[1] |
Gribble, G.W. (2015) Biological Activity of Recently Discovered Halogenated Marine Natural Products.Marine Drugs, 13, 4044-4136. https://doi.org/10.3390/md13074044 |
[2] |
Gribble, G.W. (2023) Naturally Occurring Organohalogen Compounds—A Comprehensive Review. In: Kinghorn, A.D., Falk, H., Gibbons, S., Asakawa, Y., Liu, J.K. and Dirsch, V.M., Eds.,Naturally Occurring Organohalogen Compounds.Progress in the Chemistry of Organic Natural Products, Vol. 121, Springer, 1-546. |
[3] |
Carvalho, M.F. and Oliveira, R.S. (2017) Natural Production of Fluorinated Compounds and Biotechnological Prospects of the Fluorinase Enzyme.Critical Reviews in Biotechnology, 37, 880-897. https://doi.org/10.1080/07388551.2016.1267109 |
[4] |
Fournier, J.-B., Rebuffet, E., Delage, L., Grijol, R., Meslet-Cladière, L., Rzonca, J.,et al. (2014) The Vanadium Iodoperoxidase from the MarineFlavobacteriaceaeSpeciesZobellia galactanivoransReveals Novel Molecular and Evolutionary Features of Halide Specificity in the Vanadium Haloperoxidase Enzyme Family.Applied and Environmental Microbiology, 80, 7561-7573. https://doi.org/10.1128/AEM.02430-14 |
[5] |
Büchler, J., Papadopoulou, A. and Buller, R. (2019) Recent Advances in Flavin-Dependent Halogenase Biocatalysis: Sourcing, Engineering, and Application.Catalysts, 9, Article 1030. https://doi.org/10.3390/catal9121030 |
[6] |
Fisher, B.F., Snodgrass, H.M., Jones, K.A., Andorfer, M.C. and Lewis, J.C. (2019) Site-Selective C-H Halogenation Using Flavin-Dependent Halogenases Identified via Family-Wide Activity Profiling.ACS Central Science, 5, 1844-1856. https://doi.org/10.1021/acscentsci.9b00835 |
[7] |
Gan, J., Yates, S.R., Ohr, H.D. and Sims, J.J. (1998) Production of Methyl Bromide by Terrestrial Higher Plants.Geophysical Research Letters, 25, 3595-3598. https://doi.org/10.1029/98gl52697 |
[8] |
Leri, A.C. and Myneni, S.C.B. (2012) Natural Organobromine in Terrestrial Ecosystems.Geochimica et Cosmochimica Acta, 77, 1-10. https://doi.org/10.1016/j.gca.2011.11.012 |
[9] |
Starr, M.P. and Stephens, W.L. (1964) Pigmentation and Taxonomy of the GenusXanthomonas.Journal of Bacteriology, 87, 293-302. https://doi.org/10.1128/jb.87.2.293-302.1964 |
[10] |
He, Y.-W., Cao, X.-Q. and Poplawsky, A.R. (2020) Chemical Structure, Biological Roles, Biosynthesis and Regulation of the Yellow Xanthomonadin Pigments in the Phytopathogenic GenusXanthomonas.Molecular Plant-Microbe Interactions, 33, 705-714. https://doi.org/10.1094/mpmi-11-19-0326-cr |
[11] |
Beekman, A.M., Wossa, S.W., Kevo, O., Ma, P. and Barrow, R.A. (2015) Discovery and Synthesis of Boletopsins 13 and 14, Brominated Fungal Metabolites of Terrestrial Origin.Journal of Natural Products, 78, 2133-2135. https://doi.org/10.1021/acs.jnatprod.5b00202 |
[12] |
Niemann, H., Marmann, A., Lin, W. and Proksch, P. (2015) Sponge Derived Bromotyrosines: Structural Diversity through Natural Combinatorial Chemistry.Natural Product Communications, 10, 219-231. https://doi.org/10.1177/1934578x1501000143 |
[13] |
Thoms, C., Ebel, R. and Proksch, P. (2006) Activated Chemical Defense inAplysinaSponges Revisited.Journal of Chemical Ecology, 32, 97-123. https://doi.org/10.1007/s10886-006-9355-x |
[14] |
Horna-Gray, I., Lopez, N.A., Ahn, Y., Saks, B., Girer, N., Hentschel, U.,et al. (2022)Desulfolunaspp. Form a Cosmopolitan Group of Anaerobic Dehalogenating Bacteria Widely Distributed in Marine Sponges.FEMS Microbiology Ecology, 98, Article fiac063. https://doi.org/10.1093/femsec/fiac063 |
[15] |
Paul, N., de Nys, R. and Steinberg, P. (2006) Chemical Defence against Bacteria in the Red AlgaAsparagopsis armata: Linking Structure with Function.Marine Ecology Progress Series, 306, 87-101. https://doi.org/10.3354/meps306087 |
[16] |
Thapa, H.R., Lin, Z., Yi, D., Smith, J.E., Schmidt, E.W. and Agarwal, V. (2020) Genetic and Biochemical Reconstitution of Bromoform Biosynthesis inAsparagopsisLends Insights into Seaweed Reactive Oxygen Species Enzymology.ACS Chemical Biology, 15, 1662-1670. https://doi.org/10.1021/acschembio.0c00299 |
[17] |
Gribble, G.W. (2000) The Natural Production of Organobromine Compounds.Environmental Science and Pollution Research, 7, 37-49. https://doi.org/10.1065/espr199910.002 |
[18] |
Mitra, S.N., Slungaard, A. and Hazen, S.L. (2000) Role of Eosinophil Peroxidase in the Origins of Protein Oxidation in Asthma.Redox Report, 5, 215-224. https://doi.org/10.1179/135100000101535771 |
[19] |
Wu, W., Samoszuk, M.K., Comhair, S.A.A., Thomassen, M.J., Farver, C.F., Dweik, R.A.,et al. (2000) Eosinophils Generate Brominating Oxidants in Allergen-Induced Asthma.Journal of Clinical Investigation, 105, 1455-1463. https://doi.org/10.1172/jci9702 |
[20] |
Park, H.B., Lam, Y.C., Gaffney, J.P., Weaver, J.C., Krivoshik, S.R., Hamchand, R.,et al. (2019) Bright Green Biofluorescence in Sharks Derives from Bromo-Kynurenine Metabolism.iScience, 19, 1291-1336. https://doi.org/10.1016/j.isci.2019.07.019 |
[21] |
McCall, A.S., Cummings, C.F., Bhave, G., Vanacore, R., Page-McCaw, A. and Hudson, B.G. (2014) Bromine Is an Essential Trace Element for Assembly of Collagen IV Scaffolds in Tissue Development and Architecture.Cell, 157, 1380-1392. https://doi.org/10.1016/j.cell.2014.05.009 |
[22] |
Yanagisawa, I. and Yoshikawa, H. (1973) A Bromine Compound Isolated from Human Cerebrospinal Fluid.Biochimica et Biophysica Acta(BBA)-General Subjects, 329, 283-294. https://doi.org/10.1016/0304-4165(73)90293-6 |
[23] |
Pospíšil, P. (2016) Production of Reactive Oxygen Species by Photosystem II as a Response to Light and Temperature Stress.Frontiers in Plant Science, 7, Article 1950. https://doi.org/10.3389/fpls.2016.01950 |
[24] |
Thapa, H.R. and Agarwal, V. (2021) Obligate Brominating Enzymes Underlie Bromoform Production by Marine Cyanobacteria.Journal of Phycology, 57, 1131-1139. https://doi.org/10.1111/jpy.13142 |
[25] |
Salawitch, R.J. (2006) Biogenic Bromine.Nature, 439, 275-277. https://doi.org/10.1038/439275a |
[26] |
Breinlinger, S., Phillips, T.J., Haram, B.N., Mareš, J., Martínez Yerena, J.A., Hrouzek, P.,et al. (2021) Hunting the Eagle Killer: A Cyanobacterial Neurotoxin Causes Vacuolar Myelinopathy.Science, 371, eaax9050. https://doi.org/10.1126/science.aax9050 |
[27] |
Agarwal, V., El Gamal, A.A., Yamanaka, K., Poth, D., Kersten, R.D., Schorn, M.,et al. (2014) Biosynthesis of Polybrominated Aromatic Organic Compounds by Marine Bacteria.Nature Chemical Biology, 10, 640-647. https://doi.org/10.1038/nchembio.1564 |
[28] |
Teuten, E.L., Xu, L. and Reddy, C.M. (2005) Two Abundant Bioaccumulated Halogenated Compounds Are Natural Products.Science, 307, 917-920. https://doi.org/10.1126/science.1106882 |
[29] |
Alonso, M.B., Maruya, K.A., Dodder, N.G., Lailson-Brito, J., Azevedo, A., Santos-Neto, E.,et al. (2017) Nontargeted Screening of Halogenated Organic Compounds in Bottlenose Dolphins (Tursiopstruncatus) from Rio de Janeiro, Brazil.Environmental Science & Technology, 51, 1176-1185. https://doi.org/10.1021/acs.est.6b04186 |
[30] |
Losada, S., Roach, A., Roosens, L., Santos, F.J., Galceran, M.T., Vetter, W.,et al. (2009) Biomagnification of Anthropogenic and Naturally-Produced Organobrominated Compounds in a Marine Food Web from Sydney Harbour, Australia.Environment International, 35, 1142-1149. https://doi.org/10.1016/j.envint.2009.07.008 |
[31] |
Zhao, T., Tang, X., Li, D., Zhao, J., Zhou, R., Shu, F.,et al. (2022) Prenatal Exposure to Environmentally Relevant Levels of PBDE-99 Leads to Testicular Dysgenesis with Steroidogenesis Disorders.Journal of Hazardous Materials, 424, Article 127547. https://doi.org/10.1016/j.jhazmat.2021.127547 |
[32] |
Wu, Z., Han, W., Yang, X., Li, Y. and Wang, Y. (2019) The Occurrence of Polybrominated Diphenyl Ether (PBDE) Contamination in Soil, Water/Sediment, and Air.Environmental Science and Pollution Research, 26, 23219-23241. https://doi.org/10.1007/s11356-019-05768-w |
[33] |
McDonald, T.A. (2005) Polybrominated Diphenylether Levels among United States Residents: Daily Intake and Risk of Harm to the Developing Brain and Reproductive Organs.Integrated Environmental Assessment and Management, 1, 343-354. https://doi.org/10.1002/ieam.5630010404 |
[34] |
Chokwe, T.B., Magubane, M.N., Abafe, O.A., Okonkwo, J.O. and Sibiya, I.V. (2019) Levels, Distributions, and Ecological Risk Assessments of Polybrominated Diphenyl Ethers and Alternative Flame Retardants in River Sediments from Vaal River, South Africa.Environmental Science and Pollution Research, 26, 7156-7163. https://doi.org/10.1007/s11356-018-04063-4 |
[35] |
Kim, K., Hyun, Y., Hewage, S.R., Piao, M., Kang, K., Kang, H.,et al. (2017) 3-Bromo-4,5-Dihydroxybenzaldehyde Enhances the Level of Reduced Glutathione via the Nrf2-Mediated Pathway in Human Keratinocytes.Marine Drugs, 15, Article 291. https://doi.org/10.3390/md15090291 |
[36] |
Qin, S.-G., Tian, H.-Y., Wei, J., Han, Z.-H., Zhang, M.-J.,et al. (2018) 3-Bromo-4,5-Dihydroxybenzaldehyde Protects against Myocardial Ischemia and Reperfusion Injury through the Akt-PGC1α-Sirt3 Pathway.Frontiers in Pharmacology, 9, Article 722. https://doi.org/10.3389/fphar.2018.00722 |
[37] |
Kang, N., Han, S., Kang, H., Ko, G.,et al. (2017) Anti-Inflammatory Effect of 3-Bromo-4,5-Dihydroxybenzaldehyde, a Component ofPolysiphoniamorrowii,invivoandinvitro.Toxicological Research, 33, 325-332. https://doi.org/10.5487/tr.2017.33.4.325 |
[38] |
Wang, Q., Ou, K., Zeng, C. and Fang, Y. (2022) 5-Bromo-3,4-Dihydroxybenzaldehyde Attenuates Endothelial Cells Injury from High Glucose-Induced Damage.Biomedicine & Pharmacotherapy, 155, Article 113793. https://doi.org/10.1016/j.biopha.2022.113793 |
[39] |
Kang, J.-I, Choi, Y.K., Han, S.-C., Nam, H., Lee, G., Kang, J.-H.,et al. (2022) 5-Bromo-3,4-Dihydroxybenzaldehyde Promotes Hair Growth through Activation of Wnt/β-catenin and Autophagy Pathways and Inhibition of TGF-β Pathways in Dermal Papilla Cells.Molecules, 27, Article 2176. https://doi.org/10.3390/molecules27072176 |
[40] |
Liu, M., Hansen, P.E. and Lin, X. (2011) Bromophenols in Marine Algae and Their Bioactivities.Marine Drugs, 9, 1273-1292. https://doi.org/10.3390/md9071273 |
[41] |
Arai, M., Shin, D., Kamiya, K., Ishida, R., Setiawan, A., Kotoku, N.,et al. (2016) Marine Spongean Polybrominated Diphenyl Ethers, Selective Growth Inhibitors against the Cancer Cells Adapted to Glucose Starvation, Inhibits Mitochondrial Complex II.Journal of Natural Medicines, 71, 44-49. https://doi.org/10.1007/s11418-016-1025-x |
[42] |
Hofer, S., Hartmann, A., Orfanoudaki, M., Nguyen Ngoc, H., Nagl, M., Karsten, U.,et al. (2019) Development and Validation of an HPLC Method for the Quantitative Analysis of Bromophenolic Compounds in the Red AlgaVertebrata lanosa.Marine Drugs, 17, Article 675. https://doi.org/10.3390/md17120675 |
[43] |
Dong, H., Liu, M., Wang, L., Liu, Y.,et al. (2021) Bromophenol Bis (2,3,6-Tribromo-4,5-Dihydroxybenzyl) Ether Protects HaCaT Skin Cells from Oxidative Damage via Nrf2-Mediated Pathways.Antioxidants, 10, Article 1436. https://doi.org/10.3390/antiox10091436 |
[44] |
Sun, J., Wu, J., An, B., de Voogd, N.J., Cheng, W. and Lin, W. (2018) Bromopyrrole Alkaloids with the Inhibitory Effects against the Biofilm Formation of Gram Negative Bacteria.Marine Drugs, 16, Article 9. https://doi.org/10.3390/md16010009 |
[45] |
Kovalerchik, D., Singh, R.P., Schlesinger, P., Mahajni, A., Shefer, S., Fridman, M.,et al. (2020) Bromopyrrole Alkaloids of the SpongeAgelasoroidesCollected Near the Israeli Mediterranean Coastline.Journal of Natural Products, 83, 374-384. https://doi.org/10.1021/acs.jnatprod.9b00863 |
[46] |
Mahamed, S., Motal, R., Govender, T., Dlamini, N., Khuboni, K., Hadeb, Z.,et al. (2023) A Concise Review on Marine Bromopyrrole Alkaloids as Anticancer Agents.Bioorganic & Medicinal Chemistry Letters, 80, Article 129102. https://doi.org/10.1016/j.bmcl.2022.129102 |
[47] |
Blunt, J.W., Copp, B.R., Keyzers, R.A., Munro, M.H.G. and Prinsep, M.R. (2016) Marine Natural Products.Natural Product Reports, 33, 382-431. https://doi.org/10.1039/c5np00156k |
[48] |
Nakamura, Y., Kobayashi, J., Gilmore, J., Mascal, M., Rinehart, K.L., Nakamura, H.,et al. (1986) Bromo-Eudistomin D, a Novel Inducer of Calcium Release from Fragmented Sarcoplasmic Reticulum that Causes Contractions of Skinned Muscle Fibers.Journal of Biological Chemistry, 261, 4139-4142. https://doi.org/10.1016/s0021-9258(17)35636-3 |
[49] |
Murcia, C., Coello, L., Fernández, R., Martín, M., Reyes, F., Francesch, A.,et al. (2014) Tanjungides A and B: New Antitumoral Bromoindole Derived Compounds fromDiazonacfformosa. Isolation and Total Synthesis.Marine Drugs, 12, 1116-1130. https://doi.org/10.3390/md12021116 |
[50] |
Ota, Y., Chinen, T., Yoshida, K., Kudo, S., Nagumo, Y., Shiwa, Y.,et al. (2016) Eudistomin C, an Antitumor and Antiviral Natural Product, Targets 40s Ribosome and Inhibits Protein Translation.ChemBioChem, 17, 1616-1620. https://doi.org/10.1002/cbic.201600075 |
[51] |
Xiao, L. (2022) A Review: Meridianins and Meridianins Derivatives.Molecules, 27, Article 8714. https://doi.org/10.3390/molecules27248714 |
[52] |
Barros-Nepomuceno, F.W.A.,et al. (2021) The Effects of the Alkaloid Tambjamine J on Mice Implanted with Sarcoma 180 Tumor Cells.ChemMedChem, 16, 420-428. https://doi.org/10.1002/cmdc.202000387 |
[53] |
Bucher, C., Deans, R.M. and Burns, N.Z. (2015) Highly Selective Synthesis of Halomon, Plocamenone, and Isoplocamenone.Journal of the American Chemical Society, 137, 12784-12787. https://doi.org/10.1021/jacs.5b08398 |
[54] |
Carter-Franklin, J.N. and Butler, A. (2004) Vanadium bromoperoxidase-Catalyzed Biosynthesis of Halogenated Marine Natural Products.Journal of the American Chemical Society, 126, 15060-15066. https://doi.org/10.1021/ja047925p |
[55] |
Crowe, C.,et al. (2021) Halogenases: A Palette of Emerging Opportunities for Synthetic Biology-Synthetic Chemistry and C-H Functionalisation.Chemical Society Reviews, 50, 9443-9481. https://doi.org/10.1039/D0CS01551B |
[56] |
郑哲麟, 胡文达, 何亚文. 微生物卤化酶及其应用研究进展[J]. 微生物前沿, 2022, 9(4): 141-155. |
[57] |
Butler, A. and Sandy, M. (2009) Mechanistic Considerations of Halogenating Enzymes.Nature, 460, 848-854. https://doi.org/10.1038/nature08303 |
[58] |
Shaw, P.D. and Hager, L.P. (1959) Biological Chlorination. IV. Peroxidative Nature of Enzymatic Chlorination.Journal of the American Chemical Society, 81, 6527-6528. https://doi.org/10.1021/ja01533a056 |
[59] |
Dunford, H.B., Lambeir, A., Kashem, M.A. and Pickard, M. (1987) On the Mechanism of Chlorination by Chloroperoxidase.Archives of Biochemistry and Biophysics, 252, 292-302. https://doi.org/10.1016/0003-9861(87)90034-8 |
[60] |
Hofrichter, M. and Ullrich, R. (2006) Heme-Thiolate Haloperoxidases: Versatile Biocatalysts with Biotechnological and Environmental Significance.Applied Microbiology and Biotechnology, 71, 276-288. https://doi.org/10.1007/s00253-006-0417-3 |
[61] |
Ullrich, R., Nüske, J., Scheibner, K., Spantzel, J. and Hofrichter, M. (2004) Novel Haloperoxidase from the Agaric BasidiomyceteAgrocybeaegeritaOxidizes Aryl Alcohols and Aldehydes.Applied and Environmental Microbiology, 70, 4575-4581. https://doi.org/10.1128/aem.70.8.4575-4581.2004 |
[62] |
Anh, D.H., Ullrich, R., Benndorf, D., Svatoś, A., Muck, A. and Hofrichter, M. (2007) The Coprophilous MushroomCoprinusradiansSecretes a Haloperoxidase that Catalyzes Aromatic Peroxygenation.Applied and Environmental Microbiology, 73, 5477-5485. https://doi.org/10.1128/aem.00026-07 |
[63] |
Auer, M., Gruber, C., Bellei, M., Pirker, K.F., Zamocky, M., Kroiss, D.,et al. (2013) A Stable Bacterial Peroxidase with Novel Halogenating Activity and an Autocatalytically Linked Heme Prosthetic Group.Journal of Biological Chemistry, 288, 27181-27199. https://doi.org/10.1074/jbc.m113.477067 |
[64] |
Arnhold, J. and Malle, E. (2022) Halogenation Activity of Mammalian Heme Peroxidases.Antioxidants, 11, Article 890. https://doi.org/10.3390/antiox11050890 |
[65] |
Marcinkiewicz, J. and Kontny, E. (2012) Taurine and Inflammatory Diseases.Amino Acids, 46, 7-20. https://doi.org/10.1007/s00726-012-1361-4 |
[66] |
Davies, M.J. and Hawkins, C.L. (2020) The Role of Myeloperoxidase in Biomolecule Modification, Chronic Inflammation, and Disease.Antioxidants & Redox Signaling, 32, 957-981. https://doi.org/10.1089/ars.2020.8030 |
[67] |
Wedes, S.H., Wu, W., Comhair, S.A.A., McDowell, K.M., DiDonato, J.A., Erzurum, S.C.,et al. (2011) Urinary Bromotyrosine Measures Asthma Control and Predicts Asthma Exacerbations in Children.The Journal of Pediatrics, 159, 248-255. https://doi.org/10.1016/j.jpeds.2011.01.029 |
[68] |
Asahi, T., Kondo, H., Masuda, M., Nishino, H., Aratani, Y., Naito, Y.,et al. (2010) Chemical and Immunochemical Detection of 8-Halogenated Deoxyguanosines at Early Stage Inflammation.Journal of Biological Chemistry, 285, 9282-9291. https://doi.org/10.1074/jbc.m109.054213 |
[69] |
Péterfi, Z. and Geiszt, M. (2014) Peroxidasins: Novel Players in Tissue Genesis.Trends in Biochemical Sciences, 39, 305-307. https://doi.org/10.1016/j.tibs.2014.05.005 |
[70] |
Bathish, B., Paumann-Page, M., Paton, L.N., Kettle, A.J. and Winterbourn, C.C. (2020) Peroxidasin Mediates Bromination of Tyrosine Residues in the Extracellular Matrix.Journal of Biological Chemistry, 295, 12697-12705. https://doi.org/10.1074/jbc.ra120.014504 |
[71] |
Butler, A. and Carter-Franklin, J.N. (2004) The Role of Vanadium Bromoperoxidase in the Biosynthesis of Halogenated Marine Natural Products.Natural Product Reports, 21, 180-188. https://doi.org/10.1039/b302337k |
[72] |
Vilter, H. (1984) Peroxidases from Phaeophyceae: A Vanadium(V)-Dependent Peroxidase fromAscophyllum nodosum.Phytochemistry, 23, 1387-1390. https://doi.org/10.1016/s0031-9422(00)80471-9 |
[73] |
Johnson, T.L., Palenik, B. and Brahamsha, B. (2011) Characterization of a Functional Vanadium-Dependent Bromoperoxidase in the Marine CyanobacteriumSynechococcussp. CC93111.Journal of Phycology, 47, 792-801. https://doi.org/10.1111/j.1529-8817.2011.01007.x |
[74] |
Zhang, B., Cao, X., Cheng, X., Wu, P., Xiao, T. and Zhang, W. (2010) Efficient Purification with High Recovery of Vanadium Bromoperoxidase fromCorallina officinalis.Biotechnology Letters, 33, 545-548. https://doi.org/10.1007/s10529-010-0454-y |
[75] |
Renirie, R., Pierlot, C., Aubry, J., Hartog, A.F., Schoemaker, H.E., Alsters, P.L.,et al. (2003) Vanadium Chloroperoxidase as a Catalyst for Hydrogen Peroxide Disproportionation to Singlet Oxygen in Mildly Acidic Aqueous Environment.Advanced Synthesis & Catalysis, 345, 849-858. https://doi.org/10.1002/adsc.200303008 |
[76] |
McLauchlan, C.C., Murakami, H.A., Wallace, C.A. and Crans, D.C. (2018) Coordination Environment Changes of the Vanadium in Vanadium-Dependent Haloperoxidase Enzymes.Journal of Inorganic Biochemistry, 186, 267-279. https://doi.org/10.1016/j.jinorgbio.2018.06.011 |
[77] |
Martínez, V.M., Cremer, G.D., Roeffaers, M.B.J., Sliwa, M., Baruah, M., De Vos, D.E.,et al. (2008) Exploration of Single Molecule Events in a Haloperoxidase and Its Biomimic: Localization of Halogenation Activity.Journal of the American Chemical Society, 130, 13192-13193. https://doi.org/10.1021/ja804606m |
[78] |
Agarwal, V., Miles, Z.D., Winter, J.M., Eustáquio, A.S., El Gamal, A.A. and Moore, B.S. (2017) Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse.Chemical Reviews, 117, 5619-5674. https://doi.org/10.1021/acs.chemrev.6b00571 |
[79] |
Tschirret-Guth, R.A. and Butler, A. (1994) Evidence for Organic Substrate Binding to Vanadium Bromoperoxidase.Journal of the American Chemical Society, 116, 411-412. https://doi.org/10.1021/ja00080a063 |
[80] |
Martinez, J.S., Carroll, G.L., Tschirret-Guth, R.A., Altenhoff, G., Little, R.D. and Butler, A. (2001) On the Regiospecificity of Vanadium Bromoperoxidase.Journal of the American Chemical Society, 123, 3289-3294. https://doi.org/10.1021/ja004176c |
[81] |
Kaneko, K., Washio, K., Umezawa, T., Matsuda, F., Morikawa, M. and Okino, T. (2014) Cdna Cloning and Characterization of Vanadium-Dependent Bromoperoxidases from the Red AlgaLaurencianipponica.Bioscience,Biotechnology,and Biochemistry, 78, 1310-1319. https://doi.org/10.1080/09168451.2014.918482 |
[82] |
Andersson, M.A. and Allenmark, S.G. (1998) Asymmetric Sulfoxidation Catalyzed by a Vanadium Bromoperoxidase: Substrate Requirements of the Catalyst.Tetrahedron, 54, 15293-15304. https://doi.org/10.1016/s0040-4020(98)00956-9 |
[83] |
Coughlin, P., Roberts, S., Rush, C. and Willetts, A. (1993) Biotransformation of Alkenes by Haloperoxidases: Regiospecific Bromohydrin Formation from Cinnamyl Substrates.Biotechnology Letters, 15, 907-912. https://doi.org/10.1007/bf00131755 |
[84] |
Camilli, A. and Bassler, B.L. (2006) Bacterial Small-Molecule Signaling Pathways.Science, 311, 1113-1116. https://doi.org/10.1126/science.1121357 |
[85] |
Michels, J.J., Allain, E.J., Borchardt, S.A., Hu, P. and McCoy, W.F. (2000) Degradation Pathway of Homoserine Lactone Bacterial Signal Molecules by Halogen Antimicrobials Identified by Liquid Chromatography with Photodiode Array and Mass Spectrometric Detection.Journal of Chromatography A, 898, 153-165. https://doi.org/10.1016/s0021-9673(00)00849-9 |
[86] |
Keltsch, N.G., Pütz, E., Dietrich, C., Wick, A., Tremel, W. and Ternes, T.A. (2023) Bromination of Quorum Sensing Molecules: Vanadium Bromoperoxidase and Cerium Dioxide Nanocrystals via Free Active Bromine Transform Bacterial Communication.Environmental Science & Technology, 57, 18491-18498. https://doi.org/10.1021/acs.est.3c00459 |
[87] |
Syrpas, M., Ruysbergh, E., Blommaert, L., Vanelslander, B., Sabbe, K., Vyverman, W.,et al. (2014) Haloperoxidase Mediated Quorum Quenching byNitzschia cfPellucida: Study of the Metabolization of N-Acyl Homoserine Lactones by a Benthic Diatom.Marine Drugs, 12, 352-367. https://doi.org/10.3390/md12010352 |
[88] |
Sandy, M., Carter-Franklin, J.N., Martin, J.D. and Butler, A. (2011) Vanadium Bromoperoxidase fromDelisea pulchra: Enzyme-Catalyzed Formation of Bromofuranone and Attendant Disruption of Quorum Sensing.Chemical Communications, 47, 12086-12088. https://doi.org/10.1039/c1cc15605e |
[89] |
Cosse, A., Potin, P. and Leblanc, C. (2009) Patterns of Gene Expression Induced by Oligoguluronates Reveal Conserved and Environment-Specific Molecular Defense Responses in the Brown AlgaLaminariadigitata.New Phytologist, 182, 239-250. https://doi.org/10.1111/j.1469-8137.2008.02745.x |
[90] |
Almeida, M., Filipe, S., Humanes, M., Maia, M.F., Melo, R., Severino, N.,et al. (2001) Vanadium Haloperoxidases from Brown Algae of the Laminariaceae Family.Phytochemistry, 57, 633-642. https://doi.org/10.1016/s0031-9422(01)00094-2 |
[91] |
Johnson, T.L., Brahamsha, B., Palenik, B. and Mühle, J. (2015) Halomethane Production by Vanadium-Dependent Bromoperoxidase in MarineSynechococcus.Limnology and Oceanography, 60, 1823-1835. https://doi.org/10.1002/lno.10135 |
[92] |
Lin, C.Y. and Manley, S.L. (2012) Bromoform Production from Seawater Treated with Bromoperoxidase.Limnology and Oceanography, 57, 1857-1866. https://doi.org/10.4319/lo.2012.57.6.1857 |
[93] |
Wever, R. and Van der Horst, M.A. (2013) The Role of Vanadium Haloperoxidases in the Formation of Volatile Brominated Compounds and Their Impact on the Environment.Dalton Transactions, 42, 11778-11786. https://doi.org/10.1039/c3dt50525a |
[94] |
Theiler, R., Cook, J.C., Hager, L.P. and Siuda, J.F. (1978) Halohydrocarbon Synthesis by Bromoperoxidase.Science, 202, 1094-1096. https://doi.org/10.1126/science.202.4372.1094 |
[95] |
Gkotsi, D.S., Dhaliwal, J., McLachlan, M.M., Mulholand, K.R. and Goss, R.J. (2018) Halogenases: Powerful Tools for Biocatalysis (Mechanisms Applications and Scope).Current Opinion in Chemical Biology, 43, 119-126. https://doi.org/10.1016/j.cbpa.2018.01.002 |
[96] |
Thapa, H.R.,et al. (2018) Chemoenzymatic Synthesis of Starting Materials and Characterization of Halogenases Requiring Acyl Carrier Protein-Tethered Substrates.Methods in Enzymology, 604, 333-366. https://doi.org/10.1016/bs.mie.2018.01.028 |
[97] |
Dong, C., Flecks, S., Unversucht, S., Haupt, C., Van Pée, K. and Naismith, J.H. (2005) Tryptophan 7-Halogenase (PrnA) Structure Suggests a Mechanism for Regioselective Chlorination.Science, 309, 2216-2219. https://doi.org/10.1126/science.1116510 |
[98] |
Neubauer, P.R., Widmann, C., Wibberg, D., Schröder, L., Frese, M., Kottke, T.,et al. (2018) A Flavin-Dependent Halogenase from Metagenomic Analysis Prefers Bromination over Chlorination.PLOS ONE, 13, e0196797. https://doi.org/10.1371/journal.pone.0196797 |
[99] |
Widmann, C., Ismail, M., Sewald, N. and Niemann, H.H. (2020) Structure of Apo Flavin-Dependent Halogenase Xcc4156 Hints at a Reason for Cofactor-Soaking Difficulties.Acta Crystallographica Section D Structural Biology, 76, 687-697. https://doi.org/10.1107/s2059798320007731 |
[100] |
El Gamal, A., Agarwal, V., Diethelm, S., Rahman, I., Schorn, M.A., Sneed, J.M.,et al. (2016) Biosynthesis of Coral Settlement Cue Tetrabromopyrrole in Marine Bacteria by a Uniquely Adapted Brominase-Thioesterase Enzyme Pair.Proceedings of the National Academy of Sciences, 113, 3797-3802. https://doi.org/10.1073/pnas.1519695113 |
[101] |
El Gamal, A., Agarwal, V., Rahman, I. and Moore, B.S. (2016) Enzymatic Reductive Dehalogenation Controls the Biosynthesis of Marine Bacterial Pyrroles.Journal of the American Chemical Society, 138, 13167-13170. https://doi.org/10.1021/jacs.6b08512 |
[102] |
Adak, S. and Moore, B.S. (2021) Cryptic Halogenation Reactions in Natural Product Biosynthesis.Natural Product Reports, 38, 1760-1774. https://doi.org/10.1039/d1np00010a |
[103] |
Gkotsi, D.S., Ludewig, H., Sharma, S.V., Connolly, J.A., Dhaliwal, J., Wang, Y.,et al. (2019) A Marine Viral Halogenase that Iodinates Diverse Substrates.Nature Chemistry, 11, 1091-1097. https://doi.org/10.1038/s41557-019-0349-z |
[104] |
Kalinovskaya, N.I., Dmitrenok, A.S., Kuznetsova, T.A., Frolova, G.M., Christen, R., Laatsch, H.,et al. (2008) “Pseudoalteromonasjanuaria” SUT 11 as the Source of Rare Lipodepsipeptides.Current Microbiology, 56, 199-207. https://doi.org/10.1007/s00284-007-9023-6 |
[105] |
Chau, R., Pearson, L.A., Cain, J., Kalaitzis, J.A. and Neilan, B.A. (2021) APseudoalteromonasClade with Remarkable Biosynthetic Potential.Applied and Environmental Microbiology, 87, e02604-20. https://doi.org/10.1128/aem.02604-20 |
[106] |
Nguyen, D.D., Wu, C.-H., Moree, W.J., Lamsa, A., Medema, M.H., Zhao, X.,et al. (2013) Ms/Ms Networking Guided Analysis of Molecule and Gene Cluster Families.Proceedings of the National Academy of Sciences, 110, E2611-E2620. https://doi.org/10.1073/pnas.1303471110 |
[107] |
Ross, A.C., Gulland, L.E.S., Dorrestein, P.C. and Moore, B.S. (2014) Targeted Capture and Heterologous Expression of thePseudoalteromonasAlterochromide Gene Cluster inEscherichiacoliRepresents a Promising Natural Product Exploratory Platform.ACS Synthetic Biology, 4, 414-420. https://doi.org/10.1021/sb500280q |
[108] |
Ren, Y., Liu, R., Zheng, Y., Wang, H., Meng, Q., Zhu, T.,et al. (2024) Biosynthetic Mechanism of the Yellow Pigments in the Marine BacteriumPseudoalteromonassp. Strain T1lg65.Applied and Environmental Microbiology, 90, e01779-23. https://doi.org/10.1128/aem.01779-23 |
[109] |
Foulston, L.C. and Bibb, M.J. (2010) Microbisporicin Gene Cluster Reveals Unusual Features of Lantibiotic Biosynthesis in Actinomycetes.Proceedings of the National Academy of Sciences, 107, 13461-13466. https://doi.org/10.1073/pnas.1008285107 |
[110] |
Nguyen, N.A., Lin, Z., Mohanty, I., Garg, N., Schmidt, E.W. and Agarwal, V. (2021) An Obligate Peptidyl Brominase Underlies the Discovery of Highly Distributed Biosynthetic Gene Clusters in Marine Sponge Microbiomes.Journal of the American Chemical Society, 143, 10221-10231. https://doi.org/10.1021/jacs.1c03474 |
[111] |
Nguyen, N.A. and Agarwal, V. (2023) A Leader-Guided Substrate Tolerant RiPP Brominase Allows Suzuki-Miyaura Cross-Coupling Reactions for Peptides and Proteins.Biochemistry, 62, 1838-1843. https://doi.org/10.1021/acs.biochem.3c00222 |
[112] |
Edwards, D.J., Marquez, B.L., Nogle, L.M., McPhail, K., Goeger, D.E., Roberts, M.A.,et al. (2004) Structure and Biosynthesis of the Jamaicamides, New Mixed Polyketide-Peptide Neurotoxins from the Marine CyanobacteriumLyngbya majuscula.Chemistry & Biology, 11, 817-833. https://doi.org/10.1016/j.chembiol.2004.03.030 |
[113] |
Esquenazi, E., Jones, A.C., Byrum, T., Dorrestein, P.C. and Gerwick, W.H. (2011) Temporal Dynamics of Natural Product Biosynthesis in Marine Cyanobacteria.Proceedings of the National Academy of Sciences, 108, 5226-5231. https://doi.org/10.1073/pnas.1012813108 |
[114] |
Lukowski, A.L., Hubert, F.M., Ngo, T., Avalon, N.E., Gerwick, W.H. and Moore, B.S. (2023) Enzymatic Halogenation of Terminal Alkynes.Journal of the American Chemical Society, 145, 18716-18721. https://doi.org/10.1021/jacs.3c05750 |
[115] |
Neubauer, P.R., Pienkny, S., Wessjohann, L., Brandt, W. and Sewald, N. (2020) Predicting the Substrate Scope of the Flavin-Dependent Halogenase BrvH.ChemBioChem, 21, 3282-3288. https://doi.org/10.1002/cbic.202000444 |
[116] |
Xu, D., Metz, J., Harmody, D., Peterson, T., Winder, P., Guzmán, E.A.,et al. (2022) Brominated and Sulfur-Containing Angucyclines Derived from a Single Pathway: Identification of Nocardiopsistins D-F.Organic Letters, 24, 7900-7904. https://doi.org/10.1021/acs.orglett.2c02879 |
[117] |
Panter, F., Garcia, R., Thewes, A., Zaburannyi, N., Bunk, B., Overmann, J.,et al. (2019) Production of a Dibrominated Aromatic Secondary Metabolite by a Planctomycete Implies Complex Interaction with a Macroalgal Host.ACS Chemical Biology, 14, 2713-2719. https://doi.org/10.1021/acschembio.9b00641 |
[118] |
Gäfe, S. and Niemann, H.H. (2023) Structural Basis of Regioselective Tryptophan Dibromination by the Single-Component Flavin-Dependent Halogenase AetF.Acta Crystallographica Section D Structural Biology, 79, 596-609. https://doi.org/10.1107/s2059798323004254 |
[119] |
Adak, S., Lukowski, A.L., Schäfer, R.J.B. and Moore, B.S. (2022) From Tryptophan to Toxin: Nature’s Convergent Biosynthetic Strategy to Aetokthonotoxin.Journal of the American Chemical Society, 144, 2861-2866. https://doi.org/10.1021/jacs.1c12778 |
[120] |
Jiang, Y., Snodgrass, H.M., Zubi, Y.S., Roof, C.V., Guan, Y., Mondal, D.,et al. (2022) The Single-Component Flavin Reductase/Flavin-Dependent Halogenase AetF Is a Versatile Catalyst for Selective Bromination and Iodination of Arenes and Olefins.Angewandte Chemie International Edition, 61, e202214610. https://doi.org/10.1002/anie.202214610 |
[121] |
Timilsina, S., Potnis, N., Newberry, E.A., Liyanapathiranage, P., Iruegas-Bocardo, F., White, F.F.,et al. (2020)XanthomonasDiversity, Virulence and Plant-Pathogen Interactions.Nature Reviews Microbiology, 18, 415-427. https://doi.org/10.1038/s41579-020-0361-8 |
[122] |
Andrewes, A.G., Jenkins, C.L., Starr, M.P., Shepherd, J. and Hope, H. (1976) Structure of Xanthomonadin I, a Novel Dibrominated Aryl-Polyene Pigment Produced by the Bacterium.Tetrahedron Letters, 17, 4023-4024. https://doi.org/10.1016/s0040-4039(00)92565-6 |
[123] |
郑哲麟, 等. 黄素依赖型溴化酶XanJ参与黄单胞菌菌黄素的生物合成[J]. 植物病理学报, 2023, 53(2): 229-244. https://doi.org/10.13926/j.cnki.apps.000639 |