急性冠脉综合征的代谢组学研究进展
Progress in Metabolomics of Acute Coronary Syndromes
DOI:10.12677/bp.2024.142014,PDF,HTML,XML,下载: 56浏览: 90
作者:段明宇:宁夏医科大学临床医学院,宁夏 银川;何 军*:宁夏医科大学总医院心血管内科,宁夏 银川
关键词:急性冠脉综合征代谢组学生物标志物Acute Coronary SyndromeMetabolomicsBiomarker
摘要:急性冠脉综合征作为冠心病的常见临床表型,是以冠状动脉粥样硬化斑块破溃,并继发完全或不完全闭塞性血栓形成为病理基础的一组临床综合征,有发病急、病情重、病死率高等特点,但其发病机制仍尚不明朗。代谢组学作为一种新兴的平台技术,已成为诊断疾病和探索其发病机制的重要工具。为更好地了解急性冠状动脉综合征的发病机制,现就代谢组学在急性冠脉综合征研究中的应用进展做一综述,为其临床防治和相关风险管理提供见解和思路。
Abstract:Acute coronary syndrome (ACS) is a group of clinical syndromes that frequently occurs with coronary heart disease. It is characterized by the rupture of atherosclerotic plaque in the coronary arteries with subsequent complete or incomplete occlusive thrombosis. The pathogenesis, however, is still unknown. Metabolomics, an emerging platform technology, has become an essential tool for diagnosing diseases and understanding their pathogenesis. In order to better understand the pathogenesis of acute coronary syndrome, this review tracks the development of metabolomics in the study of ACS, providing deeper knowledge and insights for clinical prevention, treatment, and risk management.
文章引用:段明宇, 何军. 急性冠脉综合征的代谢组学研究进展[J]. 生物过程, 2024, 14(2): 105-115. https://doi.org/10.12677/bp.2024.142014

1. 引言

注:遗传变异(基因组学)导致基因表达的变化(转录组学),影响蛋白质的变异(蛋白质组学)。蛋白质变异部分决定了酶活性,从而决定了代谢变异(代谢组学),同时吸烟、饮酒、高盐及环境因素共同影响机体代谢变化,其以特征性表型呈现。

Figure 1.Schematic diagram of the interrelationships of metabolomics

1.组学的相互关系示意图

近年来,冠状动脉粥样硬化性心脏病(Coronary heart disease, CHD)的发病率与致死率持续升高,已成为全球主要公共卫生问题之一[1],急性冠脉综合征(ACS)是冠心病(CHD)的一种重要临床形态,它通常是由冠状动脉内的不稳定粥样硬化斑块破裂、侵蚀或血栓生成所触发,导致冠状动脉血流受阻,从而引起心肌缺血、损伤或坏死。多项研究指出,ACS的发生常与能量平衡和代谢紊乱相关联,比如肥胖、胰岛素抵抗和糖尿病等代谢失调条件都可能增加患ACS的风险[2][3]。“组学”技术是指利用高通量分析技术,以一种全面、非偏倚、非定向的方式来研究生物样本中的基因突变与多态性(基因组学)、基因表达模式(转录组学)、小分子代谢物(代谢组学)、蛋白质(蛋白质组学)和脂质(脂质组学)。这种技术可以帮助研究者通过分析遗传特征、表观遗传学、基因和蛋白的表达差异,以及与疾病相关的代谢或脂质变化,来发掘该疾病的潜在机制和生物标志物[4][5][6]。代谢组学可以揭示生物体基因型与表型之间的相互作用,以及基因型和环境互作的影响,因此它为理解这些相互作用提供了一个清晰的窗口[7](如图1所示)。本文通过探讨代谢组学技术的现状,代谢组学中生物标志物在ACS中的主要进展,及稳定同位素法与多组学联合的前景;进一步探索ACS病理生理的潜在机制。

2. 代谢组学的概述

2.1. 代谢组学的定义和方法

代谢组学(metabolomics)是系统生物学的分支,它建立在基因组学、转录组学和蛋白质组学的基础上,是一个新兴且强大的领域。其研究对象大都是相对分子质量小于1500 Daltons的小分子物质[8]。主要通过对生物体内所有代谢物进行定性、定量分析,研究它们与生理和病理状态下的变化之间的关联,从而为不同疾病状态下发生的分子变化提供了更客观和详尽的观点。根据研究方法不同,代谢组学研究可分为:非靶向代谢组学(nontargeted metabolomics)和靶向代谢组学(targeted metabolomics)研究。非靶向代谢组学是一种综合分析方法,试图检测、识别和相对量化生物样品中尽可能多的代谢物,具有广泛性和相对性特点;相反,靶向代谢组学是基于现有的知识,将大量的代谢物视为分析目标,根据研究目的不同选择性的确定代谢产物,通过“量身定制”的分析方法进行绝对量化,其主要优势是提高了敏感性和选择性[9]。理想情况下,在研究的早期阶段,应进行非靶向分析以产生新的假设,识别新的代谢途径或候选生物标记物,再进一步通过靶向方法进行研究和验证,以实现对表型有意义的生物学理解[10]。Joanna Teul等人通过研究急性冠脉综合征患者血浆中靶向和非靶向代谢时间轨迹,以鉴定随时间变化的特定生物标志物,反映出ACS初始导致的代谢变化[11]

2.2. 代谢组学研究技术

常见代谢组学技术平台包括了核磁共振(Nuclear magnetic resonance, NMR)和质谱(Mass spectrometry, MS)[12],MS主要有气相色谱–质谱(Gas chromatography-mass spectrometry, GC-MS)[13]和液相色谱–质谱(Liquid chromatography-mass spectrometry, LC-MS)[14][15]。各平台各有特点,适用的标本及条件不尽相同(见表1)。

Table1.Comparison table of common metabolomics technology platforms

1.常见代谢组学技术平台对比表格

技术平台

NMR

GC-MS

LC-MS

优点

① 非侵入性、非破坏性;

② 可重复采样;

③ 可以提供结构信息;

④ 样品准备相对简单。

① 分辨率和灵敏度高;

② 成熟且广泛应用的技术;

③ 可用于挥发性和热稳定化合物。

① 适用范围广,可分析非挥发性、热不稳定和极性化合物;

② 灵敏度高;

③ 可以进行结构解析。

缺点

① 灵敏度较低;

② 分辨率有限;

③ 需较大量的样品;

④ 对某些类型的小分子信号重叠可能导致识别困难。

① 样品需衍生化处理;

② 不能直接对大多数生物大分子进行分析;

③ 样品处理比较复杂。

① 需要复杂的样品准备;

② 方法开发需要更加精细;

③ 设备成本较高且运行维护要求严格。

适用样本

生物液体如血清、尿液、细胞培养基,可以是复杂矩阵。

血液、尿液、组织提取物,适用于小分子特别是挥发性有机化合物。

几乎所有类型的样本,包含血浆、尿液、组织、细胞等。

2.3. 代谢组学数据分析

代谢组学技术可产生庞大、复杂的多维数据,因此其数据分析在很大程度上依赖于先进的计算方法。单变量和多变量方法都用于处理不同类型的代谢组学数据和研究问题。在单变量方法中,常用的是标准广义线性模型。为了管理和解释高通量代谢组学数据中庞大的分析物数量,研究者通常会缩小关注的范围,专注于一组较小、区分性强的代谢物子集。多变量分析技术是处理这些数据并提取相关代谢特征的重要工具。这些方法根据是否需要外部信息或预先定义的类别,分为两大类:无监督和有监督的多元分析法。主成分分析(PCA)是一种常用的无监督方法,它通过简化数据以揭示样本间的自然分群和共有的变异情况。相反,有监督方法,如偏最小二乘判别分析(PLS-DA)专注于根据已知的类别标签最大化样本组间的差异[16]。通常利用在线数据库(如LipidMaps、Metlin和人类代谢组数据库(Human Metabolome Database, HMDB))对未知的、差异显著的代谢物进行代谢特征识别。有监督方法,如偏最小二乘判别分析(PLS-DA)专注于根据已知的类别标签最大化样本组间的差异[17][18]

3. ACS与相关代谢组学产物

ACS可引起体内许多物质的代谢异常,如糖类,脂质,氨基酸代谢变化[19][20][21]。应用代谢组学方法识别这些变化可寻找ACS发生发展的早期生物标志物,这对于ACS的早期预防和早期治疗至关重要[22]。近年来,越来越多的学者研究了ACS的代谢产物,并根据代谢产物的差异确定可能的生物标志物及其代谢途径,在此我们主要针对不同实验相似结论的代谢途径及生物标志物加以讨论,旨在为ACS的诊治及病理生理机制提供重要的理论依据。

3.1. 与糖代谢有关的生物标记物

正常情况下,心脏ATP主要来源于脂肪酸氧化(Fatty acidoxidation, FAO),葡萄糖代谢贡献较小[23]。然而,在应激条件下,FAO可能会减少,这伴随着葡萄糖利用率的增加[24],心肌细胞中的葡萄糖摄取是由葡萄糖转运蛋白(Glucose transporter, CLUT)介导的[25][26],其作用机制是脂肪转位酶(Fatty acid translocase, FAT/CD36)从肌膜的移位和GLUT4的增加[27]。因此ACS患者可能存在明显的糖代谢途径的病理改变,离子扰动和氧化还原稳态的变化。

琥珀酸的选择性积累是组织缺血的普遍代谢特征,先前研究证明在缺血再灌注的动物实验模型中三羧酸循环(Tricarboxylic acid cycle, TCA)的中间体琥珀酸的选择性积累是组织缺血的普遍代谢特征,并伴随再灌注过程中线粒体活性氧(Reactive oxygen species, ROS)的产生[28][29]。Rauckhorst[30]等人通过代谢组学技术联用稳定同位素示踪法发现缺氧条件下琥珀酸13C同位素丰度和富集的改变最为显著。因为线粒体活性氧的产生是由琥珀酸脱氢酶的逆转介导的,从而导致琥珀酸的积累,而在急性STEMI期间,人类琥珀酸的变化还有待考证。因此Kohlhauer[31]等人通过对STEMI患者的血液代谢产物进行了全面分析发现急性STEMI期间心肌释放琥珀酸到血液中,并且琥珀酸的释放与缺血再灌注损伤(Ischemia–reperfusion injury, IRI)的严重程度相关。并且通过心脏磁共振成像(Cardiac magnetic resonance imaging, cMRI)量化证明了上述结论。从而考虑靶向诱导心肌琥珀酸积累的线粒体功能障碍可能是限制STEMI患者缺血再灌注损伤的潜在治疗靶点。

血浆N-聚糖作为心脏代谢风险的新兴生物标志物,聚糖是由蛋白质和脂质缀合形成的结构不同的碳水化合物,几乎在每种病理生理状况中都起着重要的生物学作用[32]。在一项前瞻性大型队列研究中,通过对N-聚糖组的相对丰度的色谱分析及长期随访发现N-聚糖能有效预测CHD发生风险[33]。该结论于急性心肌梗死(Acute Myocardial Infarction, AMI)患者中得到了印证,Lim[34]发现AMI患者的N-聚糖代谢谱变化与炎症状态的转变相关,并通过IgG (Immunoglobulin G, Ig G)验证糖组学分析的稳健性,并提出在区分STEMI和NSTEMI患者时,N-聚糖可作为AMI患者的潜在生物标志物。

TCA循环和磷酸戊糖途径的扰动与心肌损伤有关。研究指出,急性心肌缺血时,TCA循环及其中间代谢产物至关重要[35]。在NSTEMI患者中,这些代谢产物的水平低于STEMI患者。这表明在心肌缺血的应急反应中,TCA循环可能起初作为代偿机制,但随着损伤的加剧,可能转为失代偿。此外,心肌缺血时代谢物水平的显著变化[36],如乳酸(糖酵解的最终产物)的增加,强调了TCA循环在这个过程中的重要性。在人体AMI模型研究中,也证实了TCA循环和磷酸戊糖途径的扰动与心肌损伤的关联[37]。这些发现在冠状窦和外周血中均有观察到,并在更广泛的临床样本中得到了验证。

3.2. 与脂质代谢相关的生物代谢物

脂质组学是代谢组学的一个子领域,可以通过代谢组学技术检测多种脂质分子[38]。研究表明,脂质代谢紊乱与血管炎症反应和氧化应激有关。血管炎症反应和氧化应激是动脉粥样硬化和ACS形成的重要危险因素[39]。因此明确脂质组成对于表征ACS的分子基础至关重要。

溶血磷脂作为ACS的预测标志物,研究表明溶血磷脂在血小板及单核细胞及血管上皮细胞发挥多种活性,并且可导致动脉粥样硬化斑块的不稳定性,从而加快了ACS的发生发展[40]。在一项前瞻性巢式病例对照研究中作者发现STEMI及NSTEMI患者血浆代谢产物变化发现溶血磷脂水平与患者长期预后之间及心肌风险特征存在强关联性。由于溶血磷脂酸嵌入斑块/泡沫细胞中或在梗死后/斑块破裂后血管损伤期间产生,因此推测其前体磷脂酰胆碱(lysophosphatidylcholine, LPC)和磷脂酰乙醇胺(lysophosphatidylethanolamine, LPE)应该是更相关的风险预测指标[41]。有趣的是,该推测在多项ACS及ACS亚型实验中得到了证实,尤其是那些炎症特征增加的患者中LPC和LPE均存在显著改变[42][43]。尽管前期有诸多研究证实溶血磷脂会导致冠脉血管及动脉粥样硬化斑块形成,但代谢组学将其内在机制与ACS表征相联系,且该同质性结论来自于多个不同研究队列,这提示溶血磷脂可作为ACS有前途的非侵入性的生物标志物。

神经酰胺可预测ACS患者MACE相关性,神经酰胺是调节导致细胞存活或死亡的信号转导途径中最具生物活性的膜脂质之一[44]。其糖基化形式葡萄糖基神经酰胺和乳糖基神经酰胺在可见斑块发展的动脉组织区域富集且在冠状动脉粥样斑块中积累[45]。早在20世纪末期,研究者在实验大鼠心脏左冠状动脉闭塞模型中发现,心肌细胞在缺血缺氧条件下神经酰胺逐渐积累。在缺血早期,心肌区域的神经酰胺含量可增加至正常值的155%,在3 h后上升至250%。这些实验结果表明神经酰胺信号在心肌细胞缺血/再灌注引起的细胞死亡中起作用[46]。Chen等人通过对三个独立中心的1435例CAD患者进行了广泛靶向的血浆代谢组学和脂类组学分析。观察到血浆神经酰胺水平随着稳定型冠状动脉疾病(Stable coronary artery disease, SCAD),UA和AMI的疾病进展方向上调,并且与冠状动脉粥样硬化程度及心肌坏死的证据呈正相关并于验证队列中得到一致结论[47]。该结果再次印证于一项前瞻性病例对照研究血浆神经酰胺水平升高是病变严重程度及主要不良心血管事件(Major adverse cardiac event, MACE)的独立生物标志物[48]

3.3. 与氨基酸有关的生物标记物

3.3.1. 支链氨基酸(Branched Chain Amino Acids, BCAAs)与ACS的关系

近年来,支链氨基酸(branched chain amino acids, BCAAs)与代谢性疾病的关系成为很多学者关注的焦点。BCAAs已成为2型糖尿病的强预测因子,但其与CVD即ACS的关系尚不确定[49]。BCAAs主要包括(缬氨酸、亮氨酸和异亮氨酸),是哺乳动物来自饮食的必需氨基酸,可作为能量生产的资源以及重要营养和代谢信号的调节剂[50]。BCAAs在生物代谢过程中产生了一系列代谢中间体,其中许多具有独特的信号特性,这可能是许多组织特异性和疾病特异性模式下引发的一系列分子机制,这些机制将BCAAs稳态的变化与心血管疾病的发病机理联系起来,包括心肌梗塞,缺血再灌注损伤,动脉粥样硬化等[51][52]。BCAAs或BCAA分解代谢物是血小板活化的重要调节因子。Xu[53]等人研究了支链氨基酸分解代谢通过增强血小板Tropomodulin-3丙酰化作用促进血栓形成风险,得出BCAAs或BCAA分解代谢物是血小板活化的重要调节因子,与动脉血栓形成风险相关,这可能参与形成动脉粥样硬化及代谢综合征的分子机制,导致ACS的发生发展。故作者提出限制BCAA摄入或靶向BCAA分解代谢可能是抗代谢综合征血栓形成治疗的新策略。

3.3.2. 其他氨基酸与ACS的关系

谷氨酰胺是一种生糖氨基酸,也是糖异生的重要燃料。谷氨酰胺是TCA循环的中心部分,在许多代谢途径中起着重要作用,尤其是在维持氨基酸稳态方面[54]。Turer等[55]使用代谢组学分析来比较心脏提取和血浆底物,并证明冠心病患者的谷氨酸/谷氨酰胺浓度降低。

此外组氨酸在ACS中也表现显著代谢变化,组氨酸可以在生物体内转化为组胺,其主要作用是舒张血管而降低血压。有学者通过动物实验证明组氨酸是一种有效的单线态氧猝灭剂,可显著改善缺血心肌的功能恢复,组氨酸水平的降低加重了疾病的进展[56]

研究表明循环羟脯氨酸可以防止LDL与已经沉积在血管壁中的脂蛋白结合,并通过相同的机制从动脉粥样硬化病变中释放已经沉积的LDL[37]。有研究报道具有高水平羟脯氨酸的老年人的冠状动脉几乎没有动脉粥样硬化斑块[57]。Vallej[58]及其同事通过研究ACS及SCAD患者血浆代谢也发现血浆羟脯氨酸水平的降低可能反映了NSTEACS中胶原蛋白合成和周转低的状态。

综上所述由于机体代谢是多网络集合的复杂过程,我们很难以单一生物标志物我来定义疾病的发生发展过程,但通过将小分子差异代谢物与我们已知的体液标志物相关联可以大大提高疾病的诊断效率及对疾病预后的风险预测,以更好的预防及治疗疾病从而降低病的病死率及致残率。

4. 代谢组学与稳定同位素及多组学联合的应用

近年来,稳定同位素与代谢组学的关系逐渐成为代谢组学向前迈进的关键,有学者提出,单纯测量代谢物浓度的变化不能完全解释代谢速率或通量[59],同样重要的是理解通路活动,其可以根据每单位时间的物质流(即代谢通量)来量化[60]以更好的阐释机体变化是代谢物的改变及作用。因为与代谢物不同,代谢通量不是在质谱仪中测量的物理实体,而是通过使用同位素示踪剂来推断它们。由于代谢物水平和通量提供了互补信息,因此我们最好通过研究两者来实现对疾病代谢的理解。McGarrah等人认为稳定同位素追踪/通量实验是研究心脏代谢变化的强大工具[8]。Lindsay等人使用稳定的13C标记代谢物建立心脏线粒体底物利用模型,评估TAC循环的准确性和心脏底物代谢的影响。此外,通过整合通量测量,能够理解心肌细胞合成和分解代谢的变化[61]。这些研究还说明稳定同位素追踪和细胞外通量分析整合的测量,追踪底物“命运”并详细了解干预措施。综上所述,结合稳定同位素技术的GC/MS和NMR分析是深入研究和理解ACS及其他疾病代谢变化的重要方法。

代谢组学本身为多组学系统带来了巨大的优势,特别是在代谢失调的疾病中,如糖尿病及ACS中。通过整合多组学数据(包括基因组、转录组、蛋白质组、代谢组等),可以从全面和深入的角度理解疾病的致病机制、发展过程和预后,并且有助于揭示生物过程的因果关系,为疾病的早期诊断和治疗提供新的视角和方法[62]。整合多组学最大的优势是疾病病理生理状态下一种潜在的解决方案,可以理解潜在的生物学过程,并更好地预测疾病发生发展的结果及预后[63][64]。多组学与前瞻性纵向特征的结合有助于加强因果关系[65]。使我们更清晰、精确地了解疾病的进展及内在机制,其所体现出的显著差异可以为疾病的表征提供研究思路还为我们的节约大量探索时间。尽管如此,多组学数据整合也面临着挑战,比如需要考虑数据的多样性和异质性,以及实验设计的复杂性。要识别通过多组学调控的细胞机制和代谢过程,需要结合数据驱动和知识驱动的方法,从而分析不同分子层面间以及细胞机制间的相互作用[66]。一项前瞻性、纵向研究,应用了多组学分析方法,包括基因组学、转录组学、蛋白质组学、免疫组学、代谢组学和微生物组学,以及临床评估和影像学信息,进行了9个月的跟踪研究。该研究揭示了与健康相关的多个方面的综合信息,有助于深入理解健康状况,并对代谢、心血管、适应性锻炼、认知功能、感染、心理状况、肿瘤和炎症性疾病等多方面的状态进行了全面的评价[67]。因此多组学联合对疾病机制了解具有巨大潜力,但目前关于ACS多组学全面联合的研究甚少,充分利用多组学联合技术探索疾病完整且深入的机制,使其发挥最大化优势,是我们目前工作的重点。

5. 结语与展望

综上所述,尽管代谢组学已经在ACS中的研究中展现了发现新型生物标志物的潜力,但这些潜在标志物的病理生理学意义尚需进一步研究与验证。在临床研究中,因样本量、采集时间点、检测平台及分析模型的差异,尚未形成关于ACS代谢特征的统一认识。此外,代谢组学多为定性分析,未能精确量化代谢物的浓度。当前研究应结合非靶向和靶向组学技术,利用稳定同位素跟踪技术,并结合多组学分析,以更全面探索疾病机制。此外,代谢组学研究常因样本量小、多为单一中心而限制结论的普适性,通过meta分析聚合数据将增强研究的力度。建立广泛的代谢组学数据库收集更多样本数据,有助于以临床为导向地使用生物标志物,并做出精准疾病预测。新生物标志物的发现对于ACS的早期诊断和预后评估至关重要,而代谢组学技术的进步正推动这一领域的发展。

NOTES

*通讯作者。

参考文献

[1] Gach O, El HZ, Lancellotti P. (2018) [Acute Coronary Syndrome].Revue Médicale de Liège, 73, 243-250.
[2] Puri, R. and Nissen, S. (2013) The Complementary Roles of Imaging and ‘Omics’ for Future Anti-Atherosclerotic Drug Development.Current Pharmaceutical Design, 19, 5963-5971.
https://doi.org/10.2174/13816128113199990365
[3] Wishart, D.S., Guo, A., Oler, E., Wang, F., Anjum, A., Peters, H., Dizon, R., Sayeeda, Z., Tian, S., Lee, B.L., Berjanskii, M., Mah, R., Yamamoto, M., Jovel, J., Torres-Calzada, C., Hiebert-Giesbrecht, M., Lui, V.W., Varshavi, D., Varshavi, D., Allen, D., Arndt, D., Khetarpal, N., Sivakumaran, A., Harford, K., Sanford, S., Yee, K., Cao, X., Budinski, Z., Liigand, J., Zhang, L., Zheng, J., Mandal, R., Karu, N., Dambrova, M., Schiöth, H.B., Greiner, R. and Gautam, V. (2021) HMDB 5.0: The Human Metabolome Database for 2022.Nucleic Acids Research, 50, D622-D631.
https://doi.org/10.1093/nar/gkab1062
[4] Hunter, W.G., Kelly, J.P., McGarrah, R.W., Khouri, M.G., Craig, D., Haynes, C., Ilkayeva, O., Stevens, R.D., Bain, J.R., Muehlbauer, M.J., Newgard, C.B., Felker, G.M., Hernandez, A.F., Velazquez, E.J., Kraus, W.E. and Shah, S.H. (2016) Metabolomic Profiling Identifies Novel Circulating Biomarkers of Mitochondrial Dysfunction Differentially Elevated in Heart Failure with Preserved versus Reduced Ejection Fraction: Evidence for Shared Metabolic Impairments in Clinical Heart Failure.Journal of the American Heart Association, 5, e003190.
https://doi.org/10.1161/jaha.115.003190
[5] Sun, H., Olson, K.C., Gao, C., Prosdocimo, D.A., Zhou, M., Wang, Z., Jeyaraj, D., Youn, J., Ren, S., Liu, Y., Rau, C.D., Shah, S., Ilkayeva, O., Gui, W., William, N.S., Wynn, R.M., Newgard, C.B., Cai, H., Xiao, X., Chuang, D.T., Schulze, P.C., Lynch, C., Jain, M.K. and Wang, Y. (2016) Catabolic Defect of Branched-Chain Amino Acids Promotes Heart Failure.Circulation, 133, 2038-2049.
https://doi.org/10.1161/circulationaha.115.020226
[6] Lanfear, D.E., Gibbs, J.J., Li, J., She, R., Petucci, C., Culver, J.A., Tang, W.H.W., Pinto, Y.M., Williams, L.K., Sabbah, H.N. and Gardell, S.J. (2017) Targeted Metabolomic Profiling of Plasma and Survival in Heart Failure Patients.JACC:Heart Failure, 5, 823-832.
https://doi.org/10.1016/j.jchf.2017.07.009
[7] Pouralijan Amiri, M., Khoshkam, M., Salek, R.M., Madadi, R., Faghanzadeh Ganji, G. and Ramazani, A. (2019) Metabolomics in Early Detection and Prognosis of Acute Coronary Syndrome.Clinica Chimica Acta, 495, 43-53.
https://doi.org/10.1016/j.cca.2019.03.1632
[8] Dunn, W.B., Goodacre, R., Neyses, L. and Mamas, M. (2011) Integration of Metabolomics in Heart Disease and Diabetes Research: Current Achievements and Future Outlook.Bioanalysis, 3, 2205-2222.
https://doi.org/10.4155/bio.11.223
[9] McGarrah, R.W., Crown, S.B., Zhang, G., Shah, S.H. and Newgard, C.B. (2018) Cardiovascular Metabolomics.Circulation Research, 122, 1238-1258.
https://doi.org/10.1161/circresaha.117.311002
[10] Wang, Z., Klipfell, E., Bennett, B.J., Koeth, R., Levison, B.S., DuGar, B., Feldstein, A.E., Britt, E.B., Fu, X., Chung, Y., Wu, Y., Schauer, P., Smith, J.D., Allayee, H., Tang, W.H.W., DiDonato, J.A., Lusis, A.J. and Hazen, S.L. (2011) Gut Flora Metabolism of Phosphatidylcholine Promotes Cardiovascular Disease.Nature, 472, 57-63.
https://doi.org/10.1038/nature09922
[11] Teul, J., Garcia, A., Tuñón, J., Martin-Ventura, J.L., Tarín, N., Bescós, L.L., Egido, J., Barbas, C. and Rupérez, F.J. (2011) Targeted and Non-Targeted Metabolic Time Trajectory in Plasma of Patients after Acute Coronary Syndrome.Journal of Pharmaceutical and Biomedical Analysis, 56, 343-351.
https://doi.org/10.1016/j.jpba.2011.05.020
[12] Oakman, C., Tenori, L., Biganzoli, L., Santarpia, L., Cappadona, S., Luchinat, C. and Di Leo, A. (2011) Uncovering the Metabolomic Fingerprint of Breast Cancer.The International Journal of Biochemistry & Cell Biology, 43, 1010-1020.
https://doi.org/10.1016/j.biocel.2010.05.001
[13] Krone, N., Hughes, B.A., Lavery, G.G., Stewart, P.M., Arlt, W. and Shackleton, C.H.L. (2010) Gas Chromatography/Mass Spectrometry (GC/MS) Remains a Pre-Eminent Discovery Tool in Clinical Steroid Investigations Even in the Era of Fast Liquid Chromatography Tandem Mass Spectrometry (LC/MS/MS).The Journal of Steroid Biochemistry and Molecular Biology, 121, 496-504.
https://doi.org/10.1016/j.jsbmb.2010.04.010
[14] Sabatine, M.S., Liu, E., Morrow, D.A., Heller, E., McCarroll, R., Wiegand, R., Berriz, G.F., Roth, F.P. and Gerszten, R.E. (2005) Metabolomic Identification of Novel Biomarkers of Myocardial Ischemia.Circulation, 112, 3868-3875.
https://doi.org/10.1161/circulationaha.105.569137
[15] Drexler, D.M., Reily, M.D. and Shipkova, P.A. (2010) Advances in Mass Spectrometry Applied to Pharmaceutical Metabolomics.Analytical and Bioanalytical Chemistry, 399, 2645-2653.
https://doi.org/10.1007/s00216-010-4370-8
[16] Boulesteix, A.L. and Strimmer, K. (2006) Partial Least Squares: A Versatile Tool for the Analysis of High-Dimensional Genomic Data.Briefings in Bioinformatics, 8, 32-44.
https://doi.org/10.1093/bib/bbl016
[17] Posma, J.M., Robinette, S.L., Holmes, E. and Nicholson, J.K. (2013) MetaboNetworks, an Interactive Matlab-Based Toolbox for Creating, Customizing and Exploring Sub-Networks from KEGG.Bioinformatics, 30, 893-895.
https://doi.org/10.1093/bioinformatics/btt612
[18] Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., Wishart, D.S. and Xia, J. (2018) MetaboAnalyst 4.0: Towards More Transparent and Integrative Metabolomics Analysis.Nucleic Acids Research, 46, W486-W494.
https://doi.org/10.1093/nar/gky310
[19] Lynch, M., Barallobre‐Barreiro, J., Jahangiri, M. and Mayr, M. (2016) Vascular Proteomics in Metabolic and Cardiovascular Diseases.Journal of Internal Medicine, 280, 325-338.
https://doi.org/10.1111/joim.12486
[20] Soppert, J., Lehrke, M., Marx, N., Jankowski, J. and Noels, H. (2020) Lipoproteins and Lipids in Cardiovascular Disease: From Mechanistic Insights to Therapeutic Targeting.Advanced Drug Delivery Reviews, 159, 4-33.
https://doi.org/10.1016/j.addr.2020.07.019
[21] Ferreira-Divino, L.F., Suvitaival, T., Rotbain Curovic, V., Tofte, N., Trošt, K., Mattila, I.M., Theilade, S., Winther, S.A., Hansen, T.W., Frimodt-Møller, M., Legido-Quigley, C. and Rossing, P. (2022) Circulating Metabolites and Molecular Lipid Species Are Associated With Future Cardiovascular Morbidity and Mortality in Type 1 Diabetes.Cardiovascular Diabetology, 21, Article No. 153.
https://doi.org/10.1186/s12933-022-01568-8
[22] Surendran, A., Atefi, N., Zhang, H., Aliani, M. and Ravandi, A. (2021) Defining Acute Coronary Syndrome through Metabolomics.Metabolites, 11, Article 685.
https://doi.org/10.3390/metabo11100685
[23] Tran, D.H. and Wang, Z.V. (2019) Glucose Metabolism in Cardiac Hypertrophy and Heart Failure.Journal of the American Heart Association, 8, e012673.
https://doi.org/10.1161/jaha.119.012673
[24] Wende, A.R., Brahma, M.K., McGinnis, G.R. and Young, M.E. (2017) Metabolic Origins of Heart Failure.JACC:Basic to Translational Science, 2, 297-310.
https://doi.org/10.1016/j.jacbts.2016.11.009
[25] Tian, R. and Abel, E.D. (2001) Responses of GLUT4-Deficient Hearts to Ischemia Underscore the Importance of Glycolysis.Circulation, 103, 2961-2966.
https://doi.org/10.1161/01.cir.103.24.2961
[26] Szablewski, L. (2017) Glucose Transporters in Healthy Heart and in Cardiac Disease.International Journal of Cardiology, 230, 70-75.
https://doi.org/10.1016/j.ijcard.2016.12.083
[27] Heather, L.C., Pates, K.M., Atherton, H.J., Cole, M.A., Ball, D.R., Evans, R.D., Glatz, J.F., Luiken, J.J., Griffin, J.L. and Clarke, K. (2013) Differential Translocation of the Fatty Acid Transporter, FAT/CD36, and the Glucose Transporter, GLUT4, Coordinates Changes in Cardiac Substrate Metabolism during Ischemia and Reperfusion.Circulation:Heart Failure, 6, 1058-1066.
https://doi.org/10.1161/circheartfailure.112.000342
[28] Taegtmeyer, H. (1978) Metabolic Responses to Cardiac Hypoxia. Increased Production of Succinate by Rabbit Papillary Muscles.Circulation Research, 43, 808-815.
https://doi.org/10.1161/01.res.43.5.808
[29] Chouchani, E.T., Pell, V.R., Gaude, E., Aksentijević, D., Sundier, S.Y., Robb, E.L., Logan, A., Nadtochiy, S.M., Ord, E.N.J., Smith, A.C., Eyassu, F., Shirley, R., Hu, C., Dare, A.J., James, A.M., Rogatti, S., Hartley, R.C., Eaton, S., Costa, A.S.H., Brookes, P.S., Davidson, S.M., Duchen, M.R., Saeb-Parsy, K., Shattock, M.J., Robinson, A.J., Work, L.M., Frezza, C., Krieg, T. and Murphy, M.P. (2014) Ischaemic Accumulation of Succinate Controls Reperfusion Injury Through Mitochondrial ROS.Nature, 515, 431-435.
https://doi.org/10.1038/nature13909
[30] Rauckhorst, A.J., Borcherding, N., Pape, D.J., Kraus, A.S., Scerbo, D.A. and Taylor, E.B. (2022) Mouse Tissue Harvest-Induced Hypoxia Rapidly Alters thein VivoMetabolome, Between-Genotype Metabolite Level Differences, and 13c-Tracing Enrichments.Molecular Metabolism, 66, Article ID: 101596.
https://doi.org/10.1016/j.molmet.2022.101596
[31] Kohlhauer, M., Dawkins, S., Costa, A.S.H., Lee, R., Young, T., Pell, V.R., Choudhury, R.P., Banning, A.P., Kharbanda, R.K., Saeb‐Parsy, K., Murphy, M.P., Frezza, C., Krieg, T., Channon, K.M. and Oxford Acute Myocardial Infarction (OxAMI) Study (2018) Metabolomic Profiling in Acute ST‐Segment-Elevation Myocardial Infarction Identifies Succinate as an Early Marker of Human Ischemia-Reperfusion Injury.Journal of the American Heart Association, 7, e007546.
https://doi.org/10.1161/jaha.117.007546
[32] Hart, G.W. and Copeland, R.J. (2010) Glycomics Hits the Big Time.Cell, 143, 672-676.
https://doi.org/10.1016/j.cell.2010.11.008
[33] Wittenbecher, C., Štambuk, T., Kuxhaus, O., Rudman, N., Vučković, F., Štambuk, J., Schiborn, C., Rahelić, D., Dietrich, S., Gornik, O., Perola, M., Boeing, H., Schulze, M.B. and Lauc, G. (2020) PlasmaN-Glycans as Emerging Biomarkers of Cardiometabolic Risk: A Prospective Investigation in the EPIC-Potsdam Cohort Study.Diabetes Care, 43, 661-668.
https://doi.org/10.2337/dc19-1507
[34] Lim, S.Y., Hendra, C., Yeo, X.H., Tan, X.Y., Ng, B.H., Laserna, A.K.C., Tan, S.H., Chan, M.Y., Khan, S.H., Chen, S. and Li, S.F.Y. (2021) N-Glycan Profiles of Acute Myocardial Infarction Patients Reveal Potential Biomarkers for Diagnosis, Severity Assessment and Treatment Monitoring.Glycobiology, 32, 469-482.
https://doi.org/10.1093/glycob/cwab129
[35] Barba, I., de León, G., Martín, E., Cuevas, A., Aguade, S., Candell‐Riera, J., Barrabés, J.A. and Garcia‐Dorado, D. (2008) Nuclear Magnetic Resonance‐Based Metabolomics Predicts Exercise‐induced Ischemia in Patients with Suspected Coronary Artery Disease.Magnetic Resonance in Medicine, 60, 27-32.
https://doi.org/10.1002/mrm.21632
[36] Dhillon, O.S., Narayan, H.K., Quinn, P.A., Squire, I.B., Davies, J.E. and Ng, L.L. (2011) Interleukin 33 and ST2 in Non—ST-Elevation Myocardial Infarction: Comparison with Global Registry of Acute Coronary Events Risk Scoring and NT-proBNP.American Heart Journal, 161, 1163-1170.
https://doi.org/10.1016/j.ahj.2011.03.025
[37] Barderas, M.G., Laborde, C.M., Posada, M., de la Cuesta, F., Zubiri, I., Vivanco, F. and Alvarez-Llamas, G. (2011) Metabolomic Profiling for Identification of Novel Potential Biomarkers in Cardiovascular Diseases.Journal of Biomedicine and Biotechnology, 2011, Article ID: 790132.
https://doi.org/10.1155/2011/790132
[38] Roberts, L.D., McCombie, G., Titman, C.M. and Griffin, J.L. (2008) A Matter of Fat: An Introduction to Lipidomic Profiling Methods.Journal of Chromatography B, 871, 174-181.
https://doi.org/10.1016/j.jchromb.2008.04.002
[39] Diehl, P., Nienaber, F., Zaldivia, M.T.K., Stamm, J., Siegel, P.M., Mellett, N.A., Wessinger, M., Wang, X., McFadyen, J.D., Bassler, N., Puetz, G., Htun, N.M., Braig, D., Habersberger, J., Helbing, T., Eisenhardt, S.U., Fuller, M., Bode, C., Meikle, P.J., Chen, Y.C. and Peter, K. (2019) Lysophosphatidylcholine Is a Major Component of Platelet Microvesicles Promoting Platelet Activation and Reporting Atherosclerotic Plaque Instability.Thrombosis and Haemostasis, 119, 1295-1310.
https://doi.org/10.1055/s-0039-1683409
[40] Schober, A. and Siess, W. (2012) Lysophosphatidic Acid in Atherosclerotic Diseases.British Journal of Pharmacology, 167, 465-482.
https://doi.org/10.1111/j.1476-5381.2012.02021.x
[41] Chorell, E., Olsson, T., Jansson, J. and Wennberg, P. (2020) Lysophospholipids as Predictive Markers of ST-Elevation Myocardial Infarction (STEMI) and Non-St-Elevation Myocardial Infarction (NSTEMI).Metabolites, 11, Article 25.
https://doi.org/10.3390/metabo11010025
[42] Walker, A.K., Jacobs, R.L., Watts, J.L., Rottiers, V., Jiang, K., Finnegan, D.M., Shioda, T., Hansen, M., Yang, F., Niebergall, L.J., Vance, D.E., Tzoneva, M., Hart, A.C. and Näär, A.M. (2011) A Conserved SREBP-1/Phosphatidylcholine Feedback Circuit Regulates Lipogenesis in Metazoans.Cell, 147, 840-852.
https://doi.org/10.1016/j.cell.2011.09.045
[43] Yin, X., de Carvalho, L.P., Chan, M.Y. and Li, S.F.Y. (2017) Integrated Metabolomics and Metallomics Analyses in Acute Coronary Syndrome Patients.Metallomics, 9, 734-743.
https://doi.org/10.1039/c7mt00071e
[44] He, X. and Schuchman, E.H. (2018) Ceramide and Ischemia/Reperfusion Injury. Journal of Lipids, 2018, Article ID: 3646725.
https://doi.org/10.1155/2018/3646725
[45] Chatterjee, S. (1998) Sphingolipids in Atherosclerosis and Vascular Biology.Arteriosclerosis, Thrombosis, and Vascular Biology, 18, 1523-1533.
https://doi.org/10.1161/01.atv.18.10.1523
[46] Bielawska, A.E., Shapiro, J.P., Jiang, L.,et al. (1997) Ceramide Is Involved in Triggering of Cardiomyocyte Apoptosis Induced by Ischemia and Reperfusion.The American Journal of Pathology, 151, 1257-1263.
[47] Chen, H., Wang, Z., Qin, M., Zhang, B., Lin, L., Ma, Q., Liu, C., Chen, X., Li, H., Lai, W. and Zhong, S. (2021) Comprehensive Metabolomics Identified the Prominent Role of Glycerophospholipid Metabolism in Coronary Artery Disease Progression.Frontiers in Molecular Biosciences, 8, Article 632950.
https://doi.org/10.3389/fmolb.2021.632950
[48] Laaksonen, R., Ekroos, K., Sysi-Aho, M., Hilvo, M., Vihervaara, T., Kauhanen, D., Suoniemi, M., Hurme, R., März, W., Scharnagl, H., Stojakovic, T., Vlachopoulou, E., Lokki, M., Nieminen, M.S., Klingenberg, R., Matter, C.M., Hornemann, T., Jüni, P., Rodondi, N., Räber, L., Windecker, S., Gencer, B., Pedersen, E.R., Tell, G.S., Nygård, O., Mach, F., Sinisalo, J. and Lüscher, T.F. (2016) Plasma Ceramides Predict Cardiovascular Death in Patients with Stable Coronary Artery Disease and Acute Coronary Syndromes beyond LDL-cholesterol.European Heart Journal, 37, 1967-1976.
https://doi.org/10.1093/eurheartj/ehw148
[49] White, P.J., McGarrah, R.W., Herman, M.A., Bain, J.R., Shah, S.H. and Newgard, C.B. (2021) Insulin Action, Type 2 Diabetes, and Branched-Chain Amino Acids: A Two-Way Street.Molecular Metabolism, 52, Article ID: 101261.
https://doi.org/10.1016/j.molmet.2021.101261
[50] Arany, Z. and Neinast, M. (2018) Branched Chain Amino Acids in Metabolic Disease.Current Diabetes Reports, 18, Article No. 76.
https://doi.org/10.1007/s11892-018-1048-7
[51] Neinast, M., Murashige, D. and Arany, Z. (2019) Branched Chain Amino Acids.Annual Review of Physiology, 81, 139-164.
https://doi.org/10.1146/annurev-physiol-020518-114455
[52] McGarrah, R.W. and White, P.J. (2022) Branched-Chain Amino Acids in Cardiovascular Disease.Nature Reviews Cardiology, 20, 77-89.
https://doi.org/10.1038/s41569-022-00760-3
[53] Xu, Y., Jiang, H., Li, L., Chen, F., Liu, Y., Zhou, M., Wang, J., Jiang, J., Li, X., Fan, X., Zhang, L., Zhang, J., Qiu, J., Wu, Y., Fang, C., Sun, H. and Liu, J. (2020) Branched-Chain Amino Acid Catabolism Promotes Thrombosis Risk by Enhancing Tropomodulin-3 Propionylation in Platelets.Circulation, 142, 49-64.
https://doi.org/10.1161/circulationaha.119.043581
[54] Li, Z., Liu, X., Wang, J., Gao, J., Guo, S., Gao, K., Man, H., Wang, Y., Chen, J. and Wang, W. (2015) Analysis of Urinary Metabolomic Profiling for Unstable Angina Pectoris Disease Based on Nuclear Magnetic Resonance Spectroscopy.Molecular BioSystems, 11, 3387-3396.
https://doi.org/10.1039/c5mb00489f
[55] Turer, A.T., Stevens, R.D., Bain, J.R., Muehlbauer, M.J., van der Westhuizen, J., Mathew, J.P., Schwinn, D.A., Glower, D.D., Newgard, C.B. and Podgoreanu, M.V. (2009) Metabolomic Profiling Reveals Distinct Patterns of Myocardial Substrate Use in Humans with Coronary Artery Disease or Left Ventricular Dysfunction during Surgical Ischemia/Reperfusion.Circulation, 119, 1736-1746.
https://doi.org/10.1161/circulationaha.108.816116
[56] Lee, J.W., Miyawaki, H., Bobst, E.V., Hester, J.D., Ashraf, M. and Bobst, A.M. (1999) Improved Functional Recovery of Ischemic Rat Hearts Due to Singlet Oxygen Scavengers Histidine and Carnosine.Journal of Molecular and Cellular Cardiology, 31, 113-121.
https://doi.org/10.1006/jmcc.1998.0850
[57] Bernstein, A.M., Willcox, B.J., Tamaki, H., Kunishima, N., Suzuki, M., Craig Willcox, D., Kristen Yoo, J.-S. and Perls, T.T. (2004) First Autopsy Study of an Okinawan Centenarian: Absence of Many Age-Related Diseases.The Journals of Gerontology:Series A, 59, 1195-1199.
https://doi.org/10.1093/gerona/59.11.1195
[58] Vallejo, M., García, A., Tuñón, J., García-Martínez, D., Angulo, S., Martin-Ventura, J.L., Blanco-Colio, L.M., Almeida, P., Egido, J. and Barbas, C. (2009) Plasma Fingerprinting with GC-MS in Acute Coronary Syndrome.Analytical and Bioanalytical Chemistry, 394, 1517-1524.
https://doi.org/10.1007/s00216-009-2610-6
[59] Karlstaedt, A. (2021) Stable Isotopes for Tracing Cardiac Metabolism in Diseases. Frontiers in Cardiovascular Medicine, 8, Article 734364.
https://doi.org/10.3389/fcvm.2021.734364
[60] Sauer, U. (2006) Metabolic Networks in Motion:13C‐Based Flux Analysis.Molecular Systems Biology, 2, Article 62.
https://doi.org/10.1038/msb4100109
[61] Jin, E.S., Lee, M.H. and Malloy, C.R. (2021)13C NMR of Glutamate for Monitoring the Pentose Phosphate Pathway in Myocardium.NMR in Biomedicine, 34, e4533.
https://doi.org/10.1002/nbm.4533
[62] Bakker, O.B., Aguirre-Gamboa, R., Sanna, S., Oosting, M., Smeekens, S.P., Jaeger, M., Zorro, M., Võsa, U., Withoff, S., Netea-Maier, R.T., Koenen, H.J.P.M., Joosten, I., Xavier, R.J., Franke, L., Joosten, L.A.B., Kumar, V., Wijmenga, C., Netea, M.G. and Li, Y. (2018) Integration of Multi-Omics Data and Deep Phenotyping Enables Prediction of Cytokine Responses.Nature Immunology, 19, 776-786.
https://doi.org/10.1038/s41590-018-0121-3
[63] Ritchie, M.D., Holzinger, E.R., Li, R., Pendergrass, S.A. and Kim, D. (2015) Methods of Integrating Data to Uncover Genotype-Phenotype Interactions.Nature Reviews Genetics, 16, 85-97.
https://doi.org/10.1038/nrg3868
[64] Yao, Q., Xu, Y., Yang, H., Shang, D., Zhang, C., Zhang, Y., Sun, Z., Shi, X., Feng, L., Han, J., Su, F., Li, C. and Li, X. (2015) Global Prioritization of Disease Candidate Metabolites Based on a Multi-Omics Composite Network.Scientific Reports, 5, Article No. 17201.
https://doi.org/10.1038/srep17201
[65] Yang, P., Humphrey, S.J., Cinghu, S., Pathania, R., Oldfield, A.J., Kumar, D., Perera, D., Yang, J.Y.H., James, D.E., Mann, M. and Jothi, R. (2019) Multi-Omic Profiling Reveals Dynamics of the Phased Progression of Pluripotency.Cell Systems, 8, 427-445.E10.
https://doi.org/10.1016/j.cels.2019.03.012
[66] Bodein, A., Scott-Boyer, M., Perin, O., Lê Cao, K. and Droit, A. (2021) Interpretation of Network-Based Integration from Multi-Omics Longitudinal Data.Nucleic Acids Research, 50, e27.
https://doi.org/10.1093/nar/gkab1200
[67] Schüssler-Fiorenza Rose, S.M., Contrepois, K., Moneghetti, K.J., Zhou, W., Mishra, T., Mataraso, S., Dagan-Rosenfeld, O., Ganz, A.B., Dunn, J., Hornburg, D., Rego, S., Perelman, D., Ahadi, S., Sailani, M.R., Zhou, Y., Leopold, S.R., Chen, J., Ashland, M., Christle, J.W., Avina, M., Limcaoco, P., Ruiz, C., Tan, M., Butte, A.J., Weinstock, G.M., Slavich, G.M., Sodergren, E., McLaughlin, T.L., Haddad, F. and Snyder, M.P. (2019) A Longitudinal Big Data Approach for Precision Health.Nature Medicine, 25, 792-804.
https://doi.org/10.1038/s41591-019-0414-6

Baidu
map