[1] |
Yang, F., Wu, J., Suwardi, A., Zhao, Y., Liang, B., Jiang, J.,et al. (2020) Gate‐Tunable Polar Optical Phonon to Piezoelectric Scattering in Few‐Layer Bi2O2Se for High‐Performance Thermoelectrics.Advanced Materials, 33, Article ID: 2004786. https://doi.org/10.1002/adma.202004786 |
[2] |
吴国强, 胡剑峰, 罗鹏飞, 等. 低晶格热导率热电材料[J]. 自然杂志, 2019, 41(6): 444-452. |
[3] |
沈家骏, 方腾, 傅铁铮, 等. 热电材料中的晶格热导率[J]. 无机材料学报, 2019, 34(3): 260-268. |
[4] |
李彩云, 何文科, 王东洋, 等. 通过插层Cu实现SnSe2的高效热电性能[J]. 物理学报, 2021, 70(20): 368-376. |
[5] |
Qin, B., Wang, D., He, W., Zhang, Y., Wu, H., Pennycook, S.J.,etal. (2018) Realizing High Thermoelectric Performance in p-Type SnSe through Crystal Structure Modification.Journal of the American Chemical Society, 141, 1141-1149. https://doi.org/10.1021/jacs.8b12450 |
[6] |
Rowe, D.M. (1995) CRC Handbook of Thermoelectrics. CRC, 407-440. |
[7] |
Hicks, L.D. and Dresselhaus, M.S. (1993) Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit.Physical Review B, 47, 12727-12731. https://doi.org/10.1103/physrevb.47.12727 |
[8] |
He, J. and Tritt, T.M. (2017) Advances in Thermoelectric Materials Research: Looking Back and Moving Forward.Science, 357, eaak9997. https://doi.org/10.1126/science.aak9997 |
[9] |
牛厂磊, 唐显, 李鑫. 碲化铋热电材料研究进展评述[J]. 中国陶瓷, 2019, 55(1): 1-4+9. |
[10] |
唐晶晶, 孙彩云, 丛大龙, 等. 碲化铋热电材料掺杂研究进展[J]. 半导体技术, 2022, 47(11): 845-853, 872. |
[11] |
于凤荣, 陈思彤, 刘文鑫, 等. Bi2Te3热电材料的研究现状与发展趋势[J]. 燕山大学学报, 2017, 41(3): 204-218. |
[12] |
Wu, F., Song, H., Jia, J. and Hu, X. (2013) Effects of Ce, Y, and Sm Doping on the Thermoelectric Properties of Bi2Te3Alloy.Progress in Natural Science:Materials International, 23, 408-412. https://doi.org/10.1016/j.pnsc.2013.06.007 |
[13] |
Heremans, J.P., Jovovic, V., Toberer, E.S., Saramat, A., Kurosaki, K., Charoenphakdee, A.,etal. (2008) Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States.Science, 321, 554-557. https://doi.org/10.1126/science.1159725 |
[14] |
Venkatasubramanian, R., Siivola, E., Colpitts, T. and O’Quinn, B. (2001) Thin-Film Thermoelectric Devices with High Room-Temperature Figures of Merit.Nature, 413, 597-602. https://doi.org/10.1038/35098012 |
[15] |
Lou, L., Yang, J., Zhu, Y., Liang, H., Zhang, Y., Feng, J.,etal. (2022) Tunable Electrical Conductivity and Simultaneously Enhanced Thermoelectric and Mechanical Properties in N‐Type Bi2Te3.Advanced Science, 9, Article ID: 2203250. https://doi.org/10.1002/advs.202203250 |
[16] |
Park, K.H., Mohamed, M., Aksamija, Z. and Ravaioli, U. (2015) Phonon Scattering Due to van der Waals Forces in the Lattice Thermal Conductivity of Bi2Te3Thin Films.Journal of Applied Physics, 117, Article ID: 015103. https://doi.org/10.1063/1.4905294 |
[17] |
刘志愿, 管希成, 李周, 等. Bi2Te3基热电材料中的声子工程[J]. 硅酸盐学报, 2024, 52(1): 203-217. |
[18] |
Li, D., Gong, Y., Chen, Y., Lin, J., Khan, Q., Zhang, Y.,etal. (2020) Recent Progress of Two-Dimensional Thermoelectric Materials.Nano-Micro Letters, 12, Article No. 36. https://doi.org/10.1007/s40820-020-0374-x |
[19] |
Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B.,etal. (2008) High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys.Science, 320, 634-638. https://doi.org/10.1126/science.1156446 |
[20] |
Yu, Z., Zhang, Q., Li, L., Chen, Q., Niu, X., Liu, J.,etal. (2010) Highly Flexible Silver Nanowire Electrodes for Shape‐Memory Polymer Light‐Emitting Diodes.Advanced Materials, 23, 664-668. https://doi.org/10.1002/adma.201003398 |
[21] |
蒋祥倩, 李玲, 班春成, 等. 碲化铋基低维氮化硼纳米复合材料的制备及其热电性能研究[J]. 黑龙江大学工程学报, 2021, 12(3): 155-163. |
[22] |
徐庆, 赵琨鹏, 魏天然, 等. 热电材料的研究现状与未来展望[J]. 硅酸盐学报, 2021, 49(7): 1296-1305. |
[23] |
Jeitschko, W., Foecker, A.J., Paschke, D., Dewalsky, M.V., Evers, C.B.H., Künnen, B.,etal. (2000) Crystal Structure and Properties of Some Filled and Unfilled Skutterudites: GdFe4P12, SmFe4P12, NdFe4As12, Eu0.54Co4Sb12, Fe0.5Ni0.5P3, CoP3, and NiP3.Zeitschrift für Anorganische und Allgemeine Chemie, 626, 1112-1120. https://doi.org/10.1002/(sici)1521-3749(200005)626:5<1112::aid-zaac1112>3.0.co;2-e |
[24] |
卫群, 刘丹敏, 张忻, 等. 方钴矿热电材料的研究进展[J]. 稀有金属, 2006(4): 517-522. |
[25] |
席丽丽, 杨炯, 史迅, 等. 填充方钴矿热电材料: 从单填到多填[J]. 中国科学: 物理学力学天文学, 2011, 41(6): 706-728. |
[26] |
王超, 张蕊, 姜晶, 等. CoSb3基方钴矿热电材料综述[J]. 电子科技大学学报, 2020, 49(6): 934-941. |
[27] |
Jiang, Y., Jia, X. and Ma, H. (2017) The Thermoelectric Properties of CoSb3Compound Doped with Te and Sn Synthesized at Different Pressure.Modern Physics Letters B, 31, Article ID: 1750261. https://doi.org/10.1142/s021798491750261x |
[28] |
Su, X., Li, H., Yan, Y., Wang, G., Chi, H., Zhou, X.,etal. (2012) Microstructure and Thermoelectric Properties of CoSb2.75Ge0.25−xTexPrepared by Rapid Solidification.Acta Materialia, 60, 3536-3544. https://doi.org/10.1016/j.actamat.2012.02.034 |
[29] |
Chen, L.D. (2002) Recent Advances in Filled Skutterudite Systems. 21st IEEE International Conference on Thermoelectrics, Long Beach, 25-29 August 2002, 42-47. |
[30] |
Rogl, G., Grytsiv, A., Rogl, P., Peranio, N., Bauer, E., Zehetbauer, M.,etal. (2014) N-Type Skutterudites (R, Ba, Yb)yCo4Sb12(R = Sr, La, Mm, DD, SrMm, SrDD) Approaching ZT ≈ 2.0.Acta Materialia, 63, 30-43. https://doi.org/10.1016/j.actamat.2013.09.039 |
[31] |
Terasaki, I., Sasago, Y. and Uchinokura, K. (1997) Large Thermoelectric Power in NaCo2O4Single Crystals.Physical Review B, 56, R12685-R12687. https://doi.org/10.1103/physrevb.56.r12685 |
[32] |
Wang, H.C., Wang, C.L., Su, W.B., Liu, J., Sun, Y., Peng, H.,etal. (2010) Doping Effect of La and Dy on the Thermoelectric Properties of SrTiO3.Journal of the American Ceramic Society, 94, 838-842. https://doi.org/10.1111/j.1551-2916.2010.04185.x |
[33] |
Wang, Y., Sui, Y. and Su, W. (2008) High Temperature Thermoelectric Characteristics of Ca0.9R0.1MnO3(R = La, Pr, …, Yb).Journal of Applied Physics, 104, Article ID: 093703. https://doi.org/10.1063/1.3003065 |
[34] |
徐飞, 李安敏, 程晓鹏, 等. 氧化物热电材料研究进展[J]. 功能材料, 2019, 50(4): 4038-4048. |
[35] |
Wu, Z.-H., Xie, H.-Q. and Zeng, Q.-F. (2013) Preparation and Thermoelectric Properties of Ag-ZnO Nanocomposites Synthesized by Means of Sol-Gel.Acta Physica Sinica, 62, Article ID: 097301. https://doi.org/10.7498/aps.62.097301 |