[1] |
Alcock, R.E., Sweetman, A. and Jones, K.C. (1999) Assessment of Organic Contanhnant Fate in Waste Water Treatment Plants I: Selected Compounds and Physicochemical Properties.Chemosphere, 38, 2247-2262. https://doi.org/10.1016/s0045-6535(98)00444-5 |
[2] |
Shen, D.S., Tao, X.Q., Shentu, J.L. and Wang, M.Z. (2014) Residues of Veterinary Antibiotics in Pig Feeds and Manures in Zhejiang Province.Advanced Materials Research, 1010, 301-304. https://doi.org/10.4028/www.scientific.net/amr.1010-1012.301 |
[3] |
Zhou, L., Ying, G., Liu, S., Zhang, R., Lai, H., Chen, Z.,et al. (2013) Excretion Masses and Environmental Occurrence of Antibiotics in Typical Swine and Dairy Cattle Farms in China.Science of the Total Environment, 444, 183-195. https://doi.org/10.1016/j.scitotenv.2012.11.087 |
[4] |
Palmieri, B., Di Cerbo, A. and Laurino, C. (2014) Antibiotic Treatments in Zootechnology and Effects Induced on the Food Chain of Domestic Species and, Comparatively, the Human Specie.NutriciónHospitalaria, 29, 1427-1433. |
[5] |
Blackburn, D.K. (2018) Sincerely. |
[6] |
Dempsey, B. (2023) Visibility, Hotspot Markings, and Type of Flight Operations Predicting Runway Incursion Rates. Master’s Thesis, Capella University. |
[7] |
Empedrad, R. (2003) Nonirritating Intradermal Skin Test Concentrations for Commonly Prescribed Antibiotics.Journal of Allergy and Clinical Immunology, 112, 629-630. https://doi.org/10.1016/s0091-6749(03)01783-4 |
[8] |
Macy, E. and Poon, K.Y.T. (2009) Self-reported Antibiotic Allergy Incidence and Prevalence: Age and Sex Effects.The American Journal of Medicine, 122, 778.E1-778.E7. https://doi.org/10.1016/j.amjmed.2009.01.034 |
[9] |
Di Cerbo, A., Canello, S., Guidetti, G., Laurino, C. and Palmieri, B. (2014) Unusual Antibiotic Presence in Gym Trained Subjects with Food Intolerance: A Case Report.NutriciónHospitalaria, 30, 395-398. |
[10] |
Fife, R.S. and Sledge, G.W. (1998) Effects of Doxycycline on Cancer Cellsin Vitroandin Vivo.Advances in Dental Research, 12, 94-96. https://doi.org/10.1177/08959374980120012801 |
[11] |
Medzhitov, R. (2007) Recognition of Microorganisms and Activation of the Immune Response.Nature, 449, 819-826. https://doi.org/10.1038/nature06246 |
[12] |
Böttiger, B.W., Arntz, H., Chamberlain, D.A., Bluhmki, E., Belmans, A., Danays, T.,et al. (2008) Thrombolysis during Resuscitation for Out-Of-Hospital Cardiac Arrest.New England Journal of Medicine, 359, 2651-2662. https://doi.org/10.1056/nejmoa070570 |
[13] |
Iwasaki, A. and Medzhitov, R. (2010) Regulation of Adaptive Immunity by the Innate Immune System.Science, 327, 291-295. https://doi.org/10.1126/science.1183021 |
[14] |
Hu, X. and Ivashkiv, L.B. (2009) Cross-regulation of Signaling Pathways by Interferon-Γ: Implications for Immune Responses and Autoimmune Diseases.Immunity, 31, 539-550. https://doi.org/10.1016/j.immuni.2009.09.002 |
[15] |
Bengtsson, A.A. and Rönnblom, L. (2017) Role of Interferons in SLE.Best Practice & Research Clinical Rheumatology, 31, 415-428. https://doi.org/10.1016/j.berh.2017.10.003 |
[16] |
Crane, I.J. and Forrester, J.V. (2005) Th1 and Th2 Lymphocytes in Autoimmune Disease.Critical Reviews in Immunology, 25, 75-102. https://doi.org/10.1615/critrevimmunol.v25.i2.10 |
[17] |
Yu, S., Sharp, G.C. and Braley-Mullen, H. (2002) Dual Roles for IFN-γ, but Not for IL-4, in Spontaneous Autoimmune Thyroiditis in NOD.H-2h4 Mice.The Journal of Immunology, 169, 3999-4007. https://doi.org/10.4049/jimmunol.169.7.3999 |
[18] |
Baechler, E.C., Gregersen, P.K. and Behrens, T.W. (2004) The Emerging Role of Interferon in Human Systemic Lupus Erythematosus.Current Opinion in Immunology, 16, 801-807. https://doi.org/10.1016/j.coi.2004.09.014 |
[19] |
Moretta, L., Montaldo, E., Vacca, P., Del Zotto, G., Moretta, F., Merli, P.,et al. (2014) Human Natural Killer Cells: Origin, Receptors, Function, and Clinical Applications.International Archives of Allergy and Immunology, 164, 253-264. https://doi.org/10.1159/000365632 |
[20] |
Poggi, A. and Zocchi, M.R. (2014) NK Cell Autoreactivity and Autoimmune Diseases.Frontiers in Immunology, 5, Article 27. https://doi.org/10.3389/fimmu.2014.00027 |
[21] |
Deniz, G., van de Veen, W. and Akdis, M. (2013) Natural Killer Cells in Patients with Allergic Diseases.Journal of Allergy and Clinical Immunology, 132, 527-535. https://doi.org/10.1016/j.jaci.2013.07.030 |
[22] |
Terrazzano, G., Sica, M., Gianfrani, C., Mazzarella, G., Maurano, F., De Giulio, B.,et al. (2007) Gliadin Regulates the Nk-Dendritic Cell Cross-Talk by HLA-E Surface Stabilization.The Journal of Immunology, 179, 372-381. https://doi.org/10.4049/jimmunol.179.1.372 |
[23] |
Pollard, K.M., Cauvi, D.M., Toomey, C.B., Morris, K.V. and Kono, D.H. (2013) Interferon-γand Systemic Autoimmunity.Discovery Medicine, 16, 123-131. |
[24] |
Pollard, K.M., Hultman, P. and Kono, D.H. (2010) Toxicology of Autoimmune Diseases.Chemical Research in Toxicology, 23, 455-466. https://doi.org/10.1021/tx9003787 |
[25] |
Dedeoglu, F. (2009) Drug-induced Autoimmunity.Current Opinion in Rheumatology, 21, 547-551. https://doi.org/10.1097/bor.0b013e32832f13db |
[26] |
Vedove, C.D., Del Giglio, M., Schena, D. and Girolomoni, G. (2008) Drug-Induced Lupus Erythematosus.Archives of Dermatological Research, 301, 99-105. https://doi.org/10.1007/s00403-008-0895-5 |
[27] |
Rubin, R.L. (2021) Drug-Induced Lupus. In: Tsokos, G.C., Ed.,Systemic Lupus Erythematosus, Academic Press, 535-547. https://doi.org/10.1016/B978-0-12-814551-7.00056-8 |
[28] |
Pollard, K.M., Hultman, P. and Kono, D.H. (2005) Immunology and Genetics of Induced Systemic Autoimmunity.Autoimmunity Reviews, 4, 282-288. https://doi.org/10.1016/j.autrev.2004.12.005 |
[29] |
Chopra, I. and Roberts, M. (2001) Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance.Microbiology and Molecular Biology Reviews, 65, 232-260. https://doi.org/10.1128/mmbr.65.2.232-260.2001 |
[30] |
Black, W.D. (1977) A Study of the Pharmacodynamics of Oxytetracycline in the Chicken.Poultry Science, 56, 1430-1434. https://doi.org/10.3382/ps.0561430 |
[31] |
Nguyen, D.C., Keller, R.A., Jett, J.H. and Martin, J.C. (1987) Detection of Single Molecules of Phycoerythrin in Hydrodynamically Focused Flows by Laser-Induced Fluorescence.Analytical Chemistry, 59, 2158-2161. https://doi.org/10.1021/ac00144a032 |
[32] |
Nolan, E.M. and Lippard, S.J. (2008) Tools and Tactics for the Optical Detection of Mercuric Ion.Chemical Reviews, 108, 3443-3480. https://doi.org/10.1021/cr068000q |
[33] |
Ali, I. and Aboul-Enein, H.Y. (2002) Determination of Metal Ions in Water, Soil, and Sediment by Capillary Electrophoresis.Analytical Letters, 35, 2053-2076. https://doi.org/10.1081/al-120015519 |
[34] |
Huang, S., Gan, N., Li, T., Zhou, Y., Cao, Y. and Dong, Y. (2018) Electrochemical Aptasensor for Multi-Antibiotics Detection Based on Endonuclease and Exonuclease Assisted Dual Recycling Amplification Strategy.Talanta, 179, 28-36. https://doi.org/10.1016/j.talanta.2017.10.016 |
[35] |
Bahreyni, A., Luo, H., Ramezani, M., Alibolandi, M., Soheili, V., Danesh, N.M.,et al. (2021) A Fluorescent Sensing Strategy for Ultrasensitive Detection of Oxytetracycline in Milk Based on Aptamer-Magnetic Bead Conjugate, Complementary Strand of Aptamer and PicOgreen.SpectrochimicaActaPart A:Molecular andBiomolecularSpectroscopy, 246, Article ID: 119009. https://doi.org/10.1016/j.saa.2020.119009 |
[36] |
Xu, N., Yuan, Y., Yin, J., Wang, X. and Meng, L. (2017) One-Pot Hydrothermal Synthesis of Luminescent Silicon-Based Nanoparticles for Highly Specific Detection of OxytetracyclineviaRatiometric Fluorescent Strategy.RSC Advances, 7, 48429-48436. https://doi.org/10.1039/c7ra09338a |
[37] |
Hijaz, F., Nehela, Y., Gonzalez-Blanco, P. and Killiny, N. (2021) Development of Europium-Sensitized Fluorescence-Based Method for Sensitive Detection of Oxytetracycline in Citrus Tissues.Antibiotics, 10, Article 224. https://doi.org/10.3390/antibiotics10020224 |
[38] |
Chen, H., Peng, J., Yu, L., Chen, H., Sun, M., Sun, Z.,et al. (2020) Calcium Ions Turn on the Fluorescence of Oxytetracycline for Sensitive and Selective Detection.Journal of Fluorescence, 30, 463-470. https://doi.org/10.1007/s10895-020-02512-3 |
[39] |
Yang, L., Zhao, H., Liu, N. and Wang, W. (2019) A Target Analyte Induced Fluorescence Band Shift of Piperazine Modified Carbon Quantum Dots: A Specific Visual Detection Method for Oxytetracycline.Chemical Communications, 55, 12364-12367. https://doi.org/10.1039/c9cc05406e |
[40] |
Nawaz, N., Abu Bakar, N.K., Muhammad Ekramul Mahmud, H.N. and Jamaludin, N.S. (2021) Molecularly Imprinted Polymers-Based DNA Biosensors.Analytical Biochemistry, 630, Article ID: 114328. https://doi.org/10.1016/j.ab.2021.114328 |
[41] |
Malitesta, C., Mazzotta, E., Picca, R.A., Poma, A., Chianella, I. and Piletsky, S.A. (2011) MIP Sensors—The Electrochemical Approach.Analytical andBioanalyticalChemistry, 402, 1827-1846. https://doi.org/10.1007/s00216-011-5405-5 |
[42] |
Deng, Q., Wu, J., Zhai, X., Fang, G. and Wang, S. (2013) Highly Selective Fluorescent Sensing of Proteins Based on a Fluorescent Molecularly Imprinted Nanosensor.Sensors, 13, 12994-13004. https://doi.org/10.3390/s131012994 |
[43] |
Ahmad, O.S., Bedwell, T.S., Esen, C., Garcia-Cruz, A. and Piletsky, S.A. (2019) Molecularly Imprinted Polymers in Electrochemical and Optical Sensors.Trends in Biotechnology, 37, 294-309. https://doi.org/10.1016/j.tibtech.2018.08.009 |
[44] |
Verma, R. and Gupta, B.D. (2013) Optical Fiber Sensor for the Detection of Tetracycline Using Surface Plasmon Resonance and Molecular Imprinting.The Analyst, 138, 7254. https://doi.org/10.1039/c3an01098h |
[45] |
Sadik, O.A., Aluoch, A.O. and Zhou, A. (2009) Status of Biomolecular Recognition Using Electrochemical Techniques. Biosensors and Bioelectronics, 24, 2749-2765. https://doi.org/10.1016/j.bios.2008.10.003 |
[46] |
Marrazza, G. (2017) Aptamer Sensors.Biosensors, 7, Article 5. |
[47] |
Conroy, P.J., Hearty, S., Leonard, P. and O’Kennedy, R.J. (2009) Antibody Production, Design and Use for Biosensor-Based Applications.Seminars in Cell & Developmental Biology, 20, 10-26. https://doi.org/10.1016/j.semcdb.2009.01.010 |
[48] |
Wang, T., Chen, C., Larcher, L.M., Barrero, R.A. and Veedu, R.N. (2019) Three Decades of Nucleic Acid Aptamer Technologies: Lessons Learned, Progress and Opportunities on Aptamer Development.Biotechnology Advances, 37, 28-50. https://doi.org/10.1016/j.biotechadv.2018.11.001 |
[49] |
Hou, H., Bai, X., Xing, C., Gu, N., Zhang, B. and Tang, J. (2013) Aptamer-Based Cantilever Array Sensors for Oxytetracycline Detection.Analytical Chemistry, 85, 2010-2014. https://doi.org/10.1021/ac3037574 |
[50] |
Demidov, V., Frank-Kamenetskii, M.D., Egholm, M., Buchardt, O. and Nielsen, P.E. (1993) Sequence Selective Double Strand DNA Cleavage by Peptide Nucleic Acid (PNA) Targeting Using Nuclease S1.Nucleic Acids Research, 21, 2103-2107. https://doi.org/10.1093/nar/21.9.2103 |
[51] |
Lv, L., Li, D., Cui, C., Zhao, Y. and Guo, Z. (2017) Nuclease-Aided Target Recycling Signal Amplification Strategy for Ochratoxin a Monitoring.Biosensors and Bioelectronics, 87, 136-141. https://doi.org/10.1016/j.bios.2016.08.024 |