[1] |
Parada, C.A., De Oliveira, I.P., Gewehr, M.C.F., Machado-Neto, J.A., Lima, K., Eichler, R.A.S.,et al. (2022) Effect of FKBP12-Derived Intracellular Peptides on Rapamycin-Induced FKBP-FRB Interaction and Autophagy.Cells, 11, Article 385. https://doi.org/10.3390/cells11030385 |
[2] |
Dikic, I. and Elazar, Z. (2018) Mechanism and Medical Implications of Mammalian Autophagy.Nature Reviews Molecular Cell Biology, 19, 349-364. https://doi.org/10.1038/s41580-018-0003-4 |
[3] |
Lopes, V.R., Loitto, V., Audinot, J., Bayat, N., Gutleb, A.C. and Cristobal, S. (2016) Dose-Dependent Autophagic Effect of Titanium Dioxide Nanoparticles in Human Hacat Cells at Non-Cytotoxic Levels.Journal ofNanobiotechnology, 14, Article No. 22. https://doi.org/10.1186/s12951-016-0174-0 |
[4] |
Wang, N., Wei, L., Liu, D., Zhang, Q., Xia, X., Ding, L.,et al. (2022) Identification and Validation of Autophagy-Related Genes in Diabetic Retinopathy.Frontiers in Endocrinology, 13, Article 867600. https://doi.org/10.3389/fendo.2022.867600 |
[5] |
Levine, B. and Kroemer, G. (2008) Autophagy in the Pathogenesis of Disease.Cell, 132, 27-42. https://doi.org/10.1016/j.cell.2007.12.018 |
[6] |
Rabinowitz, J.D. and White, E. (2010) Autophagy and Metabolism.Science, 330, 1344-1348. https://doi.org/10.1126/science.1193497 |
[7] |
Klionsky, D.J. (2007) Autophagy: From Phenomenology to Molecular Understanding in Less than a Decade.Nature Reviews Molecular Cell Biology, 8, 931-937. https://doi.org/10.1038/nrm2245 |
[8] |
Nakatogawa, H., Suzuki, K., Kamada, Y. and Ohsumi, Y. (2009) Dynamics and Diversity in Autophagy Mechanisms: Lessons from Yeast.Nature Reviews Molecular Cell Biology, 10, 458-467. https://doi.org/10.1038/nrm2708 |
[9] |
Li, X., He, S. and Ma, B. (2020) Autophagy and Autophagy-Related Proteins in Cancer.Molecular Cancer, 19, Article No. 12 https://doi.org/10.1186/s12943-020-1138-4 |
[10] |
Mizushima, N. (2007) Autophagy: Process and Function.Genes & Development, 21, 2861-2873. https://doi.org/10.1101/gad.1599207 |
[11] |
Ichimura, Y., Kirisako, T., Takao, T., Satomi, Y., Shimonishi, Y., Ishihara, N.,et al. (2000) A Ubiquitin-Like System Mediates Protein Lipidation.Nature, 408, 488-492. https://doi.org/10.1038/35044114 |
[12] |
Hamasaki, M., Furuta, N., Matsuda, A., Nezu, A., Yamamoto, A., Fujita, N.,et al. (2013) Autophagosomes Form at ER-Mitochondria Contact Sites.Nature, 495, 389-393. https://doi.org/10.1038/nature11910 |
[13] |
Rogov, V., Dötsch, V., Johansen, T. and Kirkin, V. (2014) Interactions between Autophagy Receptors and Ubiquitin-Like Proteins Form the Molecular Basis for Selective Autophagy.Molecular Cell, 53, 167-178. https://doi.org/10.1016/j.molcel.2013.12.014 |
[14] |
Lu, K., Psakhye, I. and Jentsch, S. (2014) Autophagic Clearance of PolyQ Proteins Mediated by Ubiquitin-Atg8 Adaptors of the Conserved CUET Protein Family.Cell, 158, 549-563. https://doi.org/10.1016/j.cell.2014.05.048 |
[15] |
White, E. and DiPaola, R.S. (2009) The Double-Edged Sword of Autophagy Modulation in Cancer.Clinical Cancer Research, 15, 5308-5316. https://doi.org/10.1158/1078-0432.ccr-07-5023 |
[16] |
Jin, S. and White, E. (2007) Role of Autophagy in Cancer: Management of Metabolic Stress.Autophagy, 3, 28-31. https://doi.org/10.4161/auto.3269 |
[17] |
White, E. (2012) Deconvoluting the Context-Dependent Role for Autophagy in Cancer.Nature Reviews Cancer, 12, 401-410. https://doi.org/10.1038/nrc3262 |
[18] |
Galluzzi, L., Pietrocola, F., Bravo-San Pedro, J.M., Amaravadi, R.K., Baehrecke, E.H., Cecconi, F.,et al. (2015) Autophagy in Malignant Transformation and Cancer Progression.The EMBO Journal, 34, 856-880. https://doi.org/10.15252/embj.201490784 |
[19] |
Li, Z., Chen, B., Wu, Y., Jin, F., Xia, Y. and Liu, X. (2010) Genetic and Epigenetic Silencing of theBeclin1 Gene in Sporadic Breast Tumors.BMC Cancer, 10, Article No. 98. https://doi.org/10.1186/1471-2407-10-98 |
[20] |
Qu, X., Yu, J., Bhagat, G., Furuya, N., Hibshoosh, H., Troxel, A.,et al. (2003) Promotion of Tumorigenesis by Heterozygous Disruption of theBeclin1 Autophagy Gene.Journal of Clinical Investigation, 112, 1809-1820. https://doi.org/10.1172/jci20039 |
[21] |
Kang, M.R., Kim, M.S., Oh, J.E., Kim, Y.R., Song, S.Y., Kim, S.S.,et al. (2009) Frameshift Mutations of Autophag Related GenesATG2B,ATG5,ATG9BandATG12 in Gastric and Colorectal Cancers with Microsatellite Instability.The Journal of Pathology, 217, 702-706. https://doi.org/10.1002/path.2509 |
[22] |
Wible, D.J., Chao, H., Tang, D.G. and Bratton, S.B. (2019)ATG5 Cancer Mutations and Alternative mRNA Splicing Reveal a Conjugation Switch That RegulatesATG12-ATG5-ATG16L1 Complex Assembly and Autophagy.Cell Discovery, 5, Article No. 42. https://doi.org/10.1038/s41421-019-0110-1 |
[23] |
Tsukamoto, S., Kuma, A., Murakami, M., Kishi, C., Yamamoto, A. and Mizushima, N. (2008) Autophagy Is Essential for Preimplantation Development of Mouse Embryos.Science, 321, 117-120. https://doi.org/10.1126/science.1154822 |
[24] |
Kocaturk, N.M., Akkoc, Y., Kig, C., Bayraktar, O., Gozuacik, D. and Kutlu, O. (2019) Autophagy as a Molecular Target for Cancer Treatment.European Journal of Pharmaceutical Sciences, 134, 116-137. https://doi.org/10.1016/j.ejps.2019.04.011 |
[25] |
Wei, H., Wei, S., Gan, B., Peng, X., Zou, W. and Guan, J. (2011) Suppression of Autophagy by FIP200 Deletion Inhibits Mammary Tumorigenesis.Genes & Development, 25, 1510-1527. https://doi.org/10.1101/gad.2051011 |
[26] |
Gong, C., Bauvy, C., Tonelli, G., Yue, W., Deloménie, C., Nicolas, V.,et al. (2012)Beclin1 and Autophagy Are Required for the Tumorigenicity of Breast Cancer Stem-Like/Progenitor Cells.Oncogene, 32, 2261-2272. https://doi.org/10.1038/onc.2012.252 |
[27] |
Yue, W., Hamaï, A., Tonelli, G., Bauvy, C., Nicolas, V., Tharinger, H.,et al. (2013) Inhibition of the Autophagic Flux by Salinomycin in Breast Cancer Stem-Like/Progenitor Cells Interferes with Their Maintenance.Autophagy, 9, 714-729. https://doi.org/10.4161/auto.23997 |
[28] |
Jin, M., Liu, X., Wu, Y., Lou, Y., Li, X. and Huang, G. (2022) Circular RNA EPB41 Expression Predicts Unfavorable Prognoses in NSCLC by Regulating mIR-486-3p/eIF5A Axis-Mediated Stemness.Cancer Cell International, 22, Article No. 219. https://doi.org/10.1186/s12935-022-02618-7 |
[29] |
Boya, P., Codogno, P. and Rodriguez-Muela, N. (2018) Autophagy in Stem Cells: Repair, Remodelling and Metabolic Reprogramming.Development, 145, dev146506. https://doi.org/10.1242/dev.146506 |
[30] |
Auberger, P. and Puissant, A. (2017) Autophagy, a Key Mechanism of Oncogenesis and Resistance in Leukemia.Blood, 129, 547-552. https://doi.org/10.1182/blood-2016-07-692707 |
[31] |
Bortnik, S. and Gorski, S.M. (2017) Clinical Applications of Autophagy Proteins in Cancer: from Potential Targets to Biomarkers.International Journal of Molecular Sciences, 18, Article 1496. https://doi.org/10.3390/ijms18071496 |
[32] |
Mo, S., Dai, W., Xiang, W., Li, Y., Feng, Y., Zhang, L.,et al. (2019) Prognostic and Predictive Value of an Autophagy-Related Signature for Early Relapse in Stages I-III Colon Cancer.Carcinogenesis, 40, 861-870. https://doi.org/10.1093/carcin/bgz031 |
[33] |
Kimmelman, A.C. and White, E. (2017) Autophagy and Tumor Metabolism.Cell Metabolism, 25, 1037-1043. https://doi.org/10.1016/j.cmet.2017.04.004 |
[34] |
Katheder, N.S., Khezri, R., O’Farrell, F., Schultz, S.W., Jain, A., Rahman, M.M.,et al. (2017) Microenvironmental Autophagy Promotes Tumour Growth.Nature, 541, 417-420. https://doi.org/10.1038/nature20815 |
[35] |
Katheder, N.S. and Rusten, T.E. (2017) Microenvironment and Tumors—A Nurturing Relationship.Autophagy, 13, 1241-1243. https://doi.org/10.1080/15548627.2017.1310361 |
[36] |
Shen, Z., Qin, L., Xu, T., Xia, L., Wang, X., Zhang, X.,et al. (2016) Chloroquine Enhances the Efficacy of Cisplatin by Suppressing Autophagy in Human Adrenocortical Carcinoma Treatment.Drug Design,Development and Therapy, 10, 1035-1045. https://doi.org/10.2147/dddt.s101701 |
[37] |
Gong, C., Hu, C., Gu, F., Xia, Q., Yao, C., Zhang, L.,et al. (2017) Co-Delivery of Autophagy InhibitorATG7 siRNA and Docetaxel for Breast Cancer Treatment.Journal of Controlled Release, 266, 272-286. https://doi.org/10.1016/j.jconrel.2017.09.042 |
[38] |
Eng, C.H., Wang, Z., Tkach, D., Toral-Barza, L., Ugwonali, S., Liu, S.,et al. (2015) Macroautophagy Is Dispensable for Growth of KRAS Mutant Tumors and Chloroquine Efficacy.Proceedings of the National Academy of Sciences, 113, 182-187. https://doi.org/10.1073/pnas.1515617113 |
[39] |
Karsli-Uzunbas, G., Guo, J.Y., Price, S., Teng, X., Laddha, S.V., Khor, S.,et al. (2014) Autophagy Is Required for Glucose Homeostasis and Lung Tumor Maintenance.Cancer Discovery, 4, 914-927. https://doi.org/10.1158/2159-8290.cd-14-0363 |
[40] |
Napolitano, G., Johnson, J.L., He, J., Rocca, C.J., Monfregola, J., Pestonjamasp, K.,et al. (2015) Impairment of Chaperone-Mediated Autophagy Leads to Selective Lysosomal Degradation Defects in the Lysosomal Storage Disease Cystinosis.EMBO Molecular Medicine, 7, 158-174. https://doi.org/10.15252/emmm.201404223 |
[41] |
Degenhardt, K., Mathew, R., Beaudoin, B., Bray, K., Anderson, D., Chen, G.,et al. (2006) Autophagy Promotes Tumor Cell Survival and Restricts Necrosis, Inflammation, and Tumorigenesis.Cancer Cell, 10, 51-64. https://doi.org/10.1016/j.ccr.2006.06.001 |
[42] |
Choi, A.M.K., Ryter, S.W. and Levine, B. (2013) Autophagy in Human Health and Disease.New England Journal of Medicine, 368, 651-662. https://doi.org/10.1056/nejmra1205406 |
[43] |
Li, Y., Huang, J., Pang, S., Wang, H., Zhang, A., Hawley, R.G.,et al. (2017) Novel and FunctionalATG12 Gene Variants in Sporadic Parkinson’s Disease.Neuroscience Letters, 643, 22-26. https://doi.org/10.1016/j.neulet.2017.02.028 |
[44] |
Friedman, L.G., Lachenmayer, M.L., Wang, J., He, L., Poulose, S.M., Komatsu, M.,et al. (2012) Disrupted Autophagy Leads to Dopaminergic Axon and Dendrite Degeneration and Promotes Presynaptic Accumulation of α-Synuclein and LRRK2 in the Brain.The Journal of Neuroscience, 32, 7585-7593. https://doi.org/10.1523/jneurosci.5809-11.2012 |
[45] |
Sliter, D.A., Martinez, J., Hao, L., Chen, X., Sun, N., Fischer, T.D.,et al. (2018) Parkin and Pink1 Mitigate Sting-Induced Inflammation.Nature, 561, 258-262. https://doi.org/10.1038/s41586-018-0448-9 |
[46] |
Huang, J. and Klionsky, D.J. (2007) Autophagy and Human Disease.Cell Cycle, 6, 1837-1849. https://doi.org/10.4161/cc.6.15.4511 |
[47] |
Wang, Y., Martinez-Vicente, M., Krüger, U., Kaushik, S., Wong, E., Mandelkow, E.,et al. (2010) Synergy and Antagonism of Macroautophagy and Chaperone-Mediated Autophagy in a Cell Model of Pathological Tau Aggregation.Autophagy, 6, 182-183. https://doi.org/10.4161/auto.6.1.10815 |
[48] |
Sorrentino, V., Romani, M., Mouchiroud, L., Beck, J.S., Zhang, H., D’Amico, D.,et al. (2017) Enhancing Mitochondrial Proteostasis Reduces Amyloid-β Proteotoxicity.Nature, 552, 187-193. https://doi.org/10.1038/nature25143 |
[49] |
Fang, E.F., Hou, Y., Palikaras, K., Adriaanse, B.A., Kerr, J.S., Yang, B.,et al. (2019) Mitophagy Inhibits Amyloid-β and Tau Pathology and Reverses Cognitive Deficits in Models of Alzheimer’s Disease.Nature Neuroscience, 22, 401-412. https://doi.org/10.1038/s41593-018-0332-9 |
[50] |
Wild, E.J. and Tabrizi, S.J. (2014) Targets for Future Clinical Trials in Huntington’s Disease: What’s in the Pipeline?Movement Disorders, 29, 1434-1445. https://doi.org/10.1002/mds.26007 |
[51] |
Qi, L., Zhang, X., Wu, J., Lin, F., Wang, J., DiFiglia, M.,et al. (2012) The Role of Chaperone-Mediated Autophagy in Huntingtin Degradation.PLOS ONE, 7, e46834. https://doi.org/10.1371/journal.pone.0046834 |
[52] |
Bauer, P.O., Goswami, A., Wong, H.K., Okuno, M., Kurosawa, M., Yamada, M.,et al. (2010) Harnessing Chaperone-Mediated Autophagy for the Selective Degradation of Mutant Huntingtin Protein.Nature Biotechnology, 28, 256-263. https://doi.org/10.1038/nbt.1608 |
[53] |
Li, Z., Wang, C., Wang, Z., Zhu, C., Li, J., Sha, T.,et al. (2019) Allele-Selective Lowering of Mutant HTT Protein by HTT-LC3 Linker Compounds.Nature, 575, 203-209. https://doi.org/10.1038/s41586-019-1722-1 |
[54] |
Hara, T., Nakamura, K., Matsui, M., Yamamoto, A., Nakahara, Y., Suzuki-Migishima, R.,et al. (2006) Suppression of Basal Autophagy in Neural Cells Causes Neurodegenerative Disease in Mice.Nature, 441, 885-889. https://doi.org/10.1038/nature04724 |