[1] |
Do, M.H., Ngo, H.H., Guo, W.S., Liu, Y., Chang, S.W., Nguyen, D.D.,et al. (2018) Challenges in the Application of Microbial Fuel Cells to Wastewater Treatment and Energy Production: A Mini Review.Science of the Total Environment, 639, 910-920. https://doi.org/10.1016/j.scitotenv.2018.05.136 |
[2] |
Janicek, A., Fan, Y. and Liu, H. (2015) Performance and Stability of Different Cathode Base Materials for Use in Microbial Fuel Cells.Journal of Power Sources, 280, 159-165. https://doi.org/10.1016/j.jpowsour.2015.01.098 |
[3] |
Wei, J., Liang, P. and Huang, X. (2011) Recent Progress in Electrodes for Microbial Fuel Cells.Bioresource Technology, 102, 9335-9344. https://doi.org/10.1016/j.biortech.2011.07.019 |
[4] |
Lianos, P. (2017) Review of Recent Trends in Photoelectrocatalytic Conversion of Solar Energy to Electricity and Hydrogen.Applied Catalysis B:Environmental, 210, 235-254. https://doi.org/10.1016/j.apcatb.2017.03.067 |
[5] |
Liang, H., Jia, Z., Zhang, H., Wang, X. and Wang, J. (2017) Photocatalysis Oxidation Activity Regulation of Ag/TiO2Composites Evaluated by the Selective Oxidation of Rhodamine B.Applied Surface Science, 422, 1-10. https://doi.org/10.1016/j.apsusc.2017.05.211 |
[6] |
Hu, Y., Chen, W., Fu, J., Ba, M., Sun, F., Zhang, P.,et al. (2018) Hydrothermal Synthesis of BiVO4/TiO2Composites and Their Application for Degradation of Gaseous Benzene under Visible Light Irradiation.Applied Surface Science, 436, 319-326. https://doi.org/10.1016/j.apsusc.2017.12.054 |
[7] |
Jung, H.S., Lee, J., Lee, S., Hong, K.S. and Shin, H. (2008) Acid Adsorption on TiO2Nanoparticles—An Electrochemical Properties Study.The Journal of Physical Chemistry C, 112, 8476-8480. https://doi.org/10.1021/jp711689u |
[8] |
Kudo, A. and Miseki, Y. (2009) Heterogeneous Photocatalyst Materials for Water Splitting.Chemical Society Reviews, 38, 253-278. https://doi.org/10.1039/b800489g |
[9] |
Fischer, F. (2018) Photoelectrode, Photovoltaic and Photosynthetic Microbial Fuel Cells.Renewable and Sustainable Energy Reviews, 90, 16-27. https://doi.org/10.1016/j.rser.2018.03.053 |
[10] |
Qian, F., Wang, G. and Li, Y. (2010) Solar-Driven Microbial Photoelectrochemical Cells with a Nanowire Photocathode.Nano Letters, 10, 4686-4691. https://doi.org/10.1021/nl102977n |
[11] |
Lu, A., Li, Y., Jin, S., Ding, H., Zeng, C., Wang, X.,et al. (2009) Microbial Fuel Cell Equipped with a Photocatalytic Rutile-Coated Cathode.Energy & Fuels, 24, 1184-1190. https://doi.org/10.1021/ef901053j |
[12] |
Li, Y., Lu, A., Ding, H., Jin, S., Yan, Y., Wang, C.,et al. (2009) Cr(VI) Reduction at Rutile-Catalyzed Cathode in Microbial Fuel Cells.Electrochemistry Communications, 11, 1496-1499. https://doi.org/10.1016/j.elecom.2009.05.039 |
[13] |
孔德勇. 生物电化学系统阴极还原降解典型抗生素研究[D]: [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2015: 143. |
[14] |
Liu, Y., Xie, J., Ong, C.N., Vecitis, C.D. and Zhou, Z. (2015) Electrochemical Wastewater Treatment with Carbon Nanotube Filters Coupled with in Situ Generated H2O2.Environmental Science:Water Research & Technology, 1, 769-778. https://doi.org/10.1039/c5ew00128e |
[15] |
Raptis, D., Ploumistos, A., Zagoraiou, E., Thomou, E., Daletou, M., Sygellou, L.,et al. (2018) Co-N Doped Reduced Graphene Oxide as Oxygen Reduction Electrocatalyst Applied to Photocatalytic Fuel Cells.Catalysis Today, 315, 31-35. https://doi.org/10.1016/j.cattod.2018.02.047 |
[16] |
Zhao, K., Zeng, Q., Bai, J., Li, J., Xia, L., Chen, S.,et al. (2017) Enhanced Organic Pollutants Degradation and Electricity Production Simultaneously via Strengthening the Radicals Reaction in a Novel Fenton-Photocatalytic Fuel Cell System.Water Research, 108, 293-300. https://doi.org/10.1016/j.watres.2016.11.002 |
[17] |
Sun, Z., Cao, R., Huang, M., Chen, D., Zheng, W. and Lin, L. (2015) Effect of Light Irradiation on the Photoelectricity Performance of Microbial Fuel Cell with a Copper Oxide Nanowire Photocathode.Journal of Photochemistry and Photobiology A:Chemistry, 300, 38-43. https://doi.org/10.1016/j.jphotochem.2014.12.003 |
[18] |
Tajdid Khajeh, R., Aber, S. and Nofouzi, K. (2020) Efficient Improvement of Microbial Fuel Cell Performance by the Modification of Graphite Cathode via Electrophoretic Deposition of CuO/ZnO.Materials Chemistry and Physics, 240, Article 122208. https://doi.org/10.1016/j.matchemphys.2019.122208 |
[19] |
Khalil, A., Nasser, W.S., Osman, T.A., Toprak, M.S., Muhammed, M. and Uheida, A. (2019) Surface Modified of Polyacrylonitrile Nanofibers by TiO2/MWCNT for Photodegradation of Organic Dyes and Pharmaceutical Drugs under Visible Light Irradiation.Environmental Research, 179, Article 108788. https://doi.org/10.1016/j.envres.2019.108788 |
[20] |
Long, X., Wang, H., Wang, C., Cao, X. and Li, X. (2019) Enhancement of Azo Dye Degradation and Power Generation in a Photoelectrocatalytic Microbial Fuel Cell by Simple Cathodic Reduction on Titania Nanotube Arrays Electrode.Journal of Power Sources, 415, 145-153. https://doi.org/10.1016/j.jpowsour.2019.01.069 |
[21] |
Xu, P., Zheng, D., Xie, Z., He, Q. and Yu, J. (2020) The Degradation of Ibuprofen in a Novel Microbial Fuel Cell with PANi@CNTs/SS Bio-Anode and CuInS2Photocatalytic Cathode: Property, Efficiency and Mechanism.Journal of Cleaner Production, 265, Article 121872. https://doi.org/10.1016/j.jclepro.2020.121872 |
[22] |
Reza, K.M., Kurny, A. and Gulshan, F. (2015) Parameters Affecting the Photocatalytic Degradation of Dyes Using TiO2: A Review.Applied Water Science, 7, 1569-1578. https://doi.org/10.1007/s13201-015-0367-y |
[23] |
Wu, H., Lee, S., Lu, W. and Chang, K. (2015) Piezoresistive Effects Enhanced the Photocatalytic Properties of Cu2O/CuO Nanorods.Applied Surface Science, 344, 236-241. https://doi.org/10.1016/j.apsusc.2015.03.122 |
[24] |
Bhowmick, G.D., Noori, M.T., Das, I., Neethu, B., Ghangrekar, M.M. and Mitra, A. (2018) Bismuth Doped TiO2as an Excellent Photocathode Catalyst to Enhance the Performance of Microbial Fuel Cell.International Journal of Hydrogen Energy, 43, 7501-7510. https://doi.org/10.1016/j.ijhydene.2018.02.188 |
[25] |
Ye, Y., Bruning, H., Li, X., Yntema, D. and Rijnaarts, H.H.M. (2018) Significant Enhancement of Micropollutant Photocatalytic Degradation Using a TiO2Nanotube Array Photoanode Based Photocatalytic Fuel Cell.Chemical Engineering Journal, 354, 553-562. https://doi.org/10.1016/j.cej.2018.08.064 |
[26] |
Zhang, J., Yu, J., Zhang, Y., Li, Q. and Gong, J.R. (2011) Visible Light Photocatalytic H2-Production Activity of CuS/ZnS Porous Nanosheets Based on Photoinduced Interfacial Charge Transfer.Nano Letters, 11, 4774-4779. https://doi.org/10.1021/nl202587b |
[27] |
Reza, K.M., Kurny, A. and Gulshan, F. (2015) Parameters Affecting the Photocatalytic Degradation of Dyes Using Tio2: A Review.Applied Water Science, 7, 1569-1578. https://doi.org/10.1007/s13201-015-0367-y |
[28] |
Ahmadpour, T., Aber, S. and Hosseini, M.G. (2020) Improved Dye Degradation and Simultaneous Electricity Generation in a Photoelectrocatalytic Microbial Fuel Cell Equipped with AgBr/CuO Hybrid Photocathode.Journal of Power Sources, 474, Article 228589. https://doi.org/10.1016/j.jpowsour.2020.228589 |
[29] |
Shao, F., Hernández-Ramírez, F., Prades, J.D., Fàbrega, C., Andreu, T. and Morante, J.R. (2014) Copper (II) Oxide Nanowires for P-Type Conductometric NH3Sensing.Applied Surface Science, 311, 177-181. https://doi.org/10.1016/j.apsusc.2014.05.038 |
[30] |
Jia, Y., Zhang, D., You, H., Li, W. and Jiang, K. (2018) Benthic Microbial Fuel Cell Equipped with a Photocatalytic Cu2O-Coated Cathode.Journal of Nanoparticle Research, 21, Article No. 3. https://doi.org/10.1007/s11051-018-4444-7 |
[31] |
张杰, 李会鹏, 赵华, 等. 高比表面积g-C3N4的制备及其在光催化制氢中的应用研究进展[J]. 现代化工, 2018, 38(11): 67-71. |
[32] |
张茗迪, 贾玉红, 尤宏, 付亮, 李维国. g-C3N4/Cu2O/CF电极制备及在微生物燃料电池中的应用[J]. 环境科学学报, 2019, 39(9): 2945-2952. |
[33] |
Meng, W., Zhou, X., Qiu, Z., Liu, C., Chen, J., Yue, W.,et al. (2016) Reduced Graphene Oxide-Supported Aggregates of CuInS2Quantum Dots as an Effective Hybrid Electron Acceptor for Polymer-Based Solar Cells.Carbon, 96, 532-540. https://doi.org/10.1016/j.carbon.2015.09.068 |
[34] |
Zhu, J., Wang, S., Wang, J., Zhang, D. and Li, H. (2011) Highly Active and Durable Bi2O3/TiO2Visible Photocatalyst in Flower-Like Spheres with Surface-Enriched Bi2O3Quantum Dots.Applied Catalysis B:Environmental, 102, 120-125. https://doi.org/10.1016/j.apcatb.2010.11.032 |
[35] |
Wang, S., Yang, X., Zhu, Y., Su, Y. and Li, C. (2014) Solar-Assisted Dual Chamber Microbial Fuel Cell with a CuInS2Photocathode.RSC Advances, 4, 23790-23796. https://doi.org/10.1039/c4ra02488e |
[36] |
Hou, Y., Abrams, B.L., Vesborg, P.C.K., Björketun, M.E., Herbst, K., Bech, L.,et al. (2011) Bioinspired Molecular Co-Catalysts Bonded to a Silicon Photocathode for Solar Hydrogen Evolution.Nature Materials, 10, 434-438. https://doi.org/10.1038/nmat3008 |
[37] |
王珊珊, 殷淑静, 梁海锋, 等. 金催化的硅纳米线的可控制备及光学特性研究[J]. 应用光学, 2019, 40(5): 738-745. |
[38] |
Han, H., Shi, C., Zhang, N., Yuan, L. and Sheng, G. (2018) Visible-Light-Enhanced Cr (VI) Reduction at Pd-Decorated Silicon Nanowire Photocathode in Photoelectrocatalytic Microbial Fuel Cell.Science of the Total Environment, 639, 1512-1519. https://doi.org/10.1016/j.scitotenv.2018.05.271 |
[39] |
Han, H., Shi, C., Yuan, L. and Sheng, G. (2017) Enhancement of Methyl Orange Degradation and Power Generation in a Photoelectrocatalytic Microbial Fuel Cell.Applied Energy, 204, 382-389. https://doi.org/10.1016/j.apenergy.2017.07.032 |
[40] |
Payan, A., Fattahi, M. and Roozbehani, B. (2018) Synthesis, Characterization and Evaluations of TiO2Nanostructures Prepared from Different Titania Precursors for Photocatalytic Degradation of 4-Chlorophenol in Aqueous Solution.Journal of Environmental Health Science and Engineering, 16, 41-54. https://doi.org/10.1007/s40201-018-0295-5 |
[41] |
刘畅. 天然辉钼矿石与TiO2的负载材料对微生物燃料电池阴极的协同作用[D]: [博士学位论文]. 呼和浩特: 内蒙古大学, 2018. |
[42] |
Guo, D., Wei, H.-F., Yu, X.-Y., Xia, Q., Chen, Z., Zhang, J.-R., Song, R.-B. and Zhu, J.-J. (2018) Plasmon-Enhanced Cathodic Reduction for Accelerating Electricity Generation in Visible-Light Assisted Microbial Fuel Cells.Nano Energy, 57, Article 30948. https://doi.org/10.1016/j.nanoen.2018.12.043 |
[43] |
Liao, Q., Li, L., Chen, R., Zhu, X., Wang, H., Ye, D.,et al. (2015) Respective Electrode Potential Characteristics of Photocatalytic Fuel Cell with Visible-Light Responsive Photoanode and Air-Breathing Cathode.International Journal of Hydrogen Energy, 40, 16547-16555. https://doi.org/10.1016/j.ijhydene.2015.10.002 |
[44] |
Yan, K., Yang, Y., Zhu, Y. and Zhang, J. (2017) Highly Selective Self-Powered Sensing Platform forp-Nitrophenol Detection Constructed with a Photocathode-Based Photocatalytic Fuel Cell.Analytical Chemistry, 89, 8599-8603. https://doi.org/10.1021/acs.analchem.7b02402 |
[45] |
Xin, Y., Wang, G., Zhu, X., Gao, M., Liu, Y. and Chen, Q. (2017) Photodegradation Performance and Mechanism of 4-Nonylphenol by WO3/TiO2and TiO2Nanotube Array Photoelectrodes.Environmental Technology, 38, 3084-3092. https://doi.org/10.1080/09593330.2017.1290143 |
[46] |
Ajmal, A., Majeed, I., Malik, R.N., Idriss, H. and Nadeem, M.A. (2014) Principles and Mechanisms of Photocatalytic Dye Degradation on Tio2based Photocatalysts: A Comparative Overview.RSC Advances, 4, 37003-37026. https://doi.org/10.1039/c4ra06658h |
[47] |
Hasegawa, K. and Neta, P. (1978) Rate Constants and Mechanisms of Reaction of Chloride (Cl2-) Radicals.The Journal of Physical Chemistry, 82, 854-857. https://doi.org/10.1021/j100497a003 |
[48] |
Tan, X., Bai, J., Zheng, J., Zhang, Y., Li, J., Zhou, T.,et al. (2019) Photocatalytic Fuel Cell Based on Sulfate Radicals Converted from Sulfates in Situ for Wastewater Treatment and Chemical Energy Utilization.Catalysis Today, 335, 485-491. https://doi.org/10.1016/j.cattod.2019.02.014 |
[49] |
Daghrir, R., Drogui, P. and Robert, D. (2012) Photoelectrocatalytic Technologies for Environmental Applications.Journal of Photochemistry and Photobiology A:Chemistry, 238, 41-52. https://doi.org/10.1016/j.jphotochem.2012.04.009 |
[50] |
Antolini, E. (2019) Photoelectrocatalytic Fuel Cells and Photoelectrode Microbial Fuel Cells for Wastewater Treatment and Power Generation.Journal of Environmental Chemical Engineering, 7, Article 103241. https://doi.org/10.1016/j.jece.2019.103241 |
[51] |
Lee, S., Ho, L., Ong, S., Wong, Y., Voon, C., Khalik, W.F.,et al. (2017) A Highly Efficient Immobilized ZnO/Zn Photoanode for Degradation of Azo Dye Reactive Green 19 in a Photocatalytic Fuel Cell.Chemosphere, 166, 118-125. https://doi.org/10.1016/j.chemosphere.2016.09.082 |
[52] |
Soltani, T. and Entezari, M.H. (2013) Photolysis and Photocatalysis of Methylene Blue by Ferrite Bismuth Nanoparticles under Sunlight Irradiation.Journal of Molecular Catalysis A:Chemical, 377, 197-203. https://doi.org/10.1016/j.molcata.2013.05.004 |
[53] |
Talooki, E.F., Ghorbani, M., Rahimnejad, M. and Lashkenari, M.S. (2020) Evaluation of a Visible Light-Responsive Polyaniline Nanofiber-Cadmium Sulfide Quantum Dots Photocathode for Simultaneous Hexavalent Chromium Reduction and Electricity Generation in Photo-Microbial Fuel Cell.Journal of Electroanalytical Chemistry, 873, Article 114469. https://doi.org/10.1016/j.jelechem.2020.114469 |