[1] |
Monteiro De Oliveira, E.C., Caixeta, E.S., Santos, V.S.V.,et al. (2021) Arsenic Exposure from Groundwater: Environmental Contamination, Human Health Effects, and Sustainable Solutions.Journal of Toxicology and Environmental Health,Part B, 24, 119-135. https://doi.org/10.1080/10937404.2021.1898504 |
[2] |
Calatayud, M. and Laparra Llopis, J.M. (2015) Arsenic through the Gastrointestinal Tract. In: Flora, S.J.S., Ed.,Handbook of Arsenic Toxicology, Academic Press, Cambridge, MA, 281-299. https://doi.org/10.1016/B978-0-12-418688-0.00010-1 |
[3] |
Ayotte, J.D., Medalie, L., Qi, S.L., Backer, L.C. and Nolan, B.T. (2017) Estimating the High-Arsenic Domestic-Well Population in the Conterminous United States.Environmental Science & Technology, 51, 12443-12454. https://doi.org/10.1021/acs.est.7b02881 |
[4] |
Concha, G., Nermell, B. and Vahter, M.V. (1998) Metabolism of Inorganic Arsenic in Children with Chronic High Arsenic Exposure in Northern Argentina.Environmental Health Perspectives, 106, 355-359. https://doi.org/10.2307/3434042 |
[5] |
赵引玲. 砷中毒的机理及治疗[J]. 陕西中医学院学报, 2002, 25(4): 60. |
[6] |
Antfolk, M. and Jensen, K.B. (2020) A Bioengineering Perspective on Modelling the Intestinal Epithelial Physiologyin vitro.Nature Communications, 11, Article No. 6244. https://doi.org/10.1038/s41467-020-20052-z |
[7] |
Ratnaike, R.N. (2003) Acute and Chronic Arsenic Toxicity.Postgraduate Medical Journal, 79, 391-396. https://doi.org/10.1136/pmj.79.933.391 |
[8] |
Backhed, F., Ley, R.E., Sonnenburg, J.L.,et al. (2005) Host-Bacterial Mutualism in the Human Intestine.Science, 307, 1915-1920. https://doi.org/10.1126/science.1104816 |
[9] |
Qin, J., Li, R., Raes, J.,et al. (2010) A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing.Nature, 464, 59-65. https://doi.org/10.1038/nature08821 |
[10] |
Bjorklund, G., Skalny, A.V., Rahman, M.M.,et al. (2018) Toxic Metal(Loid)-Based Pollutants and Their Possible Role in Autism Spectrum Disorder.Environmental Research, 166, 234-250. https://doi.org/10.1016/j.envres.2018.05.020 |
[11] |
Bradberry, S. and Vale, A. (2009) A Comparison of Sodium Calcium Edetate (Edetate Calcium Disodium) and Succimer (DMSA) in the Treatment of Inorganic Lead Poisoning.Clinical Toxicology, 47, 841-858. https://doi.org/10.3109/15563650903321064 |
[12] |
Glenn, J.D. and Mowry, E.M. (2016) Emerging Concepts on the Gut Microbiome and Multiple Sclerosis.Journal of Interferon & Cytokine Research, 36, 347-357. https://doi.org/10.1089/jir.2015.0177 |
[13] |
Sweeney, T.E. and Morton, J.M. (2013) The Human Gut Microbiome: A Review of the Effect of Obesity and Surgically Induced Weight Loss.JAMA Surgery, 148, 563-569. https://doi.org/10.1001/jamasurg.2013.5 |
[14] |
Vandeputte, D. (2020) Personalized Nutrition through the Gut Microbiota: Current Insights and Future Perspectives.Nutrition Reviews, 78, 66-74. https://doi.org/10.1093/nutrit/nuaa098 |
[15] |
O’Hara, A.M. and Shanahan, F. (2006) The Gut Flora as a Forgotten Organ.EMBO Reports, 7, 688-693. https://doi.org/10.1038/sj.embor.7400731 |
[16] |
Coryell, M., Mcalpine, M., Pinkham, N.V.,et al. (2018) The Gut Microbiome Is Required for Full Protection against Acute Arsenic Toxicity in Mouse Models.Nature Communications, 9, Article No. 5424. https://doi.org/10.1038/s41467-018-07803-9 |
[17] |
Falk, P.G., Hooper, L.V., Midtvedt, T. and Gordon, J.I. (1998) Creating and Maintaining the Gastrointestinal Ecosystem: What We Know and Need to Know from Gnotobiology.Microbiology and Molecular Biology Reviews, 62, 1157-1170. https://doi.org/10.1128/MMBR.62.4.1157-1170.1998 |
[18] |
Round, J.L. and Mazmanian, S.K. (2009) The Gut Microbiota Shapes Intestinal Immune Responses during Health and Disease.Nature Reviews Immunology, 9, 313-323. https://doi.org/10.1038/nri2515 |
[19] |
Wu, J., Zhao, Y., Wang, X.,et al. (2022) Dietary Nutrients Shape Gut Microbes and Intestinal Mucosa via Epigenetic Modifications.Critical Reviews in Food Science and Nutrition, 62, 783-797. https://doi.org/10.1080/10408398.2020.1828813 |
[20] |
Zhang, J., Zhu, S., Ma, N.,et al. (2021) Metabolites of Microbiota Response to Tryptophan and Intestinal Mucosal Immunity: A Therapeutic Target to Control Intestinal Inflammation.Medicinal Research Reviews, 41, 1061-1088. https://doi.org/10.1002/med.21752 |
[21] |
Sanders, M.E., Merenstein, D.J., Reid, G.,et al. (2019) Probiotics and Prebiotics in Intestinal Health and Disease: From Biology to the Clinic.Nature Reviews Gastroenterology &Hepatology, 16, 605-616. https://doi.org/10.1038/s41575-019-0173-3 |
[22] |
Yu, Y., Sitaraman, S. and Gewirtz, A.T. (2004) Intestinal Epithelial Cell Regulation of Mucosal Inflammation.Immunologic Research, 29, 55-67. https://doi.org/10.1385/IR:29:1-3:055 |
[23] |
Kuhn, K.A., Pedraza, I. and Demoruelle, M.K. (2014) Mucosal Immune Responses to Microbiota in the Development of Autoimmune Disease.Rheumatic Disease Clinics, 40, 711-725. https://doi.org/10.1016/j.rdc.2014.07.013 |
[24] |
Sassone-Corsi, M., Nuccio, S.-P., Liu, H.,et al. (2016) Microcins Mediate Competition among Enterobacteriaceae in the Inflamed Gut.Nature, 540, 280-283. https://doi.org/10.1038/nature20557 |
[25] |
Chi, L., Bian, X., Gao, B., Tu, P.,et al. (2017) The Effects of an Environmentally Relevant Level of Arsenic on the Gut Microbiome and Its Functional Metagenome.Toxicological Sciences, 160, 193-204. https://doi.org/10.1093/toxsci/kfx174 |
[26] |
Griggs, J.L., Chi, L., Hanley, N.M.,et al. (2022) Bioaccessibility of Arsenic from Contaminated Soils and Alteration of the Gut Microbiome in anin vitroGastrointestinal Model.Environmental Pollution, 309, Article 119753. https://doi.org/10.1016/j.envpol.2022.119753 |
[27] |
Hoen, A.G., Madan, J.C., Li, Z.,et al. (2018) Sex-Specific Associations of Infants’ Gut Microbiome with Arsenic Exposure in a US Population.Scientific Reports, 8, Article No. 12627. https://doi.org/10.1038/s41598-018-30581-9 |
[28] |
Madan, J.C., Farzan, S.F., Hibberd, P.L.,et al. (2012) Normal Neonatal Microbiome Variation in Relation to Environmental Factors, Infection and Allergy.Current Opinion in Pediatrics, 24, 753-759. https://doi.org/10.1097/MOP.0b013e32835a1ac8 |
[29] |
Laue, H.E., Moroishi, Y., Jackson, B.P.,et al. (2020) Nutrient-Toxic Element Mixtures and the Early Postnatal Gut Microbiome in a United States Longitudinal Birth Cohort.Environment International, 138, Article 105613. https://doi.org/10.1016/j.envint.2020.105613 |
[30] |
Karagas, M.R., McRitchie, S., Hoen, A.G.,et al. (2023) Alterations in Microbial-Associated Fecal Metabolites in Relation to Arsenic Exposure among Infants.Exposure and Health, 14, 941-949. https://doi.org/10.1007/s12403-022-00468-2 |
[31] |
Domene, A., Orozco, H., Rodríguez-Viso, P.,et al. (2023) Impact of Chronic Exposure to Arsenate through Drinking Water on the Intestinal Barrier.Chemical Research in Toxicology, 36, 1731-1744. |
[32] |
Li, D., Yang, Y., Li, Y.,et al. (2021) Changes Induced by Chronic Exposure to High Arsenic Concentrations in the Intestine and Its Microenvironment.Toxicology, 456, Article 152767. https://doi.org/10.1016/j.tox.2021.152767 |
[33] |
Ye, Z., Huang, L., Zhang, J.,et al. (2022) Biodegradation of Arsenobetaine to Inorganic Arsenic Regulated by Specific Microorganisms and Metabolites in Mice.Toxicology, 475, Article 153238. https://doi.org/10.1016/j.tox.2022.153238 |
[34] |
Singh, D.P., Yadav, S.K., Patel, K.,et al. (2022) Short-Term Trivalent Arsenic and Hexavalent Chromium Exposures Induce Gut Dysbiosis and Transcriptional Alteration in Adipose Tissue of Mice.Molecular Biology Reports, 50, 1033-1044. https://doi.org/10.1007/s11033-022-07992-z |
[35] |
Deng, Z., Yin, X., Zhang, S.,et al. (2023) Study on Arsenic Speciation, Bioaccessibility, and Gut Microbiota in Realgar-Containing Medicines by DGT Technique and Artificial Gastrointestinal Extraction (PBET) Combine with Simulated Human Intestinal Microbial Ecosystem (SHIME).Journal of Hazardous Materials, 463, Article 132863. https://doi.org/10.1016/j.jhazmat.2023.132863 |
[36] |
Yang, Y., Chi, L., Liu, C.-W.,et al. (2023) Chronic Arsenic Exposure Perturbs Gut Microbiota and Bile Acid Homeostasis in Mice.Chemical Research in Toxicology, 36, 1037-1043. https://doi.org/10.1021/acs.chemrestox.2c00410 |
[37] |
Wu, H., Wu, R., Chen, X., Ceng, H.,et al. (2022) Developmental Arsenic Exposure Induces Dysbiosis of Gut Microbiota and Disruption of Plasma Metabolites in Mice.Toxicology and Applied Pharmacology, 450, Article 116174. https://doi.org/10.1016/j.taap.2022.116174 |
[38] |
Zhong, G., Wan, F., Lan, J.,et al. (2021) Arsenic Exposure Induces Intestinal Barrier Damage and Consequent Activation of Gut-Liver Axis Leading to Inflammation and Pyroptosis of Liver in Ducks.Science of the Total Environment, 788, Article 147780. https://doi.org/10.1016/j.scitotenv.2021.147780 |
[39] |
Tandon, N., Roy, M., Roy, S.,et al. (2012) Protective Effect of Psidium Guajava in Arsenic-Induced Oxidative Stress and Cytological Damage in Rats.Toxicology International, 19, 245-249. https://doi.org/10.4103/0971-6580.103658 |
[40] |
Gupta, D.K., Inouhe, M., Rodriguez-Serrano, M.,et al. (2013) Oxidative Stress and Arsenic Toxicity: Role of NADPH Oxidases.Chemosphere, 90, 1987-1996. https://doi.org/10.1016/j.chemosphere.2012.10.066 |
[41] |
Wang, J., Hu, W., Yang, H.,et al. (2020) Arsenic Concentrations, Diversity and Co-Occurrence Patterns of Bacterial and Fungal Communities in the Feces of Mice under Sub-Chronic Arsenic Exposure through Food.Environment International, 138, Article 105600. https://doi.org/10.1016/j.envint.2020.105600 |
[42] |
Wang, H.-T., Ma, L., Zhu, D.,et al. (2021) Responses of EarthwormMetaphirevulgarisGut Microbiota to Arsenic and Nanoplastics Contamination.Science of the Total Environment, 806, Article 150279. https://doi.org/10.1016/j.scitotenv.2021.150279 |
[43] |
Song, D., Chen, L., Zhu, S.,et al. (2022) Gut Microbiota Promote Biotransformation and Bioaccumulation of Arsenic in Tilapia.Environmental Pollution, 305, Article 119321. https://doi.org/10.1016/j.envpol.2022.119321 |
[44] |
Kaur, R. and Rawal, R. (2023) Influence of Heavy Metal Exposure on Gut Microbiota: Recent Advances.Journal of Biochemical and Molecular, 37, e23485. https://doi.org/10.1002/jbt.23485 |
[45] |
Mirza Alizadeh, A., Hosseini, H., Mollakhalili Meybodi, N.,et al. (2022) Mitigation of Potentially Toxic Elements in Food Products by Probiotic Bacteria: A Comprehensive Review.Food Research International, 152, Article 110324. https://doi.org/10.1016/j.foodres.2021.110324 |
[46] |
Van de Wiele, T., Gallawa, C.M., Kubachka, K.M.,et al. (2010) Arsenic Metabolism by Human Gut Microbiota uponin vitroDigestion of Contaminated Soils.Environmental Health Perspectives, 118, 1004-1009. https://doi.org/10.1289/ehp.0901794 |
[47] |
Sun, G.-X., Van de Wiele, T., Alava, P.,et al. (2012) Arsenic in Cooked Rice: Effect of Chemical, Enzymatic and Microbial Processes on Bioaccessibility and Speciation in the Human Gastrointestinal Tract.Environmental Pollution, 162, 241-246. https://doi.org/10.1016/j.envpol.2011.11.021 |
[48] |
Du, X., Zhang, J., Zhang, X.,et al. (2021) Persistence and Reversibility of Arsenic-Induced Gut Microbiome and Metabolome Shifts in Male Rats after 30-Days Recovery Duration.Science of the Total Environment, 776, Article 145972. https://doi.org/10.1016/j.scitotenv.2021.145972 |
[49] |
Zhao, Q., Hao, Y., Yang, X.,et al. (2023) Mitigation of Maternal Fecal Microbiota Transplantation on Neurobehavioral Deficits of Offspring Rats Prenatally Exposed to Arsenic: Role of Microbiota-Gut-Brain Axis.Journal of Hazardous Materials, 457, Article 131816. https://doi.org/10.1016/j.jhazmat.2023.131816 |
[50] |
Liu, X., Wang, J., Deng, H.,et al. (2022)In situAnalysis of Variations of Arsenicals, Microbiome and Transcriptome Profiles along Murine Intestinal Tract.Journal of Hazardous Materials, 427, Article 127899. https://doi.org/10.1016/j.jhazmat.2021.127899 |
[51] |
Fu, Y., Yin, N., Cai, X.,et al. (2021) Arsenic Speciation and Bioaccessibility in Raw and Cooked Seafood: Influence of Seafood Species and Gut Microbiota.Environmental Pollution, 280, Article 116958. https://doi.org/10.1016/j.envpol.2021.116958 |
[52] |
Bolan, S., Seshadri, B., Keely, S.,et al. (2021) Bioavailability of Arsenic, Cadmium, Lead and Mercury as Measured by Intestinal Permeability.Scientific Reports, 11, Article No. 14675. https://doi.org/10.1038/s41598-021-94174-9 |
[53] |
Shao, J., Lai, C., Zheng, Q.,et al. (2024) Effects of Dietary Arsenic Exposure on Liver Metabolism in Mice.Ecotoxicologyand Environmental Safety, 274, Article 116147. https://doi.org/10.1016/j.ecoenv.2024.116147 |
[54] |
McDermott, T.R., Stolz, J.F. and Oremland, R.S. (2019) Arsenic and the Gastrointestinal Tract Microbiome.Environmental Microbiology Reports, 12, 136-159. https://doi.org/10.1111/1758-2229.12814 |
[55] |
Ghosh, S., Banerjee, M., Haribabu, B. and Jala, V.R. (2022) Urolithin a Attenuates Arsenic-Induced Gut Barrier Dysfunction.Archives of Toxicology, 96, 987-1007. https://doi.org/10.1007/s00204-022-03232-2 |
[56] |
Li, M.-Y., Chen, X.-Q., Wang, J.-Y.,et al. (2021) Antibiotic Exposure Decreases Soil Arsenic Oral Bioavailability in Mice by Disrupting Ileal Microbiota and Metabolic Profile.Environment International, 151, Article 106444. https://doi.org/10.1016/j.envint.2021.106444 |
[57] |
Xu, W., Zhang, S., Jiang, W.,et al. (2020) Arsenic Accumulation of Realgar Altered by Disruption of Gut Microbiota in Mice.Evidence-Based Complementary and Alternative Medicine, 2020, Article ID: 8380473. https://doi.org/10.1155/2020/8380473 |
[58] |
Yin, N., Cai, X., Zheng, L.,et al. (2020)In vitroAssessment of Arsenic Release and Transformation from As(V)-Sorbed Goethite and Jarosite: The Influence of Human Gut Microbiota.Environmental Science & Technology, 54, 4432-4442. https://doi.org/10.1021/acs.est.9b07235 |
[59] |
Chi, L., Xue, J., Tu, P.,et al. (2019) Gut Microbiome Disruption Altered the Biotransformation and Liver Toxicity of Arsenic in Mice.Archives of Toxicology, 93, 25-35. https://doi.org/10.1007/s00204-018-2332-7 |
[60] |
Bisanz, J.E., Enos, M.K., Mwanga, J.R.,et al. (2014) Randomized Open-Label Pilot Study of the Influence of Probiotics and the Gut Microbiome on Toxic Metal Levels in Tanzanian Pregnant Women and School Children.mBio, 5, e01580-14. https://doi.org/10.1128/mBio.01580-14 |
[61] |
Zhou, G.-W., Yang, X.-R., Zheng, F.,et al. (2020) Arsenic Transformation Mediated by Gut Microbiota Affects the Fecundity ofCaenorhabditiselegans.Environmental Pollution, 260, Article 113991. https://doi.org/10.1016/j.envpol.2020.113991 |
[62] |
Yin, N., Cai, X., Wang, P.,et al. (2021) Predictive Capabilities ofin vitroColon Bioaccessibility for Estimatingin vivoRelative Bioavailability of Arsenic from Contaminated Soils: Arsenic Speciation and Gut Microbiota Considerations.Science of the Total Environment, 818, Article 151804. https://doi.org/10.1016/j.scitotenv.2021.151804 |
[63] |
Zhang, Y.-S., Juhasz, A.L., Xi, J.-F.,et al. (2023) Dietary Galactooligosaccharides Supplementation as a Gut Microbiota-Regulating Approach to Lower Early Life Arsenic Exposure.Environmental Science & Technology, 57, 19463-19472. https://doi.org/10.1021/acs.est.3c07168 |
[64] |
Ji, Z.-H., He, S., Xie, W.-Y.,et al. (2023)AgaricusblazeiPolysaccharide Alleviates DSS-Induced Colitis in Mice by Modulating Intestinal Barrier and Remodeling Metabolism.Nutrients, 15, Article 4877. https://doi.org/10.3390/nu15234877 |
[65] |
Isokpehi, R.D., Udensi, U.K., Simmons, S.S.,et al. (2014) Evaluative Profiling of Arsenic Sensing and Regulatory Systems in the Human Microbiome Project Genomes.Microbiology Insights, 7, 25-34. https://doi.org/10.4137/MBI.S18076 |
[66] |
Lu, K., Cable, P.H., Abo, R.P.,et al. (2013) Gut Microbiome Perturbations Induced by Bacterial Infection Affect Arsenic Biotransformation.Chemical Research in Toxicology, 26, 1893-1903. https://doi.org/10.1021/tx4002868 |
[67] |
Wang, H.-T., Liang, Z.-Z., Ding, J.,et al. (2021) Arsenic Bioaccumulation in the Soil Fauna Alters Its Gut Microbiome and Microbial Arsenic Biotransformation Capacity.Journal of Hazardous Materials, 417, Article 126018. https://doi.org/10.1016/j.jhazmat.2021.126018 |
[68] |
Wang, P., Du, H., Fu, Y.,et al. (2022) Role of Human Gut Bacteria in Arsenic Biosorption and Biotransformation.Environment International, 165, Article 107314. https://doi.org/10.1016/j.envint.2022.107314 |
[69] |
Rawle, R., Saley, T.C., Kang, Y.-S.,et al. (2021) Introducing the ArsR-Regulated Arsenic Stimulon.Frontiers in Microbiology, 12, Article 630562. https://doi.org/10.3389/fmicb.2021.630562 |
[70] |
Bajaj, J.S., Ng, S.C. and Schnabl, B. (2022) Promises of Microbiome-Based Therapies.Journal ofHepatology, 76, 1379-1391. https://doi.org/10.1016/j.jhep.2021.12.003 |