[1] |
Li, K., Yu, H., Xu, Y. and Luo, X. (2022) Scheduling Optimization of Offshore Oil Spill Cleaning Materials Considering Multiple Accident Sites and Multiple Oil Types.Sustainability, 14, Article 10047. https://doi.org/10.3390/su141610047 |
[2] |
Yang, X., Wang, B., Ma, S., Qi, J., Chen, Z., Feng, Y.,et al. (2023) Multifunctional Magnetic Sponge with Outstanding Solar/Electro-Thermal Performance for High-Efficiency and All-Day Continuous Cleanup of Crude Oil Spills.Science of the Total Environment, 892, Article ID: 164601. https://doi.org/10.1016/j.scitotenv.2023.164601 |
[3] |
Li, Z., Lin, Z., Qiu, F., Uyama, H. and Zhang, T. (2023) Energy-Optimized Oil Spill Cleanup: Joule-/Solar-Heating Copper Foam for Efficient All-Weather Recovery of Viscous Crude Oil.Industrial & Engineering Chemistry Research, 62, 13133-13143. https://doi.org/10.1021/acs.iecr.3c01690 |
[4] |
Hu, G., Mohammadiun, S., Gharahbagh, A.A., Li, J., Hewage, K. and Sadiq, R. (2020) Selection of Oil Spill Response Method in Arctic Offshore Waters: A Fuzzy Decision Tree Based Framework.Marine Pollution Bulletin, 161, Article ID: 111705. https://doi.org/10.1016/j.marpolbul.2020.111705 |
[5] |
Faksness, L., Leirvik, F., Taban, I.C., Engen, F., Jensen, H.V., Holbu, J.W.,et al. (2022) Offshore Field Experiments withIn-SituBurning of Oil: Emissions and Burn Efficiency.Environmental Research, 205, Article ID: 112419. https://doi.org/10.1016/j.envres.2021.112419 |
[6] |
Vergeynst, L., Wegeberg, S., Aamand, J., Lassen, P., Gosewinkel, U., Fritt-Rasmussen, J.,et al. (2018) Biodegradation of Marine Oil Spills in the Arctic with a Greenland Perspective.Science of the Total Environment, 626, 1243-1258. https://doi.org/10.1016/j.scitotenv.2018.01.173 |
[7] |
Aziz, Z.S., Jazza, S.H., Dageem, H.N., Banoon, S.R., Balboul, B.A. and Abdelzaher, M.A. (2024) Bacterial Biodegradation of Oil-Contaminated Soil for Pollutant Abatement Contributing to Achieve Sustainable Development Goals: A Comprehensive Review.Results in Engineering, 22, Article ID: 102083. https://doi.org/10.1016/j.rineng.2024.102083 |
[8] |
Etkin, D.S. and Nedwed, T.J. (2021) Effectiveness of Mechanical Recovery for Large Offshore Oil Spills.Marine Pollution Bulletin, 163, Article ID: 111848. https://doi.org/10.1016/j.marpolbul.2020.111848 |
[9] |
Piao, L., Park, C.J., Kim, S., Park, K., Lee, Y., Kim, H.,et al. (2023) Development of Rapid and Effective Oil-Spill Response System Integrated with Oil Collection, Recovery and Storage Devices for Small Oil Spills at Initial Stage: from Lab-Scale Study to Field-Scale Test.Journal of Environmental Management, 345, Article ID: 118833. https://doi.org/10.1016/j.jenvman.2023.118833 |
[10] |
Wen, H., Liang, L., Xu, N. and Liu, C. (2024) Multi-functional Self-Cleaning Superhydrophobic Cotton Fabric as Photothermal-Reinforced Crude Oil Separator, Oil Skimmer and Underwater Oil Absorbent.Separation and Purification Technology, 337, Article ID: 126258. https://doi.org/10.1016/j.seppur.2023.126258 |
[11] |
Cui, X., Ruan, Q., Zhuo, X., Xia, X., Hu, J., Fu, R.,et al. (2023) Photothermal Nanomaterials: A Powerful Light-to-Heat Converter.Chemical Reviews, 123, 6891-6952. https://doi.org/10.1021/acs.chemrev.3c00159 |
[12] |
Said, Z., Sohail, M.A., Pandey, A.K., Sharma, P., Waqas, A., Chen, W.,et al. (2023) Nanotechnology-Integrated Phase Change Material and Nanofluids for Solar Applications as a Potential Approach for Clean Energy Strategies: Progress, Challenges, and Opportunities.Journal of Cleaner Production, 416, Article ID: 137736. https://doi.org/10.1016/j.jclepro.2023.137736 |
[13] |
Chi, J., Zhang, X., Wang, Y., Shao, C., Shang, L. and Zhao, Y. (2021) Bio-Inspired Wettability Patterns for Biomedical Applications.Materials Horizons, 8, 124-144. https://doi.org/10.1039/d0mh01293a |
[14] |
Elzaabalawy, A. and Meguid, S.A. (2019) Effect of Surface Topology on the Wettability of Superhydrophobic Surfaces.Journal of Dispersion Science and Technology, 41, 470-478. https://doi.org/10.1080/01932691.2019.1587299 |
[15] |
Muhammed, N.S., Haq, B. and Al Shehri, D.A. (2023) Hydrogen Storage in Depleted Gas Reservoirs Using Nitrogen Cushion Gas: A Contact Angle and Surface Tension Study.International Journal of Hydrogen Energy, 48, 38782-38807. https://doi.org/10.1016/j.ijhydene.2023.06.208 |
[16] |
Wenzel, R.N. (1936) Resistance of Solid Surfaces to Wetting by Water.Industrial & Engineering Chemistry, 28, 988-994. https://doi.org/10.1021/ie50320a024 |
[17] |
Cassie, A.B.D. and Baxter, S. (1944) Wettability of Porous Surfaces.Transactions of the Faraday Society, 40, 546-551. https://doi.org/10.1039/tf9444000546 |
[18] |
Lafuma, A. and Quéré, D. (2003) Superhydrophobic States.Nature Materials, 2, 457-460. https://doi.org/10.1038/nmat924 |
[19] |
Liu, S., Liang, H. and Yin, Y. (2024) Site-Selective Reprogrammable Actuators for Soft Robotic Systems Using Plasmonic Photothermal Conversion.Device, 2, Article ID: 100330. https://doi.org/10.1016/j.device.2024.100330 |
[20] |
Xu, C. and Pu, K. (2021) Second Near-Infrared Photothermal Materials for Combinational Nanotheranostics.Chemical Society Reviews, 50, 1111-1137. https://doi.org/10.1039/d0cs00664e |
[21] |
Zhang, G., Hu, H., Deng, S., Xiao, X., Xiong, Y., Peng, J.,et al. (2023) An Integrated Colorimetric and Photothermal Lateral Flow Immunoassay Based on Bimetallic Ag-Au Urchin-Like Hollow Structures for the Sensitive Detection ofE.coliO157: H7.Biosensors and Bioelectronics, 225, Article ID: 115090. https://doi.org/10.1016/j.bios.2023.115090 |
[22] |
Chen, Y., Chen, Z., Yang, D., Zhu, L., Liang, Z., Pang, Y.,et al. (2022) Novel Microbial Palladium Nanoparticles with a High Photothermal Effect for Antibacterial Applications.ACS Omega, 8, 1534-1541. https://doi.org/10.1021/acsomega.2c07037 |
[23] |
Seifikar, F., Azizian, S., Eslamipanah, M. and Jaleh, B. (2022) Efficient Photo-Thermal Conversion Using Pt Nanofluid Prepared by Laser Ablation in Liquid.Solar Energy Materials and Solar Cells, 238, Article ID: 111581. https://doi.org/10.1016/j.solmat.2022.111581 |
[24] |
Sun, M., Yang, D., Fanqi, W., Wang, Z., Ji, H., Liu, Z.,et al. (2020) SiO2@Cu7S4Nanotubes for Photo/Chemodynamic and Photo-Thermal Dual-Mode Synergistic Therapy under 808 nm Laser Irradiation.Journal of Materials Chemistry B, 8, 5707-5721. https://doi.org/10.1039/d0tb00696c |
[25] |
Qi, K., Sun, B., Liu, S. and Zhang, M. (2023) Research Progress on Carbon Materials in Tumor Photothermal Therapy.Biomedicine & Pharmacotherapy, 165, Article ID: 115070. https://doi.org/10.1016/j.biopha.2023.115070 |
[26] |
Zhu, J., Huang, L., Bao, F., Chen, G., Song, K., Wang, Z.,et al. (2024) Carbon Materials for Enhanced Photothermal Conversion: Preparation and Applications on Steam Generation.Materials Reports:Energy, 4, Article ID: 100245. https://doi.org/10.1016/j.matre.2023.100245 |
[27] |
Fillet, R., Nicolas, V., Celzard, A. and Fierro, V. (2023) Solar Evaporation Performance of 3D-Printed Concave Structures Filled with Activated Carbon under Low Convective Flow.Chemical Engineering Journal, 457, Article ID: 141168. https://doi.org/10.1016/j.cej.2022.141168 |
[28] |
Zheng, D., Shi, L., Zhang, M., Jiang, W., An, C., Huang, W.,et al. (2024) Easily Constructed HNs/CNTs Photothermal Membrane with High-Temperature Resistance for Efficient Solar Desalination and Dye-Polluted Water Purification.Journal of Environmental Chemical Engineering, 12, Article ID: 112004. https://doi.org/10.1016/j.jece.2024.112004 |
[29] |
Pham, T.D., Phan, L.M.T., Nam, S., Hoang, T.X., Nam, J., Cho, S.,et al. (2024) Selective Photothermal and Photodynamic Capabilities of Conjugated Polymer Nanoparticles.Polymer, 294, Article ID: 126689. https://doi.org/10.1016/j.polymer.2024.126689 |
[30] |
Maity, S., Yadav, M. and Patra, A.K. (2023) Polypyrrole Coated Textiles as Photothermal Material for Interfacial Solar Evaporation.Fibers and Polymers, 24, 3591-3600. https://doi.org/10.1007/s12221-023-00343-0 |
[31] |
Sang, H., Tang, C., Ma, K. and Li, X. (2023) Sustainable Production of Clean Water: 1 T-MoS2/PDA Composite Enhanced the Photothermal Conversion.Colloids and Surfaces A:Physicochemical and Engineering Aspects, 674, Article ID: 131838. https://doi.org/10.1016/j.colsurfa.2023.131838 |
[32] |
Warrier, A.R. and Vijayakumar, K.P. (2023) Chapter 11-Photothermal Studies in Semiconductor Materials. In: Thakur, S.N., Rai, V.N. and Singh, J.P., Eds.,Photoacoustic and Photothermal Spectroscopy, Elsevier, 245-262. https://doi.org/10.1016/B978-0-323-91732-2.00015-X |
[33] |
Zhao, X., Jiang, Y., Wang, T., Lu, Q., Zhao, K. and Pan, J. (2023) Photothermal-Photocatalytic Route of MOF-Based Membrane with Nanosheet Array Structures for Solar-Driven Water Purification.Chemical Engineering Journal, 475, Article ID: 146268. https://doi.org/10.1016/j.cej.2023.146268 |
[34] |
Tryba, B., Miądlicki, P., Rychtowski, P., Trzeciak, M. and Wróbel, R.J. (2023) The Superiority of TiO2Supported on Nickel Foam over Ni-Doped TiO2in the Photothermal Decomposition of Acetaldehyde.Materials, 16, Article 5241. https://doi.org/10.3390/ma16155241 |
[35] |
Colak, B., Cihan, M.C. and Ertas, Y.N. (2023) 3D-Printed, Implantable Alginate/CUS Nanoparticle Scaffolds for Local Tumor TreatmentviaSynergistic Photothermal, Photodynamic, and Chemodynamic Therapy.ACS Applied Nano Materials, 6, 16076-16085. https://doi.org/10.1021/acsanm.3c03433 |
[36] |
Fan, T., Su, Y., Fan, Q., Li, Z., Cui, W., Yu, M.,et al. (2021) Robust Graphene@PPS Fibrous Membrane for Harsh Environmental Oil/water Separation and All-Weather Cleanup of Crude Oil Spill by Joule Heat and Photothermal Effect.ACS Applied Materials & Interfaces, 13, 19377-19386. https://doi.org/10.1021/acsami.1c04066 |
[37] |
He, X., Lu, J., Liu, J., Wu, Z., Li, B., Chen, Z.,et al. (2024) Superhydrophobic CO-MOF-Based Sponge for Efficient Oil-Water Separation Utilizing Photothermal Effect.Journal of Hazardous Materials, 469, Article ID: 134090. https://doi.org/10.1016/j.jhazmat.2024.134090 |
[38] |
张静静, 李艳香, 李望良, 等. 三聚氰胺基疏水海绵的制备及其吸油性能[J]. 石油学报(石油加工), 2024, 40(2): 534-545. |
[39] |
Ma, J., Ma, S., Xue, J., Xu, M., Zhang, J., Li, J.,et al. (2023) Synthesis of Elastic Hydrophobic Biomass Sponge for Rapid Solar-Driven Viscous Crude-Oil Cleanup Absorption, Oil-Water Separation and Organic Pollutants Treating.Separation and Purification Technology, 305, Article ID: 122512. https://doi.org/10.1016/j.seppur.2022.122512 |
[40] |
Chen, J., Sun, M., Ni, Y., Zhu, T., Huang, J., Li, X.,et al. (2023) Superhydrophobic Polyurethane Sponge for Efficient Water-Oil Emulsion Separation and Rapid Solar-Assisted Highly Viscous Crude Oil Adsorption and Recovery.Journal of Hazardous Materials, 445, Article ID: 130541. https://doi.org/10.1016/j.jhazmat.2022.130541 |
[41] |
Yang, Y., Guo, Z. and Liu, W. (2024) Robust Mussel-Inspired Superhydrophobic Sponge with Eco-Friendly Photothermal Effect for Crude Oil/Seawater Separation.Journal of Hazardous Materials, 461, Article ID: 132592. https://doi.org/10.1016/j.jhazmat.2023.132592 |
[42] |
Cai, C., Wei, Z., Huang, Y. and Fu, Y. (2021) Wood-Inspired Superelastic Mxene Aerogels with Superior Photothermal Conversion and Durable Superhydrophobicity for Clean-Up of Super-Viscous Crude Oil.Chemical Engineering Journal, 421, Article ID: 127772. https://doi.org/10.1016/j.cej.2020.127772 |
[43] |
户晶荣, 李欣聪. 改性碳气凝胶/石蜡复合相变储热材料的研究[J]. 无机盐工业, 2024, 56(5): 58-63. |
[44] |
林铭增, 许银超, 张学金, 等. 阻燃纤维素气凝胶研究进展[J]. 中国造纸, 2024, 43(4): 25-36. |
[45] |
Zheng, D., Yao, W., Sun, C., Chen, X., Wang, Z., Wang, B.,et al. (2022) Solar-Assisted Self-Heating Ti3C2Tx-Decorated Wood Aerogel for Adsorption and Recovery of Highly Viscous Crude Oil.Journal of Hazardous Materials, 435, Article ID: 129068. https://doi.org/10.1016/j.jhazmat.2022.129068 |
[46] |
Song, C., Chen, X., Xu, G., Jiang, Z., Xu, W., Liu, X.,et al. (2023) Bifunctional Cellulose-Based Aerogel for In-Situ Solar-Driven Crude Oil Recovery and Desalination: An Effective Approach towards Marine Life Protection.Cellulose, 30, 7265-7276. https://doi.org/10.1007/s10570-023-05330-5 |
[47] |
Hu, Y., Jiang, Y., Ni, L., Huang, Z., Liu, L., Ke, Q.,et al. (2023) An Elastic MOF/Graphene Aerogel with High Photothermal Efficiency for Rapid Removal of Crude Oil.Journal of Hazardous Materials, 443, Article ID: 130339. https://doi.org/10.1016/j.jhazmat.2022.130339 |
[48] |
陈春晖, 许多, 李治江, 等. 疏水亲油复合棉织物的制备及其性能[J]. 现代纺织技术, 2022, 30(4): 115-123. |
[49] |
Sun, S., Xu, P., Chen, Z., Xiao, Q., Qiang, X. and Shi, X. (2023) “One Stone Three Birds”: A Multifunctional Cotton Fabric with Favorable Self-Cleaning, Photothermal Effect and Joule Heating Properties.Applied Surface Science, 623, Article ID: 156961. https://doi.org/10.1016/j.apsusc.2023.156961 |
[50] |
Zeng, H., Wang, P., Liang, L., Hu, H., Peng, Y., Li, X.,et al. (2022) Facile Preparation of Superhydrophobic Cotton Fabric with a Photothermal Conversion Effect via Polypyrrole Deposition for Oil/water Separation.Journal of Environmental Chemical Engineering, 10, Article ID: 106915. https://doi.org/10.1016/j.jece.2021.106915 |
[51] |
Chen, X., Wang, J., Xie, A., Wang, B., Wu, J., Chen, G.,et al. (2023) Fabrication of Robust Superhydrophobic Polyester Fabrics with Photothermal Conversion and Oil-Water Separation Performance through Deposition of Natural Polyphenols.Langmuir, 39, 15817-15827. https://doi.org/10.1021/acs.langmuir.3c02508 |