[1] |
Rao, A., Agrawal, A., Borthakur, G., Battula, V.L. and Maiti, A. (2024) Gamma Delta T Cells in Acute Myeloid Leukemia: Biology and Emerging Therapeutic Strategies.Journal forImmunoTherapyof Cancer, 12, e007981. https://doi.org/10.1136/jitc-2023-007981 |
[2] |
Guo, J., Chowdhury, R.R., Mallajosyula, V., Xie, J., Dubey, M., Liu, Y.,et al. (2024)γδT Cell Antigen Receptor Polyspecificity Enables T Cell Responses to a Broad Range of Immune Challenges.Proceedings of the National Academy of Sciences, 121, e2315592121. https://doi.org/10.1073/pnas.2315592121 |
[3] |
Gao, Z., Bai, Y., Lin, A., Jiang, A., Zhou, C., Cheng, Q.,et al. (2023) Gamma Delta T-Cell-Based Immune Checkpoint Therapy: Attractive Candidate for Antitumor Treatment.Molecular Cancer, 22, Article No. 31. https://doi.org/10.1186/s12943-023-01722-0 |
[4] |
Ribot, J.C., Lopes, N. and Silva-Santos, B. (2020)γδT Cells in Tissue Physiology and Surveillance.Nature Reviews Immunology, 21, 221-232. https://doi.org/10.1038/s41577-020-00452-4 |
[5] |
Bank, I. (2020) The Role of Gamma Delta T Cells in Autoimmune Rheumatic Diseases.Cells, 9, Article No. 462. https://doi.org/10.3390/cells9020462 |
[6] |
Lim, S.A., Su, W., Chapman, N.M. and Chi, H. (2022) Lipid Metabolism in T Cell Signaling and Function.Nature Chemical Biology, 18, 470-481. https://doi.org/10.1038/s41589-022-01017-3 |
[7] |
van der Windt, G.J.W., O’Sullivan, D., Everts, B., Huang, S.C., Buck, M.D., Curtis, J.D.,et al. (2013) CD8 Memory T Cells Have a Bioenergetic Advantage That Underlies Their Rapid Recall Ability.Proceedings of the National Academy of Sciences, 110, 14336-14341. https://doi.org/10.1073/pnas.1221740110 |
[8] |
Veldhoen, M., Blankenhaus, B., Konjar, Š. and Ferreira, C. (2018) Metabolic Wiring of Murine T Cell and Intraepithelial Lymphocyte Maintenance and Activation.European Journal of Immunology, 48, 1430-1440. https://doi.org/10.1002/eji.201646745 |
[9] |
Webb, L.M., Sengupta, S., Edell, C., Piedra-Quintero, Z.L., Amici, S.A., Miranda, J.N.,et al. (2020) Protein Arginine Methyltransferase 5 Promotes Cholesterol Biosynthesis-Mediated Th17 Responses and Autoimmunity.Journal of Clinical Investigation, 130, 1683-1698. https://doi.org/10.1172/jci131254 |
[10] |
Ramos, G.P., Bamidele, A.O., Klatt, E.E., Sagstetter, M.R., Kurdi, A.T., Hamdan, F.H.,et al. (2023) G9a Modulates Lipid Metabolism in CD4 T Cells to Regulate Intestinal Inflammation.Gastroenterology, 164, 256-271.e10. https://doi.org/10.1053/j.gastro.2022.10.011 |
[11] |
Shin, J., O’Brien, T.F., Grayson, J.M. and Zhong, X. (2012) Differential Regulation of Primary and Memory CD8 T Cell Immune Responses by Diacylglycerol Kinases.The Journal of Immunology, 188, 2111-2117. https://doi.org/10.4049/jimmunol.1102265 |
[12] |
Wang, F., Beck-García, K., Zorzin, C., Schamel, W.W.A. and Davis, M.M. (2016) Inhibition of T Cell Receptor Signaling by Cholesterol Sulfate, a Naturally Occurring Derivative of Membrane Cholesterol.Nature Immunology, 17, 844-850. https://doi.org/10.1038/ni.3462 |
[13] |
Berod, L., Friedrich, C., Nandan, A., Freitag, J., Hagemann, S., Harmrolfs, K.,et al. (2014) De Novo Fatty Acid Synthesis Controls the Fate between Regulatory T and T Helper 17 Cells.Nature Medicine, 20, 1327-1333. https://doi.org/10.1038/nm.3704 |
[14] |
Kidani, Y., Elsaesser, H., Hock, M.B., Vergnes, L., Williams, K.J., Argus, J.P.,et al. (2013) Sterol Regulatory Element-Binding Proteins Are Essential for the Metabolic Programming of Effector T Cells and Adaptive Immunity.Nature Immunology, 14, 489-499. https://doi.org/10.1038/ni.2570 |
[15] |
Lopes, N., McIntyre, C., Martin, S., Raverdeau, M., Sumaria, N., Kohlgruber, A.C.,et al. (2021) Distinct Metabolic Programs Established in the Thymus Control Effector Functions ofγδT Cell Subsets in Tumor Microenvironments.Nature Immunology, 22, 179-192. https://doi.org/10.1038/s41590-020-00848-3 |
[16] |
Cheng, H., Wu, R., Gebre, A.K., Hanna, R.N., Smith, D.J., Parks, J.S.,et al. (2013) Increased Cholesterol Content in Gammadelta (γδ) T Lymphocytes Differentially Regulates Their Activation.PLOS ONE, 8, e63746. https://doi.org/10.1371/journal.pone.0063746 |
[17] |
Nakamizo, S., Honda, T., Adachi, A., Nagatake, T., Kunisawa, J., Kitoh, A.,et al. (2017) High Fat Diet Exacerbates Murine Psoriatic Dermatitis by Increasing the Number of Il-17-ProducingγδT Cells.Scientific Reports, 7, Article No. 14076. https://doi.org/10.1038/s41598-017-14292-1 |
[18] |
Torres‐Hernandez, A., Wang, W., Nikiforov, Y., Tejada, K., Torres, L., Kalabin, A.,et al. (2019)γδT Cells Promote Steatohepatitis by Orchestrating Innate and Adaptive Immune Programming.Hepatology, 71, 477-494. https://doi.org/10.1002/hep.30952 |
[19] |
Kobayashi, S., Phung, H.T., Kagawa, Y., Miyazaki, H., Takahashi, Y., Asao, A.,et al. (2020) Fatty Acid‐Binding Protein 3 Controls Contact Hypersensitivity through Regulating Skin Dermal Vγ4+γ/δT Cell in a Murine Model.Allergy, 76, 1776-1788. https://doi.org/10.1111/all.14630 |
[20] |
Konjar, Š., Frising, U.C., Ferreira, C., Hinterleitner, R., Mayassi, T., Zhang, Q.,et al. (2018) Mitochondria Maintain Controlled Activation State of Epithelial-Resident T Lymphocytes.Science Immunology, 3, eaan2543. https://doi.org/10.1126/sciimmunol.aan2543 |
[21] |
Jaeger, N., Gamini, R., Cella, M., Schettini, J.L., Bugatti, M., Zhao, S.,et al. (2021) Single-Cell Analyses of Crohn’s Disease Tissues Reveal Intestinal Intraepithelial T Cells Heterogeneity and Altered Subset Distributions.Nature Communications, 12, Article No. 1921. https://doi.org/10.1038/s41467-021-22164-6 |
[22] |
Lockhart, A., Mucida, D. and Bilate, A.M. (2024) Intraepithelial Lymphocytes of the Intestine.Annual Review of Immunology, 42, 289-316. https://doi.org/10.1146/annurev-immunol-090222-100246 |
[23] |
Fahrer, A.M., Konigshofer, Y., Kerr, E.M., Ghandour, G., Mack, D.H., Davis, M.M.,et al. (2001) Attributes ofγδIntraepithelial Lymphocytes as Suggested by Their Transcriptional Profile.Proceedings of the National Academy of Sciences, 98, 10261-10266. https://doi.org/10.1073/pnas.171320798 |
[24] |
Goldberg, E.L., Shchukina, I., Asher, J.L., Sidorov, S., Artyomov, M.N. and Dixit, V.D. (2020) Ketogenesis Activates Metabolically ProtectiveγδT Cells in Visceral Adipose Tissue.Nature Metabolism, 2, 50-61. https://doi.org/10.1038/s42255-019-0160-6 |
[25] |
Jiang, Z., He, J., Zhang, B., Wang, L., Long, C., Zhao, B.,et al. (2024) A Potential “Anti-Warburg Effect” in Circulating Tumor Cell-Mediated Metastatic Progression?Aging and Disease. https://doi.org/10.14336/ad.2023.1227 |
[26] |
Warburg, O. (1956) On the Origin of Cancer Cells.Science, 123, 309-314. https://doi.org/10.1126/science.123.3191.309 |
[27] |
Ward, P.S. and Thompson, C.B. (2012) Metabolic Reprogramming: A Cancer Hallmark Even Warburg Did Not Anticipate.Cancer Cell, 21, 297-308. https://doi.org/10.1016/j.ccr.2012.02.014 |
[28] |
Cai, Y., Xue, F., Qin, H., Chen, X., Liu, N., Fleming, C.,et al. (2019) Differential Roles of the Mtor-Stat3 Signaling in DermalγδT Cell Effector Function in Skin Inflammation.Cell Reports, 27, 3034-3048.e5. https://doi.org/10.1016/j.celrep.2019.05.019 |
[29] |
Yamasaki, H., Shimoji, H., Ohshiro, Y. and Sakihama, Y. (2001) Inhibitory Effects of Nitric Oxide on Oxidative Phosphorylation in Plant Mitochondria.Nitric Oxide, 5, 261-270. https://doi.org/10.1006/niox.2001.0353 |
[30] |
Konjar, Š., Ferreira, C., Carvalho, F.S., Figueiredo-Campos, P., Fanczal, J., Ribeiro, S.,et al. (2022) Intestinal Tissue-Resident T Cell Activation Depends on Metabolite Availability.Proceedings of the National Academy of Sciences, 119, e2202144119. https://doi.org/10.1073/pnas.2202144119 |
[31] |
Xu, Y., Li, M., Lin, M., Cui, D. and Xie, J. (2024) Glutaminolysis of CD4+ T Cells: A Potential Therapeutic Target in Viral Diseases.Journal of Inflammation Research, 17, 603-616. https://doi.org/10.2147/jir.s443482 |
[32] |
Zhu, L., Zhu, X. and Wu, Y. (2022) Effects of Glucose Metabolism, Lipid Metabolism, and Glutamine Metabolism on Tumor Microenvironment and Clinical Implications.Biomolecules, 12, Article No. 580. https://doi.org/10.3390/biom12040580 |
[33] |
Wang, A., Luan, H.H. and Medzhitov, R. (2019) An Evolutionary Perspective on Immunometabolism.Science, 363, eaar3932. https://doi.org/10.1126/science.aar3932 |
[34] |
Kim, H. (2011) Glutamine as an Immunonutrient.YonseiMedical Journal, 52, 892-897. https://doi.org/10.3349/ymj.2011.52.6.892 |
[35] |
Cruzat, V.F., Krause, M. and Newsholme, P. (2014) Amino Acid Supplementation and Impact on Immune Function in the Context of Exercise.Journal of the International Society of Sports Nutrition, 11, Article No. 61. https://doi.org/10.1186/s12970-014-0061-8 |
[36] |
Li, G., Liu, L., Yin, Z., Ye, Z. and Shen, N. (2021) Glutamine Metabolism Is Essential for the Production of IL-17A inγδT Cells and Skin Inflammation.Tissue and Cell, 71, Article ID: 101569. https://doi.org/10.1016/j.tice.2021.101569 |
[37] |
He, W., Hu, Y., Chen, D., Li, Y., Ye, D., Zhao, Q.,et al. (2022) Hepatocellular Carcinoma‐InfiltratingγδT Cells Are Functionally Defected and Allogenic Vδ2+γδT Cell Can Be a Promising Complement.Clinical and Translational Medicine, 12, e800. https://doi.org/10.1002/ctm2.800 |
[38] |
Upadhyay, S., Khan, S. and Hassan, M.I. (2024) Exploring the Diverse Role of Pyruvate Kinase M2 in Cancer: Navigating Beyond Glycolysis and the Warburg Effect.BiochimicaetBiophysicaActa(BBA)-Reviews on Cancer, 1879, Article ID: 189089. https://doi.org/10.1016/j.bbcan.2024.189089 |
[39] |
Ganapathy-Kanniappan, S. and Geschwind, J.H. (2013) Tumor Glycolysis as a Target for Cancer Therapy: Progress and Prospects.Molecular Cancer, 12, Article No. 152. https://doi.org/10.1186/1476-4598-12-152 |
[40] |
Alegre, M., Frauwirth, K.A. and Thompson, C.B. (2001) T-Cell Regulation by CD28 and CTLA-4.Nature Reviews Immunology, 1, 220-228. https://doi.org/10.1038/35105024 |
[41] |
Previte, D.M., O’Connor, E.C., Novak, E.A., Martins, C.P., Mollen, K.P. and Piganelli, J.D. (2017) Reactive Oxygen Species Are Required for Driving Efficient and Sustained Aerobic Glycolysis during CD4+ T Cell Activation.PLOS ONE, 12, e0175549. https://doi.org/10.1371/journal.pone.0175549 |
[42] |
Chen, X., Cai, Y., Hu, X., Ding, C., He, L., Zhang, X.,et al. (2022) Differential Metabolic Requirement Governed by Transcription Factor C-Maf Dictates InnateγδT17 Effector Functionality in Mice and Humans.Science Advances, 8, eabm9120. https://doi.org/10.1126/sciadv.abm9120 |