[1] |
John, M., Häkkinen, A. and Louhi-Kultanen, M. (2020) Purification Efficiency of Natural Freeze Crystallization for Urban Wastewaters.Cold Regions Science and Technology,170, Article 102953. https://doi.org/10.1016/j.coldregions.2019.102953 |
[2] |
Li, F., He, X., Srishti, A., Song, S., Tan, H.T.W., Sweeney, D.J. and Wang, C.-H. (2021) Water Hyacinth for Energy and Environmental Applications: A Review.Bioresource Technology,327, Article 124809. https://doi.org/10.1016/j.biortech.2021.124809 |
[3] |
Wang, X., Shi, L., Lan, C.Q., Delatolla, R. and Zhang, Z. (2013) Potential of Water Hyacinth for Phytoremediation in Low Temperature Environment.Environmental Progress & Sustainable Energy,32, 976-981. https://doi.org/10.1002/ep.11853 |
[4] |
Qin, H., Diao, M., Zhang, Z., Visser, P.M., Zhang, Y., Wang, Y. and Yan, S. (2020) Responses of Phytoremediation in Urban Wastewater with Water Hyacinths to Extreme Precipitation.Journal of Environmental Management,271, Article 110948. https://doi.org/10.1016/j.jenvman.2020.110948 |
[5] |
Singh, J., Kumar, P., Eid, E.M., Taher, M.A., El-Morsy, M.H.E., Osman, H.E.M. and Kumar, V. (2023) Phytoremediation of Nitrogen and Phosphorus Pollutants from Glass Industry Effluent by Using Water Hyacinth (Eichhornia crassipes(Mart.) Solms): Application of RSM and ANN Techniques for Experimental Optimization.EnvironmentalScience and Pollution Research,30, 20590-20600. https://doi.org/10.1007/s11356-022-23601-9 |
[6] |
Amalina, F., Razak, A.S.A., Krishnan, S., Zularisam, A.W. and Nasrullah, M. (2022) Water Hyacinth (Eichhornia crassipes) for Organic Contaminants Removal in Water—A Review.Journal of Hazardous Materials Advances,7, Article 100092. https://doi.org/10.1016/j.hazadv.2022.100092 |
[7] |
Madikizela, L.M. (2021) Removal of Organic Pollutants in Water Using Water Hyacinth (Eichhornia crassipes).Journal of Environmental Management,295, Article 113153. https://doi.org/10.1016/j.jenvman.2021.113153 |
[8] |
Rezania, S., Ponraj, M., Talaiekhozani, A., Mohamad, S.E., Md Din, M.F., Taib, S.M., Sairan, F.M. (2015) Perspectives of Phytoremediation Using Water Hyacinth for Removal of Heavy Metals, Organic and Inorganic Pollutants in Wastewater.Journal of Environmental Management,163, 125-133. https://doi.org/10.1016/j.jenvman.2015.08.018 |
[9] |
Tirva, D., Tiwari, D., Chalotra, A. and Rawat, M. (2022) Bio Ethanol Production from Water Hyacinth.Materials Today:Proceedings, In Press. https://doi.org/10.1016/j.matpr.2022.11.054 |
[10] |
Zhu, Q., Gao, D., Yan, D., Tang, J., Cheng, X., El Sayed, I.E.T. and Xin, J. (2023) Highly Efficient One-Pot Bioethanol Production from Corn Stalk with Biocompatible Ionic Liquids.Bioresource Technology Reports,22, Article 101461. https://doi.org/10.1016/j.biteb.2023.101461 |
[11] |
Abdel-Fattah, A.F. and Abdel-Naby, M.A. (2012) Pretreatment and Enzymic Saccharification of Water Hyacinth Cellulose.Carbohydrate Polymers,87, 2109-2113. https://doi.org/10.1016/j.carbpol.2011.10.033 |
[12] |
Ajithram, A., Winowlin Jappes, J.T., Chithra, G.K. and Daphne, R. (2023) Serious Environmental Threat Water Hyacinth (Eichhornia crassipes) Plant Natural Fibress: Different Extraction Methods and Morphological Properties for Polymer Composite Applications.Materials Today: Proceedings, In Press. https://doi.org/10.1016/j.matpr.2023.03.431 |
[13] |
Cantero, D.A., Bermejo, M.D. and Cocero, M.J. (2015) Governing Chemistry of Cellulose Hydrolysis in Supercritical Water.ChemSusChem,8, 1026-1033. https://doi.org/10.1002/cssc.201403385 |
[14] |
Seta, F.T., An, X., Liu, L., Zhang, H., Yang, J., Zhang, W. and Liu, H. (2020) Preparation and Characterization of High Yield Cellulose Nanocrystals (CNC) Derived from Ball Mill Pretreatment and Maleic Acid Hydrolysis.Carbohydrate Polymers,234, Article 115942. https://doi.org/10.1016/j.carbpol.2020.115942 |
[15] |
Boruah, P., Gupta, R. and Katiyar, V. (2023) Fabrication of Cellulose Nanocrystal (CNC) from Waste Paper for Developing Antifouling and High-Performance Polyvinylidene Fluoride (PVDF) Membrane for Water Purification.Carbohydrate Polymer Technologies and Applications,5, Article 100309. https://doi.org/10.1016/j.carpta.2023.100309 |
[16] |
Xi, C., Wang, R., Rao, P., Zhang, W., Yan, L., Li, G. and Zhou, X. (2020) The Fabrication and Arsenic Removal Performance of Cellulose Nanocrystal-Containing Absorbents Based on the “Bridge Joint” Effect of Iron Ions.Carbohydrate Polymers,237, Article 116129. https://doi.org/10.1016/j.carbpol.2020.116129 |
[17] |
Fan, J., Xu, M., Xu, Y.-T., Hamad, W.Y., Meng, Z. and MacLachlan, M.J. (2023) A Visible Multi-Response Electrochemical Sensor Based on Cellulose Nanocrystals.Chemical Engineering Journal,457, Article 141175. https://doi.org/10.1016/j.cej.2022.141175 |
[18] |
Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D. and Dorris, A. (2011) Nanocelluloses: A New Family of Nature-Based Materials.Angewandte Chemie International Edition,50, 5438-5466. https://doi.org/10.1002/anie.201001273 |
[19] |
Li, Z., Guan, J., Yan, C., Chen, N., Wang, C., Liu, T. and Shao, Z. (2023) Corn Straw Core/Cellulose Nanofibers Composite for Food Packaging: Improved Mechanical, Bacteria Blocking, Ultraviolet and Water Vapor Barrier Properties.Food Hydrocolloids,143, Article 108884. https://doi.org/10.1016/j.foodhyd.2023.108884 |
[20] |
Costa, A.L.R., Gomes, A., Furtado, G.D.F., Tibolla, H., Menegalli, F.C. and Cunha, R.L. (2020) Modulatingin vitroDigestibility of Pickering Emulsions Stabilized by Food-Grade Polysaccharides Particles.Carbohydrate Polymers,227, Article 115344. https://doi.org/10.1016/j.carbpol.2019.115344 |
[21] |
Babaei-Ghazvini, A. and Acharya, B. (2023) Crosslinked Poly (Vinyl Alcohol) Composite Reinforced with Tunicate, Wood, and Hybrid Cellulose Nanocrystals: Comparative Physicochemical, Thermal, and Mechanical Properties.International Journal of Biological Macromolecules,227, 1048-1058. https://doi.org/10.1016/j.ijbiomac.2022.11.281 |
[22] |
Babaei-Ghazvini, A., Cudmore, B., Dunlop, M.J., Acharya, B., Bissessur, R., Ahmed, M. and Whelan, W.M. (2020) Effect of Magnetic Field Alignment of Cellulose Nanocrystals in Starch Nanocomposites: Physicochemical and Mechanical Properties.Carbohydrate Polymers,247, Article 116688. https://doi.org/10.1016/j.carbpol.2020.116688 |
[23] |
Meng, F., Wang, G., Du, X., Wang, Z., Xu, S. and Zhang, Y. (2019) Extraction and Characterization of Cellulose Nanofibers and Nanocrystals from Liquefied Banana Pseudo-Stem Residue.Composites Part B:Engineering,160, 341-347. https://doi.org/10.1016/j.compositesb.2018.08.048 |
[24] |
Wei, L., Rui, W. and Shouxin, L. (2011) Nanocrystalline Cellulose Prepared from Softwood Kraft Pulp via Ultrasonic-Assisted Acid Hydrolysis.BioResources,6, 4271-4281. https://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=69914688&lang=pt-br&site=ehost-live https://doi.org/10.15376/biores.6.4.4271-4281 |
[25] |
Xiao, S., Gao, R., Lu, Y., Li, J. and Sun, Q. (2015) Fabrication and Characterization of Nanofibrillated Cellulose and Its Aerogels from Natural Pine Needles.Carbohydrate Polymers,119, 202-209. https://doi.org/10.1016/j.carbpol.2014.11.041 |
[26] |
Noremylia, M.B., Hassan, M.Z. and Ismail, Z. (2022) Recent Advancement in Isolation, Processing, Characterization and Applications of Emerging Nanocellulose: A Review.International Journal of Biological Macromolecules,206, 954-976. https://doi.org/10.1016/j.ijbiomac.2022.03.064 |
[27] |
Jiang, H., Wu, S. and Zhou, J. (2023) Preparation and Modification of Nanocellulose and Its Application to Heavy Metal Adsorption: A Review.International Journal of Biological Macromolecules,236, Article 123916. https://doi.org/10.1016/j.ijbiomac.2023.123916 |
[28] |
Indarti, E., Marwan, Rohaizu, R. and Wanrosli, W.D. (2019) Silylation of TEMPO Oxidized Nanocellulose from Oil Palm Empty Fruit Bunch by 3-Aminopropyltriethoxysilane.International Journal of Biological Macromolecules,135, 106-112. https://doi.org/10.1016/j.ijbiomac.2019.05.161 |
[29] |
Saito, T., Kimura, S., Nishiyama, Y. and Isogai, A. (2007) Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose.Biomacromolecules,8, 2485-2491. https://doi.org/10.1021/bm0703970 |
[30] |
Hoo, D.Y., Low, Z.L., Low, D.Y.S., Tang, S.Y., Manickam, S., Tan, K.W. and Ban, Z.H. (2022) Ultrasonic Cavitation: An Effective Cleaner and Greener Intensification Technology in the Extraction and Surface Modification of Nanocellulose.Ultrasonics Sonochemistry,90, Article 106176. https://doi.org/10.1016/j.ultsonch.2022.106176 |
[31] |
Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A. and Johnson, D.K. (2010) Cellulose Crystallinity Index: Measurement Techniques and Their Impact on Interpreting Cellulase Performance.3, Article No. 10. https://doi.org/10.1186/1754-6834-3-10 |
[32] |
Pakutsah, K. and Aht-Ong, D. (2020) Facile Isolation of Cellulose Nanofibers from Water Hyacinth Using Water-Based Mechanical Defibrillation: Insights into Morphological, Physical, and Rheological Properties.International Journal of Biological Macromolecules,145, 64-76. https://doi.org/10.1016/j.ijbiomac.2019.12.172 |
[33] |
Tanpichai, S., Biswas, S.K., Witayakran, S. and Yano, H. (2019) Water Hyacinth: A Sustainable Lignin-Poor Cellulose Source for the Production of Cellulose Nanofibers.ACS Sustainable Chemistry & Engineering,7, 18884-18893. https://doi.org/10.1021/acssuschemeng.9b04095 |
[34] |
Ovalle-Serrano, S.A., Gómez, F.N., Blanco-Tirado, C. and Combariza, M.Y. (2018) Isolation and Characterization of Cellulose Nanofibrils from Colombian Fique decortication by-Products.Carbohydrate Polymers,189, 169-177. https://doi.org/10.1016/j.carbpol.2018.02.031 |
[35] |
An, X., Wen, Y., Cheng, D., Zhu, X. and Ni, Y. (2016) Preparation of Cellulose Nano-Crystals through a Sequential Process of Cellulase Pretreatment and Acid Hydrolysis.Cellulose,23, 2409-2420. https://doi.org/10.1007/s10570-016-0964-4 |
[36] |
Phanthong, P., Guan, G., Ma, Y., Hao, X. and Abudula, A. (2016) Effect of Ball Milling on the Production of Nanocellulose Using Mild Acid Hydrolysis Method.Journal of the Taiwan Institute of Chemical Engineers,60, 617-622. https://doi.org/10.1016/j.jtice.2015.11.001 |
[37] |
Rohaizu, R. and Wanrosli, W.D. (2017) Sono-Assisted TEMPO Oxidation of Oil Palm Lignocellulosic Biomass for Isolation of Nanocrystalline Cellulose.Ultrasonics Sonochemistry,34, 631-639. https://doi.org/10.1016/j.ultsonch.2016.06.040 |
[38] |
Kouadri, I. and Satha, H. (2018) Extraction and Characterization of Cellulose and Cellulose Nanofibers from Citrullus Colocynthis Seeds.Industrial Crops and Products,124, 787-796. https://doi.org/10.1016/j.indcrop.2018.08.051 |
[39] |
Cheng, Q., Wang, S., Rials, T.G. and Lee, S.-H. (2007) Physical and Mechanical Properties of Polyvinyl Alcohol and Polypropylene Composite Materials Reinforced with Fibril Aggregates Isolated from Regenerated Cellulose Fibers.Cellulose,14, 593-602. https://doi.org/10.1007/s10570-007-9141-0 |
[40] |
Bhatnagar, A. and Sain, M. (2005) Processing of Cellulose Nanofiber-Reinforced Composites.Journal of Reinforced Plastics and Composites,24, 1259-1268. https://doi.org/10.1177/0731684405049864 |
[41] |
Fukuzumi, H., Saito, T., Okita, Y. and Isogai, A. (2010) Thermal Stabilization of TEMPO-Oxidized Cellulose.Polymer Degradation and Stability,95, 1502-1508. https://doi.org/10.1016/j.polymdegradstab.2010.06.015 |
[42] |
Shen, D.K. and Gu, S. (2010) Corrigendum to “The Mechanism for Thermal Decomposition of Cellulose and Its Main Products” [Biores. Technol. 100 (2009) 6496–6504].Bioresource Technology,101, 6879. https://doi.org/10.1016/j.biortech.2010.04.002 |
[43] |
Cao, X., Ding, B., Yu, J. and Al-Deyab, S.S. (2012) Cellulose Nanowhiskers Extracted from TEMPO-Oxidized Jute Fibers.Carbohydrate Polymers,90, 1075-1080. https://doi.org/10.1016/j.carbpol.2012.06.046 |
[44] |
Zhang, Y., Zhang, Y., Xu, W., Wu, H., Shao, Y., Han, X. And Li, Z. (2023) Preparation Methods of Cellulose Nanocrystal and Its Application in Treatment of Environmental Pollution: A Mini-Review.Colloid and Interface Science Communications,53, Article 100707. https://doi.org/10.1016/j.colcom.2023.100707 |