[1] |
Fu, B., Ouyang, Z., Shi, P.,et al. (2021) Current Condition and Protection Strategies of Qinghai-Tibet Plateau Ecological Security Barrier.Bulletin of Chinese Academy of Sciences(Chinese Version), 36, 1298-1306. |
[2] |
Li, S., Zhang, H., Zhou, X.,et al. (2020) Enhancing Protected Areas for Biodiversity and Ecosystem Services in the Qinghai-Tibet Plateau.Ecosystem Services, 43, Article 101090. https://doi.org/10.1016/j.ecoser.2020.101090 |
[3] |
Wu, D., Liu, D., Wang, T.,et al. (2021) Carbon Turnover Times Shape Topsoil Carbon Difference between Tibetan Plateau and Arctic Tundra.Science Bulletin, 66, 1698-1704. https://doi.org/10.1016/j.scib.2021.04.019 |
[4] |
Zhou, H., Yang, X., Zhou, C.,et al. (2023) Alpine Grassland Degradation and Its Restoration in the Qinghai-Tibet Plateau.Grasses, 2, 31-46. https://doi.org/10.3390/grasses2010004 |
[5] |
Bi, X., Chang, B., Hou, F.,et al. (2021) Assessment of Spatio-Temporal Variation and Driving Mechanism of Ecological Environment Quality in the Arid Regions of Central Asia, Xinjiang.International Journal of Environmental Research and Public Health, 18, Article 7111. https://doi.org/10.3390/ijerph18137111 |
[6] |
Nakano, T., Nemoto, M. and Shinoda, M. (2008) Environmental Controls on Photosynthetic Production and Ecosystem Respiration in Semi-Arid Grasslands of Mongolia.Agricultural and Forest Meteorology, 148, 1456-1466. https://doi.org/10.1016/j.agrformet.2008.04.011 |
[7] |
Kang, X., Hao, Y., Li, C.,et al. (2011) Modeling Impacts of Climate Change on Carbon Dynamics in a Steppe Ecosystem in Inner Mongolia, China.Journal of Soils and Sediments, 11, 562-576. https://doi.org/10.1007/s11368-011-0339-2 |
[8] |
Zhang, L., Wylie, B., Loveland, T.,et al. (2007) Evaluation and Comparison of Gross Primary Production Estimates for the Northern Great Plains Grasslands.Remote Sensing of Environment, 106, 173-189. https://doi.org/10.1016/j.rse.2006.08.012 |
[9] |
Sims, P.L., Singh, J.S. and Lauenroth, W.K. (1978) The Structure and Function of Ten Western North American Grasslands: I. Abiotic and Vegetational Characteristics.Journal of Ecology, 66, 251-285. https://doi.org/10.2307/2259192 |
[10] |
Erschbamer, B., Grabherr, G. and Reisigl, H. (1983) Spatial Pattern in Dry Grassland Communities of the Central Alps and Its Ecophysiological Significance.Vegetatio, 54, 143-151. https://doi.org/10.1007/BF00047102 |
[11] |
Rognli, O.A., Pecetti, L., Kovi, M.R.,et al. (2021) Grass and Legume Breeding Matching the Future Needs of European Grassland Farming.Grass and Forage Science, 76, 175-185. https://doi.org/10.1111/gfs.12535 |
[12] |
Jin, Z., Zhuang, Q., He, J.S.,et al. (2015) Net Exchanges of Methane and Carbon Dioxide on the Qinghai-Tibetan Plateau from 1979 to 2100.Environmental Research Letters, 10, Article 085007. https://doi.org/10.1088/1748-9326/10/8/085007 |
[13] |
Li, J., Gong, J., Guldmann, J.M.,et al. (2020) Carbon Dynamics in the Northeastern Qinghai-Tibetan Plateau from 1990 to 2030 Using Landsat Land Use/Cover Change Data.Remote Sensing, 12, Article 528. https://doi.org/10.3390/rs12030528 |
[14] |
Piao, S., He, Y., Wang, X.,et al. (2010) Estimation of China’s Terrestrial Ecosystem Carbon Sink: Methods, Progress and Prospects.Nature, 467, 43-51. https://doi.org/10.1038/nature09364 |
[15] |
Chen, H., Ju, P., Zhu, Q.,et al. (2022) Carbon and Nitrogen Cycling on the Qinghai-Tibetan Plateau.Nature Reviews Earth & Environment, 3, 701-716. https://doi.org/10.1038/s43017-022-00344-2 |
[16] |
Mu, C., Abbott, B.W., Norris, A.J.,et al. (2020) The Status and Stability of Permafrost Carbon on the Tibetan Plateau.Earth-Science Reviews, 211, Article 103433. https://doi.org/10.1016/j.earscirev.2020.103433 |
[17] |
Zhang, X.Z., Shen, Z.X. and Fu, G. (2015) A Meta-Analysis of the Effects of Experimental Warming on Soil Carbon and Nitrogen Dynamics on the Tibetan Plateau.Applied Soil Ecology, 87, 32-38. https://doi.org/10.1016/j.apsoil.2014.11.012 |
[18] |
Favre, A., Paeckert, M., Pauls, S.U.,et al. (2015) The Role of the Uplift of the Qinghai-Tibetan Plateau for the Evolution of Tibetan Biotas.Biological Reviews, 90, 236-253. https://doi.org/10.1111/brv.12107 |
[19] |
Xuanlan, Z., Junbang, W., Hui, Y.,et al. (2021) The Bowen Ratio of an Alpine Grassland in Three-River Headwaters, Qinghai-Tibet Plateau, from 2001 to 2018.Journal of Resources and Ecology, 12, 305-318. https://doi.org/10.5814/j.issn.1674-764x.2021.03.001 |
[20] |
Peng, H., Chi, J., Yao, H.,et al. (2021) Methane Emissions Offset Net Carbon Dioxide Uptake From an Alpine Peatland on the Eastern Qinghai-Tibetan Plateau.Journal of Geophysical Research:Atmospheres, 126, e2021JD034671. https://doi.org/10.1029/2021JD034671 |
[21] |
He, P., Ma, X., Meng, X.,et al. (2022) Spatiotemporal Evolutionary and Mechanism Analysis of Grassland GPP in China.Ecological Indicators, 143, Article 109323. https://doi.org/10.1016/j.ecolind.2022.109323 |
[22] |
Fu, G., Zhang, X., Zhang, Y.,et al. (2013) Experimental Warming does not Enhance Gross Primary Production and Above-Ground Biomass in the Alpine Meadow of Tibet.Journal of Applied Remote Sensing, 7, Article 073505. https://doi.org/10.1117/1.JRS.7.073505 |
[23] |
He, P., Ma, X., Han, Z.,et al. (2022) Uncertainties of Gross Primary Productivity of Chinese Grasslands Based on Multi-Source Estimation.Frontiers in Environmental Science, 10, Article 928351. https://www.frontiersin.org/articles/10.3389/fenvs.2022.928351 https://doi.org/10.3389/fenvs.2022.928351 |
[24] |
朴世龙, 何悦, 王旭辉, 陈发虎. 中国陆地生态系统碳汇估算: 方法、进展、展望[J]. 中国科学: 地球科学, 2022, 52(6): 1010-1020. |
[25] |
Wang, X., Ma, M., Song, Y.,et al. (2014) Coupling of a Biogeochemical Model with a Simultaneous Heat and Water Model and Its Evaluation at an Alpine Meadow Site.Environmental Earth Sciences, 72, 4085-4096. https://doi.org/10.1007/s12665-014-3300-z |
[26] |
Wu, C. and Wang, T. (2022) Evaluating Cumulative Drought Effect on Global Vegetation Photosynthesis Using Numerous GPP Products.Frontiers in Environmental Science, 10, Article 908875. https://www.frontiersin.org/articles/10.3389/fenvs.2022.908875 https://doi.org/10.3389/fenvs.2022.908875 |
[27] |
Yang, R., Wang, J., Zeng, N.,et al. (2022) Divergent Historical GPP Trends among State-of-the-Art Multi-Model Simulations and Satellite-Based Products.Earth System Dynamics, 13, 833-849. https://doi.org/10.5194/esd-13-833-2022 |
[28] |
White, M.A., Thornton, P.E., Running, S.W.,et al. (2000) Parameterization and Sensitivity Analysis of the BIOME-BGC Terrestrial Ecosystem Model: Net Primary Production Controls.Earth Interactions, 4, 1-85. https://doi.org/10.1175/1087-3562(2000)004<0003:PASAOT>2.0.CO;2 |
[29] |
Running, S.W. and Gower, S.T. (1991) FOREST-BGC, A General Model of Forest Ecosystem Processes for Regional Applications. II. Dynamic Carbon Allocation and Nitrogen Budgets.Tree Physiology, 9, 147-160. https://doi.org/10.1093/treephys/9.1-2.147 |
[30] |
Zhang, Y. and Ye, A. (2022) Uncertainty Analysis of Multiple Terrestrial Gross Primary Productivity Products.Global Ecology and Biogeography, 31, 2204-2218. https://doi.org/10.1111/geb.13578 |
[31] |
Xiao, F., Liu, Q. and Xu, Y. (2022) Estimation of Terrestrial Net Primary Productivity in the Yellow River Basin of China Using Light Use Efficiency Model.Sustainability, 14, Article 7399. https://doi.org/10.3390/su14127399 |
[32] |
You, Y., Wang, S., Ma, Y.,et al. (2019) Improved Modeling of Gross Primary Productivity of Alpine Grasslands on the Tibetan Plateau Using the Biome-BGC Model.Remote Sensing, 11, Article 1287. https://doi.org/10.3390/rs11111287 |
[33] |
Lu, H.L., Li, F.F., Gong, T.L.,et al. (2023) Temporal Variability of Precipitation Over the Qinghai-Tibetan Plateau and Its Surrounding Areas in the Last 40 Years.International Journal of Climatology, 43, 1912-1934. https://doi.org/10.1002/joc.7953 |
[34] |
Genxu, W., Ju, Q., Guodong, C.,et al. (2002) Soil Organic Carbon Pool of Grassland Soils on the Qinghai-Tibetan Plateau and Its Global Implication.Science of the Total Environment, 291, 207-217. https://doi.org/10.1016/S0048-9697(01)01100-7 |
[35] |
Han, Q., Luo, G., Li, C.,et al. (2014) Modeling the Grazing Effect on Dry Grassland Carbon Cycling with Biome-BGC Model.Ecological Complexity, 17, 149-157. https://doi.org/10.1016/j.ecocom.2013.12.002 |
[36] |
Lellei-Kovács, E., Barcza, Z., Hidy, D.,et al. (2014) Application of Biome-BGC MuSo in Managed Grassland Ecosystems in the Euro-Mediteranean Region.FACCE MACSUR Reports, 3, 3-58. |
[37] |
Chen, Y. and Xiao, W. (2019) Estimation of Forest NPP and Carbon Sequestration in the Three Gorges Reservoir Area, Using the Biome-BGC Model.Forests, 10, Article 149. https://doi.org/10.3390/f10020149 |
[38] |
Zheng, Y., Shen, R., Wang, Y.,et al. (2020) Improved Estimate of Global Gross Primary Production for Reproducing Its Long-Term Variation, 1982-2017.Earth System Science Data, 12, 2725-2746. https://doi.org/10.5194/essd-12-2725-2020 |
[39] |
丁光旭, 郭家力, 汤正阳, 等. 多种降水再分析数据在长江流域的适用性对比[J]. 人民长江, 2022, 53(9): 72-79. https://doi.org/10.16232/j.cnki.1001-4179.2022.09.012 |
[40] |
李晓东. 青海湖水体对流域气候和生态环境变化的响应[D]: [博士学位论文]. 兰州: 兰州大学, 2022. https://doi.org/10.27204/d.cnki.glzhu.2022.001524 |
[41] |
Zhu, Z., Sun, X., Wen, X.,et al. (2006) Study on the Processing Method of Nighttime CO2 Eddy Covariance Flux Data in ChinaFLUX.Science in China Series D:Earth Sciences, 49, 36-46. https://doi.org/10.1007/s11430-006-8036-5 |
[42] |
Chen, S., Sui, L., Liu, L.,et al. (2022) Effect of the Partitioning of Diffuse and Direct APAR on GPP Estimation.Remote Sensing, 14, Article 57. https://doi.org/10.3390/rs14010057 |
[43] |
Teubner, I.E., Forkel, M., Wild, B.,et al. (2021) Impact of Temperature and Water Availability on Microwave-Derived Gross Primary Production.Biogeosciences, 18, 3285-3308. https://doi.org/10.5194/bg-18-3285-2021 |
[44] |
Liu, J. and Deng, X. (2010) Progress of the Research Methodologies on the Temporal and Spatial Process of LUCC.Chinese Science Bulletin, 55, 1354-1362. https://doi.org/10.1007/s11434-009-0733-y |
[45] |
Ma, M., Yuan, W., Dong, J.,et al. (2018) Large-Scale Estimates of Gross Primary Production on the Qinghai-Tibet Plateau Based on Remote Sensing Data.International Journal of Digital Earth, 11, 1166-1183. https://doi.org/10.1080/17538947.2017.1381192 |
[46] |
Sun, S., Che, T., Li, H.,et al. (2019) Water and Carbon Dioxide Exchange of an Alpine Meadow Ecosystem in the Northeastern Tibetan Plateau Is Energy-Limited.Agricultural and Forest Meteorology, 275, 283-295. https://doi.org/10.1016/j.agrformet.2019.06.003 |
[47] |
马敏娜, 袁文平. 青藏高原总初级生产力估算的模型差异[J]. 遥感技术与应用, 2017, 32(3): 406-418. |
[48] |
Yi, S.H., Xiang, B., Meng, B.P.,et al. (2019) Modeling the Carbon Dynamics of Alpine Grassland in the Qinghai-Tibetan Plateau under Scenarios of 1.5℃ and 2℃ Global Warming.Advances in Climate Change Research, 10, 80-91. https://doi.org/10.1016/j.accre.2019.06.001 |
[49] |
Deng, M., Meng, X., Lu, Y.,et al. (2022) The Response of Vegetation to Regional Climate Change on the Tibetan Plateau Based on Remote Sensing Products and the Dynamic Global Vegetation Model.Remote Sensing, 14, Article 3337. https://doi.org/10.3390/rs14143337 |
[50] |
Wang, Z., Cao, S., Cao, G.,et al. (2021) Effects of Vegetation Phenology on Vegetation Productivity in the Qinghai Lake Basin of the Northeastern Qinghai-Tibet Plateau.Arabian Journal of Geosciences, 14, Article No. 1030. https://doi.org/10.1007/s12517-021-07440-5 |
[51] |
Zhang, H. and Dou, R. (2020) Interannual and Seasonal Variability in Evapotranspiration of Alpine Meadow in the Qinghai-Tibetan Plateau.Arabian Journal of Geosciences, 13, Article No. 968. https://doi.org/10.1007/s12517-020-06022-1 |
[52] |
Wu, H., Fu, C., Wu, H.,et al. (2020) Plant Hydraulic Stress Strategy Improves Model Predictions of the Response of Gross Primary Productivity to Drought across China.Journal of Geophysical Research:Atmospheres, 125, e2020JD033476. https://doi.org/10.1029/2020JD033476 |
[53] |
Zhang, Y., Xiao, X., Wu, X.,et al. (2017) A Global Moderate Resolution Dataset of Gross Primary Production of Vegetation for 2000-2016.Scientific Data, 4, Article No. 170165. https://doi.org/10.1038/sdata.2017.165 |