10.1140/epjc/s10052-014-2954-8 |
[39] |
Zhang, J., Zhao, M., Li, Y. and Zhang, X. (2015) Neutrinos in the Holographic Dark Energy Model: Constraints from Latest Measurements of Expansion History and Growth of Structure.Journal of Cosmology and Astroparticle Physics, 2015, Article 38. https://doi.org/10.1088/1475-7516/2015/04/038 |
[40] |
Wang, S., Wang, Y., Xia, D. and Zhang, X. (2016) Impacts of Dark Energy on Weighing Neutrinos: Mass Hierarchies Considered.Physical Review D, 94, Article 083519. https://doi.org/10.1103/physrevd.94.083519 |
[41] |
Choudhury, S.R. and Hannestad, S. (2020) Updated Results on Neutrino Mass and Mass Hierarchy from Cosmology with Planck 2018 Likelihoods.Journal of Cosmology and Astroparticle Physics, 2020, Article 37. https://doi.org/10.1088/1475-7516/2020/07/037 |
[42] |
Loureiro, A., Cuceu, A., Abdalla, F.B., Moraes, B., Whiteway, L., McLeod, M.,et al. (2019) Upper Bound of Neutrino Masses from Combined Cosmological Observations and Particle Physics Experiments.Physical Review Letters, 123, Article 081301. https://doi.org/10.1103/physrevlett.123.081301 |
[43] |
Yang, W., Nunes, R.C., Pan, S. and Mota, D.F. (2017) Effects of Neutrino Mass Hierarchies on Dynamical Dark Energy Models.Physical Review D, 95, Article 103522. https://doi.org/10.1103/physrevd.95.103522 |
[44] |
Huang, Q., Wang, K. and Wang, S. (2016) Constraints on the Neutrino Mass and Mass Hierarchy from Cosmological Observations.The European Physical Journal C, 76, Article No. 489. https://doi.org/10.1140/epjc/s10052-016-4334-z |
[45] |
Chevallier, M. and Polarski, D. (2001) Accelerating Universes with Scaling Dark Matter.International Journal of Modern Physics D, 10, 213-223. https://doi.org/10.1142/s0218271801000822 |
[46] |
Linder, E.V. (2003) Exploring the Expansion History of the Universe.Physical Review Letters, 90, Article 091301. https://doi.org/10.1103/physrevlett.90.091301 |
[47] |
Astier, P. (2001) Can Luminosity Distance Measurements Probe the Equation of State of Dark Energy?Physics Letters B, 500, 8-15. https://doi.org/10.1016/s0370-2693(01)00072-7 |
[48] |
Yao, T., Guo, R. and Zhao, X. (2023) Constraining Neutrino Mass in Dynamical Dark Energy Cosmologies with the Logarithm Parametrization and the Oscillating Parametrization.Journal of High Energy Physics, Gravitation and Cosmology, 9, 1044-1061. https://doi.org/10.4236/jhepgc.2023.94076 |
[49] |
Li, Y., Wang, S., Li, X. and Zhang, X. (2013) Holographic Dark Energy in a Universe with Spatial Curvature and Massive Neutrinos: A Full Markov Chain Monte Carlo Exploration.Journal of Cosmology and Astroparticle Physics, 2013, Article 33. https://doi.org/10.1088/1475-7516/2013/02/033 |
[50] |
Pan, S., Yang, W. and Paliathanasis, A. (2020) Imprints of an Extended Chevallier-Polarski-Linder Parametrization on the Large Scale of Our Universe.The European Physical Journal C, 80, Article No. 274. https://doi.org/10.1140/epjc/s10052-020-7832-y |
[51] |
Valentino, E.D., Gariazzo, S., Mena, O. and Vagnozzi, S. (2020) Soundness of Dark Energy Properties.Journal of Cosmology and Astroparticle Physics, 2020, Article 45. https://doi.org/10.1088/1475-7516/2020/07/045 |
[52] |
Cárdenas, V.H., Cruz, M., Lepe, S. and Salgado, P. (2021) Reconstructing Mimetic Cosmology.Physics of the Dark Universe, 31, Article 100775. https://doi.org/10.1016/j.dark.2021.100775 |
[53] |
Rezaei, M., Peracaula, J.S. and Malekjani, M. (2021) Cosmographic Approach to Running Vacuum Dark Energy Models: New Constraints Using BAOs and Hubble Diagrams at Higher Redshifts.Monthly Notices of the Royal Astronomical Society, 509, 2593-2608. https://doi.org/10.1093/mnras/stab3117 |
[54] |
Wang, H. and Piao, Y. (2022) Testing Dark Energy after Pre-Recombination Early Dark Energy.Physics Letters B, 832, Article 137244. https://doi.org/10.1016/j.physletb.2022.137244 |
[55] |
Aghanim, N., Akrami, Y., Ashdown, M.,et al. (2018) Planck 2018 Results. III. High Frequency Instrument Data Processing and Frequency Maps.Astronomy & Astrophysics, 641, Article No. A3. https://doi.org/10.1051/0004-6361/201832909 |
[56] |
Aghanim, N., Akrami, Y., Ashdown, M.,et al. (2020) Planck 2018 Results. VI. Cosmological Parameters.Astronomy & Astrophysics, 641, A6. https://doi.org/10.1051/0004-6361/201833910 |
[57] |
Dodelson, S. (2003) Modern Cosmology. Academic Press. |
[58] |
Perković, D. and Štefančić, H. (2020) Barotropic Fluid Compatible Parametrizations of Dark Energy.The European Physical Journal C, 80, Article No. 629. https://doi.org/10.1140/epjc/s10052-020-8199-9 |
[59] |
Pacif, S.K.J. (2020) Dark Energy Models from a Parametrization of H: A Comprehensive Analysis and Observational Constraints.The European Physical Journal Plus, 135, Article No. 792. https://doi.org/10.1140/epjp/s13360-020-00769-y |
[60] |
Cárdenas, V.H., Cruz, M., Lepe, S. and Salgado, P. (2021) Reconstructing Mimetic Cosmology.Physics of the Dark Universe, 31, Article 100775. https://doi.org/10.1016/j.dark.2021.100775 |
[61] |
Ren, X., Wong, T.H.T., Cai, Y. and Saridakis, E.N. (2021) Data-Driven Reconstruction of the Late-Time Cosmic Acceleration withf(T) Gravity.Physics of the Dark Universe, 32, Article 100812. https://doi.org/10.1016/j.dark.2021.100812 |
[62] |
Rezaei, M. and Peracaula, J.S. (2022) Running Vacuum versus Holographic Dark Energy: A Cosmographic Comparison.The European Physical Journal C, 82, Article No. 765. https://doi.org/10.1140/epjc/s10052-022-10653-x |
[63] |
Yang, W., Giarè, W., Pan, S., Di Valentino, E., Melchiorri, A. and Silk, J. (2023) Revealing the Effects of Curvature on the Cosmological Models.Physical Review D, 107, Article 063509. https://doi.org/10.1103/physrevd.107.063509 |
[64] |
Jassal, H.K., Bagla, J.S. and Padmanabhan, T. (2005) Observational Constraints on Low Redshift Evolution of Dark Energy: How Consistent Are Different Observations?Physical Review D, 72, Article 103503. https://doi.org/10.1103/physrevd.72.103503 |