含裂纹结构拘束相关断裂韧性预测程序研究
A Study on Constraint-Related Fracture Toughness Prediction Program for Cracked Structures
DOI:10.12677/mos.2024.134406,PDF,HTML,XML,下载: 39浏览: 74国家自然科学基金支持
作者:张应华,杨 杰*:上海理工大学能源与动力工程学院,上海市动力工程多相流动与传热重点实验室,上海;刘 芳,崔元元:上海理工大学机械工程学院,上海;王骁晓:华东理工大学承压系统与安全教育部重点实验室,上海
关键词:拘束断裂韧性预测程序ConstraintFracture ToughnessPrediction Program
摘要:基于统一拘束参数 A p及拘束相关断裂韧性确定方法,采用Matlab软件编写了包含Python脚本的拘束相关断裂韧性预测程序,并借助Matlab App Designer功能完成了对预测程序主界面的设计。预测程序包括3个模块:ODB&MAT模块,Auto Monitor模块和Manu Monitor模块,预测流程主要包括5个步骤。基于编写好的程序,以单边缺口弯曲(SENB)试样和紧凑拉伸(CT)试样为研究对象,对不同拘束下各试样拘束相关的断裂韧性进行了预测。预测结果显示:预测程序所得开动力曲线与文献中所得具有很好的一致性,对 J积分和等值线所围区域面积捕捉正确,对拘束参数 A p的计算及对开动力曲线的绘制准确。通过预测程序所确定的拘束相关断裂韧性与文献中所确定的在10%误差带内,可以较好地对不同拘束下含裂纹结构的拘束相关断裂韧性进行预测。
Abstract:Based on the unified constraint parameter A pand the determining method of the constraint-re- lated fracture toughness, a constraint-related fracture toughness prediction program with Python script was written in Matlab software, and the main interface of the prediction program was designed with the help of Matlab App Designer. The prediction program includes three modules: ODB&MAT module, Auto Monitor module and Manu Monitor module, and the prediction process mainly includes five steps. Based on the written program, the prediction of the constraint-related fracture toughness of each specimen under different constraints was carried out by taking the single edge notched bending (SENB) specimen and the compact tensile (CT) specimen as the objects. The results show that the driving force curves obtained by the prediction program are in good agreement with those obtained in the literature, the J-integral and the area of the region surrounded by the isolines are correctly captured, and the calculation of the constraint parameter A pand the plotting of the driving force curves are accurate. The constraint-related fracture toughness determined by the prediction program is within the 10% error band of that determined in the literature, which can be used to predict the constraint-related fracture toughness of cracked structures under different constraints.
文章引用:张应华, 刘芳, 崔元元, 王骁晓, 杨杰. 含裂纹结构拘束相关断裂韧性预测程序研究[J]. 建模与仿真, 2024, 13(4): 4498-4506. https://doi.org/10.12677/mos.2024.134406

1. 引言

为了预防事故的发生,需要对结构进行准确的完整性评定。目前已经颁布的含缺陷结构的完整性评定规范有很多,如中国的GB/T 19624-2019《在用含缺陷压力容器安全评定》[1]、英国的R6[2]和BS7910[3]、欧洲的SINTAP[4]和FITNET Fitness-for-Service (FFS)法[5]-[8]、美国的ASME[9]、日本的IST法[10]等,其所使用的评定方法都需要准确计算含裂纹结构的断裂韧性。然而,含裂纹结构的断裂韧性受裂尖拘束的影响。

拘束是结构对裂尖区域材料塑性变形的阻碍,它的影响因素包括裂纹尺寸、结构几何、材料性能失配、加载方式等方面,拘束的降低会导致断裂韧性的提高[11]

为进行准确的完整性评定,需在评定中纳入拘束的影响,为此,一系列拘束参数被相继建立。这些参数主要包括:Williams[12]提出的T应力参数,后被成功用于表征拘束对不同尺寸试样断裂韧性的影响[13]-[15];O’Dowd和Shih[16]定义的Q参数,主要衡量拘束对裂尖应力场的影响;Guo[17]-[20]提出的Tz参数,后被广泛用于表征面外拘束。随着研究的深入,统一拘束参数被相继提出,如βT[21]φ[22]Ap[23][24]Ad[25]等。

基于拘束参数Ap,Yang等[26]提出了一种实际结构拘束相关断裂韧性的确定方法。然而,对于该方法中所需要计算的裂尖等效塑性应变(εp)等值线所围绕区域的面积、拘束参数Ap,需要手动截图、测量、计算,过程复杂且容易引入误差。对于所需要用到的J积分,需要手动提取。为了提高计算精度和效率[27],希望可以编写预测程序,通过预测程序实现数据的自动提取与计算,最终实现拘束相关断裂韧性的实时预测,这将有助于提高预测效率和精度,且有助于该方法的工程应用。

鉴于此,本文基于Yang等[26]提出的实际结构拘束相关断裂韧性的确定方法,以单边缺口弯曲(SENB)试样和紧凑拉伸(CT)试样为对象,对拘束相关断裂韧性预测程序进行开发,以实时自动提取J积分,实时自动计算εp等值线所围绕区域的面积及对应的拘束参数Ap,最终实现拘束相关断裂韧性的实时计算和预测。

2. 含裂纹结构拘束相关断裂韧性确定方法

在文献[26]中,提出了实际结构拘束相关断裂韧性的确定方法:建立材料的断裂曲线( J C / J ref A P 关联线);获得含裂纹结构的开动力曲线( J / J ref A P 关联线);两条曲线的交点即为试样的起裂点,起裂点所对应的断裂韧性值即为含裂纹结构的拘束相关断裂韧性。其中,拘束参数Ap定义为

A P = A PEEQ / A ref (1)

APEEQεp等值线所围绕区域的面积,Aref是标准试样中εp等值线所围绕区域的面积。

核电压力容器用钢A508的断裂曲线和某一结构的开动力曲线如图1所示。其中, J ref = 509.5 kJ/m2,为标准试样断裂韧性,选用εp= 0.2等值线所围绕区域的面积对ArefAp进行计算。后文将基于该断裂曲线对含裂纹结构拘束相关的断裂韧性进行预测。

Figure 1.Determination method of constraint-related fracture toughness[26]

1.拘束相关断裂韧性的确定方法[26]

3. 拘束相关断裂韧性预测程序开发

3.1. 程序开发平台及系统搭建

基于Matlab软件编写包含Python脚本的预测程序,并借助Matlab App Designer功能完成对预测程序主界面的设计。拘束相关断裂韧性预测程序的系统架构如图2所示,针对使用ABAQUS软件建立的有限元模型,用户通过由Matlab App Designer设计的人机交互界面发送指令,ABAQUS在接受指令后,调用脚本接口,将所需数据从ODB模型数据库提取并以TXT文本的形式储存,并通过Matlab软件进行分析计算,根据本文节2中的拘束相关断裂韧性确定方法,对起裂点和拘束相关断裂韧性进行预测,并呈现在程序可视化窗口。

预测程序主要包括3个模块:ODB&MAT模块,Auto Monitor模块和Manu Monitor模块。其中ODB&MAT模块主要用于建立与监测对象的数据交互通道;Auto Monitor模块主要负责实时监测裂纹状态、处理监测数据,并以线性函数的形式可视化裂纹状态,预测拘束相关断裂韧性;Manu Monitor模块则作为备用操作验证模块,主要用于验证Auto Monitor 模块裂纹监测的准确性。

Figure 2.System architecture of the constraint-related fracture toughness prediction program

2.拘束相关断裂韧性预测程序系统架构图

3.2. 程序预测流程

拘束相关断裂韧性预测程序的工作流程主要包括5个步骤:

1) 监测对象确定及关键字写入:在ODB&MAT模块,通过模块中的Select版块确定监测对象,调用ABAQUS的脚本接口,获取模型的关键字,并根据监测对像选择相应关键字;

2) 断裂曲线加载:在Auto Monitor模块,通过模块中的Material版块加载断裂曲线,在Monitor版块设置JrefAref

3) 裂纹实时监测及记录:在Auto Monitor模块,点击Monitor版块的Run及Monitor按钮,实时显示裂纹当前状态,并显示对应数据;

4) 起裂点及拘束相关断裂韧性的实时获取:在Auto Monitor模块,点击Prediction版块的Get按钮,预测得到起裂点及拘束相关断裂韧性的无量纲参数;

5) 实时监测数据验证:为了检验实时监测数据的准确性,在Manu Monitor模块提取、计算模型所有运算数据并分别以离散数据点和线性函数拟合的形式给出,验证Auto Monitor 模块监测数据。

4. 有限元算例验证

4.1. 有限元算例

为验证预测程序的准确性,对文献[28]中所提供的不同拘束SENB、CT试样的拘束相关断裂韧性进行预测。试样材料为A508,其真应力–应变曲线如图3[23]所示,加载方式和试样几何如图4所示。通过改变初始裂纹长度改变拘束,不同拘束试样的尺寸如表1所示。对不同拘束试样进行与文献[28]中一致的有限元计算,继而完成对预测程序的测试与验证。

Figure 3.True stress-strain curve of A508 steel at room temperature[23]

3.A508钢室温下的真应力–应变曲线[23]

(a) SENB (b) CT

Figure 4.Loading configurations and geometries of different specimens[27]

4.不同试样的加载方式和试样几何[27]

Table 1.The sizes of the specimens with different constraints

1.不同拘束试样的尺寸

试样Specimen

跨距L/ mm

试样宽度W/mm

裂纹长度a/mm

a/W

SENB

128

32

3.2

0.1

128

32

9.6

0.3

128

32

16.0

0.5

128

32

22.4

0.7

CT


32

3.2

0.1


32

9.6

0.3


32

16.0

0.5


32

22.4

0.7

4.2. 开动力曲线数据验证

针对不同拘束的SENB和CT试样,预测程序所得与文献中所得开动力曲线即 J / J ref A P 关联线的对比如图5图6所示。由图可见,程序所得开动力曲线与文献中所得具有很好的一致性,说明程序对J积分和等值线所围绕区域捕捉正确,对等值线所围绕区域面积及拘束参数Ap计算准确,对开动力曲线绘制准确。

(a)a/W= 0.1 (b)a/W= 0.3

(c)a/W= 0.5 (d)a/W= 0.7

Figure 5.Comparison of the open force curves obtained by the SENB specimen prediction program with those obtained in the literature

5.不同试样的加载方式和试样几何

(a)a/W= 0.1 (b)a/W= 0.3

(c)a/W= 0.5 (d)a/W= 0.7

Figure 6.Comparison of open force curves obtained by the CT specimen prediction program with those obtained in the literature

6.CT试样预测程序所得与文献中所得开动力曲线的对比

4.3. 拘束相关断裂韧性验证

按照本文中节2介绍的方法,通过断裂曲线与开动力曲线确定拘束相关的断裂韧性,预测程序所确定与文献中所确定不同拘束SENB和CT试样的拘束相关断裂韧性如图7图8所示。由图可见,通过预测程序所确定的拘束相关断裂韧性与文献中所确定的在10%误差带内,可以较好的对不同拘束下含裂纹试样的拘束相关断裂韧性进行预测。

(a) SENB (b) CT

Figure 7.Determination of constraint-related fracture toughness for SENB and CT specimens

7.SENB、CT试样拘束相关断裂韧性的确定

Figure 8.Comparison of constraint-related fracture toughness determined by the prediction program and determined in the literature

8.预测程序所确定与文献中所确定拘束相关断裂韧性的对比

5. 结论

本文基于统一拘束参数Ap及拘束相关断裂韧性确定方法,采用Matlab软件编写了包含Python脚本的拘束相关断裂韧性预测程序。基于编写好的程序,以SENB试样和CT试样为研究对象,对不同拘束下各试样拘束相关的断裂韧性进行了预测。所得主要结论如下:

1) 程序主要包括3个模块:ODB&MAT模块,Auto Monitor模块和Manu Monitor模块,其工作流程主要包括5个步骤。

2) 程序可实时自动提取J积分,实时自动计算εp等值线所围绕区域的面积及对应的拘束参数Ap

3) 程序实现了拘束相关断裂韧性的实时计算和预测,通过预测程序所确定的拘束相关断裂韧性与文献中所确定的在10%误差带内。

4) 该程序实现了对监测对象预测的可视化,且有助于提高预测精度。

基金项目

国家自然科学基金资助项目(52311530067)。

NOTES

*通讯作者。

参考文献

[1] 国家市场监督管理总局. GB/T 19624-2019在用含缺陷压力容器安全评定[S]. 北京: 中国标准出版社, 2019.
[2] British Energy Ltd. (2006) R6: Assessment of the Integrity of Structures Containing Defects, British Energy Generation Report R/H/R6, Revision 4. 25-32.
[3] British Standards Institution (1999) BS 7910: 1999, Guide to Methods of Assessing the Acceptability of Flaws in Fusion Welded Structures. 113-124.
[4] SINTAP (1999) Structural Assessment Procedures for European Industry, Final Procedure, Project BE95-1426. British Steel Report, 81-114.
[5] Kocak, M., Webster, S., Janosch, J.J., Ainsworth, R.A. and Koers, R. (2008) FITNET Fitness-for-Service (FFS) Procedure (Vol. 1). GKSS Research Centre.
[6] Kocak, M., Hadley, I., Szavai, S., Tkach, Y. and Taylor, N. (2008) FITNET Fitness-for-Service (FFS) Annex (Vol. 3). GKSS Research Centre.
[7] Kocak, M., Laukkanen, A., Gutiérrez-Solana, F., Cicero, S. and Hadley, I. (2008) FITNET Fitness-for-Service (FFS) Case Studies and Tutorials (Vol. 2). GKSS Research Centre.
[8] Gutiérrez-Solana, F. and Cicero, S. (2009) FITNET FFS Procedure: A Unified European Procedure for Structural Integrity Assessment.Engineering Failure Analysis, 16, 559-577.
https://doi.org/10.1016/j.engfailanal.2008.02.007
[9] American Society of Mechanical Engineers (2002) ASME BPVC Section XI: Rules for Inservice Inspection of Nuclear Power Plant Components. American Society of Mechanical Engineers, 77-80.
[10] Minami, F., Ohata, M., Shimanuki, H.,et al. (2006) Method of Constraint Loss Correction of CTOD Fracture Toughness for Fracture Assessment of Steel Components.Engineering Fracture Mechanics, 73, 1996-2020.
https://doi.org/10.1016/j.engfracmech.2006.03.013
[11] Dodds, R.H., Shih, C.F. and Anderson, T.L. (1993) Continuum and Micromechanics Treatment of Constraint in Fracture.International Journal of Fracture, 64, 101-133.
https://doi.org/10.1007/BF00016693
[12] Williams, M.L. (1957) On the Stress Distribution at the Base of a Stationary Crack.Journal of Applied Mechanics, 24, 109-114.
https://doi.org/10.1115/1.4011454
[13] Hancock J.W., Reuter, W.G. and Parks, D.M. (1993) Constraint and Toughness Parameterized by T. In:Constraint Effects in Fracture, ASTM STP 1171, American Society for Testing and Materials, 1-40.
https://doi.org/10.1520/STP18021S
[14] Sumpter, J.D.G. (1993) An Experimental Investigation of the T-Stress Approach. In:Constraint Effect in Fracture, ASTM STP 1171, American Society for Testing and Materials, 492-502.
https://doi.org/10.1520/STP18042S
[15] Tregoning, R.L. and Joyce, J.A. (2002) Application of T-Stress Based Constraint Correction to A533B Steel Fracture Toughness Data. In:Fatigue and Fracture Mechanics, ASTM STP 1417, Vol. 33, American Society for Testing and Materials, 307-327.
https://doi.org/10.1520/STP11082S
[16] O’Dowd, N.P. and Shih, C.F. (1991) Family of Crack-Tip Fields Characterized by Triaxiality Parameter.Journal of the Mechanics and Physics of Solids, 39, 989-1015.
https://doi.org/10.1016/0022-5096(91)90049-T
[17] Guo, W.L. (1993) Elasto-Plastic Three-Dimensional Crack Border Field-I. Singular Structure of the Field.Engineering Fracture Mechanics, 46, 93-104.
https://doi.org/10.1016/0013-7944(93)90306-D
[18] Guo, W.L. (1993) Elasto-Plastic Three-Dimensional Crack Border Field-II. Asymptotic Solution for the Field.Engineering Fracture Mechanics, 46, 105-113.
https://doi.org/10.1016/0013-7944(93)90307-E
[19] Guo, W.L. (1995) Elasto-Plastic Three-Dimensional Crack Border Field-III. Fracture Parameters.Engineering Fracture Mechanics, 51, 51-71.
https://doi.org/10.1016/0013-7944(94)00215-4
[20] Guo, W.L. (1999) Three-Dimensional Analysis of Plastic Constraint for Through-Thickness Cracked Bodies.Engineering Fracture Mechanics, 62, 383-407.
https://doi.org/10.1016/S0013-7944(98)00102-7
[21] Betegón, C. and Peñuelas, I. (2006) A Constraint Based Parameter for Quantifying the Crack Tip Stress Fields in Welded Joints.Engineering Fracture Mechanics, 73, 1865-1877.
https://doi.org/10.1016/j.engfracmech.2006.02.012
[22] Mostafavi, M., Smith, D.J. and Pavier, M.J. (2010) Reduction of Measured Toughness Due to Out-of-Plane Constraint in Ductile Fracture of Aluminium Alloy Specimens.Fatigue & Fracture of Engineering Materials & Structures, 33, 724-739.
https://doi.org/10.1111/j.1460-2695.2010.01483.x
[23] Yang, J., Wang, G.Z., Xuan, F.Z.,et al. (2013) Unified Characterisation of In-Plane and Out-of-Plane Constraint Based on Crack-Tip Equivalent Plastic Strain.Fatigue & Fracture of Engineering Materials & Structures, 36, 504-514.
https://doi.org/10.1111/ffe.12019
[24] Yang, J., Wang, G.Z., Xuan, F.Z.,et al. (2014) Unified Correlation of In-Plane and Out-of-Plane Constraints with Fracture Toughness.Fatigue & Fracture of Engineering Materials & Structures, 37, 132-145.
https://doi.org/10.1111/ffe.12094
[25] Xu, J.Y., Wang, G.Z., Xuan, F.Z.,et al. (2018) Unified Constraint Parameter Based on Crack-Tip Opening Displacement.Engineering Fracture Mechanics, 200, 175-188.
https://doi.org/10.1016/j.engfracmech.2018.07.021
[26] 杨杰, 王雷. 实际结构拘束相关断裂韧性的确定方法研究[J]. 机械强度, 2017, 39(6): 1438-1444.
[27] 吴楠. 计算机辅助技术在机械设计与制造中的应用[J]. 机械设计, 2021, 38(11): 146.
[28] 杨杰, 刘玉嫚, 吴凡. 不同实验室试样间拘束度的匹配性研究[J]. 机械强度, 2019, 41(6): 1308-1314.

为你推荐



Baidu
map