[1] |
Shi, J., Wang, X. and Wang, E. (2023) Mycorrhizal Symbiosis in Plant Growth and Stress Adaptation: From Genes to Ecosystems.Annual Review of Plant Biology, 74, 569-607. https://doi.org/10.1146/annurev-arplant-061722-090342 |
[2] |
Remy, W., Taylor, T.N., Hass, H.,et al. (1994) Four Hundred-Million-Year-Old Vesicular Arbuscular Mycorrhizae.Proceedings of the National Academy of Sciences of the United States of America, 91, 11841-11843. https://doi.org/10.1073/pnas.91.25.11841 |
[3] |
Helber, N., Wippel, K., Sauer, N.,et al. (2011) A Versatile Monosaccharide Transporter that Operates in the Arbuscular Mycorrhizal FungusGlomussp Is Crucial for the Symbiotic Relationship with Plants.The Plant Cell, 23, 3812-3823. https://doi.org/10.1105/tpc.111.089813 |
[4] |
Spanu, P.D., Abbott, J.C., Amselem, J.,et al. (2010) Genome Expansion and Gene Loss in Powdery Mildew Fungi Reveal Tradeoffs in Extreme Parasitism.Science, 330, 1543-1546. https://doi.org/10.1126/science.1194573 |
[5] |
Leigh, J., Hodge, A. and Fitter, A.H. (2009) Arbuscular Mycorrhizal Fungi Can Transfer Substantial Amounts of Nitrogen to Their Host Plant from Organic Material.The New Phytologist, 181, 199-207. https://doi.org/10.1111/j.1469-8137.2008.02630.x |
[6] |
Shi, J., Zhao, B., Zheng, S.,et al. (2021) A Phosphate Starvation Response-Centered Network Regulates Mycorrhizal Symbiosis.Cell, 184, 5527-5540. https://doi.org/10.1016/j.cell.2021.09.030 |
[7] |
Bucher, M. (2007) Functional Biology of Plant Phosphate Uptake at Root and Mycorrhiza Interfaces.The New Phytologist, 173, 11-26. https://doi.org/10.1111/j.1469-8137.2006.01935.x |
[8] |
Harrison, M.J. and Van Buuren, M.L. (1995) A Phosphate Transporter from the Mycorrhizal FungusGlomus versiforme.Nature, 378, 626-629. https://doi.org/10.1038/378626a0 |
[9] |
Poulsen, K.H., Nagy, R., Gao, L.-L.,et al. (2005) Physiological and Molecular Evidence for Pi Uptake via the Symbiotic Pathway in a Reduced Mycorrhizal Colonization Mutant in Tomato Associated with a Compatible Fungus.TheNew Phytologist, 168, 445-454. https://doi.org/10.1111/j.1469-8137.2005.01523.x |
[10] |
Javot, H., Penmetsa, R.V., Terzaghi, N.,et al. (2007) AMedicago truncatulaPhosphate Transporter Indispensable for the Arbuscular Mycorrhizal Symbiosis.Proceedings of the National Academy of Sciences of the United States ofAmerica, 104, 1720-1725. https://doi.org/10.1073/pnas.0608136104 |
[11] |
Maeda, D., Ashida, K., Iguchi, K.,et al. (2006) Knockdown of an Arbuscular Mycorrhiza-Inducible Phosphate Transporter Gene ofLotus japonicusSuppresses Mutualistic Symbiosis.Plant & Cell Physiology, 47, 807-817. https://doi.org/10.1093/pcp/pcj069 |
[12] |
Van der Heijden, M.G.A., Martin, F.M., Selosse, M.A.,et al. (2015) Mycorrhizal Ecology and Evolution: The Past, the Present, and the Future.The New Phytologist, 205, 1406-1423. https://doi.org/10.1111/nph.13288 |
[13] |
Bago, B., Pfeffer, P.E. and Shachar-Hill, Y. (2000) Carbon Metabolism and Transport in Arbuscular Mycorrhizas.Plant Physiology, 124, 949-958. https://doi.org/10.1104/pp.124.3.949 |
[14] |
Fitter, A.H. (2005) Darkness Visible: Reflections on Underground Ecology.Journal of Ecology, 93, 231-243. https://doi.org/10.1111/j.0022-0477.2005.00990.x |
[15] |
Buee, M., Rossignol, M., Jauneau, A.,et al. (2000) The Pre-Symbiotic Growth of Arbuscular Mycorrhizal Fungi Is Induced by a Branching Factor Partially Purified from Plant Root Exudates.Molecular Plant-Microbe Interactions:MPMI, 13, 693-698. https://doi.org/10.1094/MPMI.2000.13.6.693 |
[16] |
Chabaud, M., Genre, A., Sieberer, B.J.,et al. (2011) Arbuscular Mycorrhizal Hyphopodia and Germinated Spore Exudates Trigger Ca2Spiking in the Legume and Nonlegume Root Epidermis.The New Phytologist, 189, 347-355. https://doi.org/10.1111/j.1469-8137.2010.03464.x |
[17] |
Al-Babili, S. and Bouwmeester, H.J. (2015) Strigolactones, a Novel Carotenoid-Derived Plant Hormone.Annual Review of Plant Biology, 66, 161-186. https://doi.org/10.1146/annurev-arplant-043014-114759 |
[18] |
Hayward, A., Stirnberg, P., Beveridge, C.,et al. (2009) Interactions between Auxin and Strigolactone in Shoot Branching Control.Plant Physiology, 151, 400-412. https://doi.org/10.1104/pp.109.137646 |
[19] |
Proust, H., Hoffmann, B., Xie, X.,et al. (2011) Strigolactones Regulate Protonema Branching and Act as a Quorum Sensing-Like Signal in the Moss Physcomitrella Patens.Development, 138, 1531-1539. https://doi.org/10.1242/dev.058495 |
[20] |
Akiyama, K., Matsuzaki, K. and Hayashi, H. (2005) Plant Sesquiterpenes Induce Hyphal Branching in Arbuscular Mycorrhizal Fungi.Nature, 435, 824-827. https://doi.org/10.1038/nature03608 |
[21] |
Gomez-Roldan, V., Fermas, S., Brewer, P.B.,et al. (2008) Strigolactone Inhibition of Shoot Branching.Nature, 455, 189-194. https://doi.org/10.1038/nature07271 |
[22] |
Lopez-Obando, M., Ligerot, Y., Bonhomme, S.,et al. (2015) Strigolactone Biosynthesis and Signaling in Plant Development.Development, 142, 3615-3619. https://doi.org/10.1242/dev.120006 |
[23] |
Yoneyama, K., Yoneyama, K., Takeuchi, Y.,et al. (2007) Phosphorus Deficiency in Red Clover Promotes Exudation of Orobanchol, the Signal for Mycorrhizal Symbionts and Germination Stimulant for Root Parasites.Planta, 225, 1031-1038. https://doi.org/10.1007/s00425-006-0410-1 |
[24] |
Nadal, M., Sawers, R., Naseem, S.,et al. (2017) An N-Acetylglucosamine Transporter Required for Arbuscular Mycorrhizal Symbioses in Rice and Maize.Nat Plants, 3, Article 17073. https://doi.org/10.1038/nplants.2017.73 |
[25] |
Besserer, A., Bécard, G., Jauneau, A.,et al. (2008) GR24, a Synthetic Analog of Strigolactones, Stimulates the Mitosis and Growth of the Arbuscular Mycorrhizal FungusGigaspora roseaby Boosting Its Energy Metabolism.Plant Physiology, 148, 402-413. https://doi.org/10.1104/pp.108.121400 |
[26] |
Genre, A., Chabaud, M., Balzergue, C.,et al. (2013) Short-Chain Chitin Oligomers from Arbuscular Mycorrhizal Fungi Trigger Nuclear Ca2Spiking inMedicago truncatulaRoots and Their Production Is Enhanced by Strigolactone.The New Phytologist, 198, 190-202. https://doi.org/10.1111/nph.12146 |
[27] |
Besserer, A., Puech-Pagès, V., Kiefer, P.,et al. (2006) Strigolactones Stimulate Arbuscular Mycorrhizal Fungi by Activating Mitochondria.PLOS Biology, 4, e226. https://doi.org/10.1371/journal.pbio.0040226 |
[28] |
Chabaud, M., Venard, C., Defaux-Petras, A.,et al. (2002) Targeted Inoculation ofMedicago truncatulain vitroRoot Cultures Reveals MtENOD11 Expression during Early Stages of Infection by Arbuscular Mycorrhizal Fungi.The New Phytologist, 156, 265-273. https://doi.org/10.1046/j.1469-8137.2002.00508.x |
[29] |
Maillet, F., Poinsot, V., André, O.,et al. (2011) Fungal Lipochitooligosaccharide Symbiotic Signals in Arbuscular Mycorrhiza.Nature, 469, 58-63. https://doi.org/10.1038/nature09622 |
[30] |
Kosuta, S., Chabaud, M., Lougnon, G.,et al. (2003) A Diffusible Factor from Arbuscular Mycorrhizal Fungi Induces Symbiosis-Specific MtENOD11 Expression in Roots ofMedicago truncatula.Plant Physiology, 131, 952-962. https://doi.org/10.1104/pp.011882 |
[31] |
Oláh, B., Brière, C., Bécard, G.,et al. (2005) Nod Factors and a Diffusible Factor from Arbuscular Mycorrhizal Fungi Stimulate Lateral Root Formation inMedicago truncatulavia the DMI1/DMI2 Signalling Pathway.The Plant Journal:For Cell and Molecular Biology, 44, 195-207. https://doi.org/10.1111/j.1365-313X.2005.02522.x |
[32] |
Gutjahr, C., Novero, M., Guether, M.,et al. (2009) Presymbiotic Factors Released by the Arbuscular Mycorrhizal FungusGigaspora margaritaInduce Starch Accumulation inLotus japonicusRoots.The New Phytologist, 183, 53-61. https://doi.org/10.1111/j.1469-8137.2009.02871.x |
[33] |
Kuhn, H., Küster, H. and Requena, N. (2010) Membrane Steroid-Binding Protein 1 Induced by a Diffusible Fungal Signal Is Critical for Mycorrhization inMedicago truncatula.The New Phytologist, 185, 716-733. https://doi.org/10.1111/j.1469-8137.2009.03116.x |
[34] |
Oldroyd, G.E. (2013) Speak, Friend, and Enter: Signalling Systems that Promote Beneficial Symbiotic Associations in Plants.Nature Reviews Microbiology, 11, 252-263. https://doi.org/10.1038/nrmicro2990 |
[35] |
Akiyama, K. and Hayashi, H. (2006) Strigolactones: Chemical Signals for Fungal Symbionts and Parasitic Weeds in Plant Roots.Annals of Botany, 97, 925-931. https://doi.org/10.1093/aob/mcl063 |
[36] |
Harrison, M.J. (2005) Signaling in the Arbuscular Mycorrhizal Symbiosis.Annual Review of Microbiology, 59, 19-42. https://doi.org/10.1146/annurev.micro.58.030603.123749 |
[37] |
Bonfante, P. and Genre, A. (2010) Mechanisms Underlying Beneficial Plant-Fungus Interactions in Mycorrhizal Symbiosis.Nature Communications, 1, Article No. 48. https://doi.org/10.1038/ncomms1046 |
[38] |
Genre, A., Chabaud, M., Faccio, A.,et al. (2008) Prepenetration Apparatus Assembly Precedes and Predicts the Colonization Patterns of Arbuscular Mycorrhizal Fungi within the Root Cortex of BothMedicago truncatulaandDaucus carota.The Plant Cell, 20, 1407-1420. https://doi.org/10.1105/tpc.108.059014 |
[39] |
Parniske, M. (2008) Arbuscular Mycorrhiza: The Mother of Plant Root Endosymbioses.Nature Reviews Microbiology, 6, 763-775. https://doi.org/10.1038/nrmicro1987 |
[40] |
Sieberer, B.J., Chabaud, M., Fournier, J.,et al. (2012) A Switch in Ca2Spiking Signature Is Concomitant with Endosymbiotic Microbe Entry into Cortical Root Cells ofMedicago truncatula.The Plant Journal:For Cell and Molecular Biology, 69, 822-830. https://doi.org/10.1111/j.1365-313X.2011.04834.x |
[41] |
Genre, A., Chabaud, M., Timmers, T.,et al. (2005) Arbuscular Mycorrhizal Fungi Elicit a Novel Intracellular Apparatus inMedicago truncatulaRoot Epidermal Cells before Infection.The Plant Cell, 17, 3489-3499. https://doi.org/10.1105/tpc.105.035410 |
[42] |
Harrison, M.J., Dewbre, G.R. and Liu, J. (2002) A Phosphate Transporter fromMedicago truncatulaInvolved in the Acquisition of Phosphate Released by Arbuscular Mycorrhizal Fungi.The Plant Cell, 14, 2413-2429. https://doi.org/10.1105/tpc.004861 |
[43] |
Kobae, Y. and Fujiwara, T. (2014) Earliest Colonization Events ofRhizophagus irregularisin Rice Roots Occur Preferentially in Previously Uncolonized Cells.Plant & Cell Physiology, 55, 1497-1510. https://doi.org/10.1093/pcp/pcu081 |
[44] |
Kobae, Y., Tamura, Y., Takai, S.,et al. (2010) Localized Expression of Arbuscular Mycorrhiza-Inducible Ammonium Transporters in Soybean.Plant & Cell Physiology, 51, 1411-1415. https://doi.org/10.1093/pcp/pcq099 |
[45] |
Pumplin, N., Mondo, S.J., Topp, S.,et al. (2010)Medicago truncatulaVapyrin Is a Novel Protein Required for Arbuscular Mycorrhizal Symbiosis.The Plant Journal:For Cell and Molecular Biology, 61, 482-494. https://doi.org/10.1111/j.1365-313X.2009.04072.x |
[46] |
Takeda, N., Sato, S., Asamizu, E.,et al. (2009) Apoplastic Plant Subtilases Support Arbuscular Mycorrhiza Development inLotus japonicus.The Plant Journal:For Cell and Molecular Biology, 58, 766-777. https://doi.org/10.1111/j.1365-313X.2009.03824.x |
[47] |
Takeda, N., Maekawa, T. and Hayashi, M. (2012) Nuclear-Localized and Deregulated Calcium-and Calmodulin-Dependent Protein Kinase Activates Rhizobial and Mycorrhizal Responses inLotus japonicus.The Plant Cell, 24, 810-822. https://doi.org/10.1105/tpc.111.091827 |
[48] |
Pumplin, N., Zhang, X., Noar, R.D.,et al. (2012) Polar Localization of a Symbiosis-Specific Phosphate Transporter Is Mediated by a Transient Reorientation of Secretion.Proceedings of the National Academy of Sciences of the United States of America, 109, E665-E672. https://doi.org/10.1073/pnas.1110215109 |
[49] |
Gutjahr, C. and Parniske, M. (2013) Cell and Developmental Biology of Arbuscular Mycorrhiza Symbiosis.Annual Review of Cell and Developmental Biology, 29, 593-617. https://doi.org/10.1146/annurev-cellbio-101512-122413 |
[50] |
Demchenko, K., Winzer, T., Stougaard, J.,et al. (2004) Distinct Roles ofLotus japonicusSYMRK and SYM15 in Root Colonization and Arbuscule Formation.The New Phytologist, 163, 381-392. https://doi.org/10.1111/j.1469-8137.2004.01123.x |
[51] |
Kistner, C., Winzer, T., Pitzschke, A.,et al. (2005) SevenLotus japonicusGenes Required for Transcriptional Reprogramming of the Root during Fungal and Bacterial Symbiosis.The Plant Cell, 17, 2217-2229. https://doi.org/10.1105/tpc.105.032714 |
[52] |
Yang, S.Y., Grønlund, M., Jakobsen, I.,et al. (2012) Nonredundant Regulation of Rice Arbuscular Mycorrhizal Symbiosis by Two Members of the Phosphate Transporter1 Gene Family.The Plant Cell, 24, 4236-4251. https://doi.org/10.1105/tpc.112.104901 |