[1] |
鲍振博, 靳登超, 刘玉乐, 等. 生物质气化中焦油的产生及其危害性[J]. 安徽农业科学, 2011, 39(4): 2243-2244. |
[2] |
陈文轩, 刘鹏, 李学琴, 等. 生物质焦油催化裂解催化剂的研究进展[J]. 林产工业, 2022, 59(3): 41-48. |
[3] |
Ming, L., Ruicong, S., Yanjun, Q.,et al.(2023) Conversion and Syngas Production of Toluene as a Biomass Tar Model Compound in Chemical Looping Reforming.Fuel, 345, Article ID: 128203. https://doi.org/10.1016/j.fuel.2023.128203 |
[4] |
Tang, X.G., Wu, P.J., Wang, Y.,et al.(2023) Recent Advances in Heavy Metal Poisoning Mechanism and Regen-Eration Methods of Selective Catalytic Reduction (SCR) Denitration Catalyst.Fuel, 355, Article ID: 129429. https://doi.org/10.1016/j.fuel.2023.129429 |
[5] |
Shen, A.L., Dong, W.W., Zhang, L.,et al.(2023) Revealing the Mechanism of K-Enhanced Cu-SSZ-13 Catalysts against Hydrothermal Aging and P-Poisoning for NOx Reduction by NH3-SCR.Separation and Purification Technology, 330, Article ID: 125248. https://doi.org/10.1016/j.seppur.2023.125248 |
[6] |
Porras, S., Sippula, O., Mesceriakove, S.M.,et al.(2023) Poisoning of Automotive Methane Oxidation Catalysts by Silicon Compounds.Chemical Engineering Science, 282, Article ID: 119268. https://doi.org/10.1016/j.ces.2023.119268 |
[7] |
Zhang, K.Y., Luo, N., Huang, Z.S.,et al.(2023) Recent Advances in Low-Temperature NH3-SCR of NOx over Ce-Based Catalysts: Performance Optimizations, Reaction Mechanisms and Anti-Poisoning Countermeasures.Chemical Engineering Journal, 476, Article ID: 146889. https://doi.org/10.1016/j.cej.2023.146889 |
[8] |
刘爽. 生物质焦油催化重整制氢研究[D]: [硕士学位论文]. 大连: 大连理工大学, 2015. |
[9] |
刘粤. 改性镍基催化剂水蒸气重整焦油模化物实验研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2021. |
[10] |
Qin, T. and Yuan, S. (2023) Research Progress of Catalysts for Catalytic Steam Reforming of High Temperature Tar: A Review.Fuel, 331, Article ID: 125790. https://doi.org/10.1016/j.fuel.2022.125790 |
[11] |
汤文. 高分散Co/C低温催化玉米芯焦油水蒸气重整[D]: [硕士学位论文]. 北京: 中国矿业大学, 2021. |
[12] |
Savuto, E., Navarro, R.M., Mota, N.,et al.(2018) Steam Reforming of Tar Model Compounds over Ni/Mayenite Catalysts: Effect of Ce Addition.Fuel, 224, 676-686. https://doi.org/10.1016/j.fuel.2018.03.081 |
[13] |
周小钰, 么秋香, 孙鸣, 等. RFCC分子筛催化剂的失活机理及抗失活方法研究进展[J]. 广东化工, 2024, 51(4): 55-57. |
[14] |
Li, W.Q., Hu, D., Yin, K., et al. (2022) Hierarchical Ru-Ce/H-ZSM-5 Catalysts for the Catalytic Oxidation of Chlorobenzene: Structure-Activity Relationship and Chlorine Poisoning Resistance.Surfaces and Interfaces, 34, Article ID: 102320. https://doi.org/10.1016/j.surfin.2022.102320 |
[15] |
杜凯敏, 秦刚华, 祁志福, 等. NH3-SCR脱硝催化剂的中毒及其抗毒策略[J]. 现代化工, 2021, 41(11): 58-62. |
[16] |
Yan, X., Zhao, L.K., Huang, Y.,et al.(2023) Three-Dimensional Porous CuO-Modified CeO2-Al2O3Catalyst with Chlorine Resistance for Simultaneous Catalytic Oxidation of Chlorobenzene and Mercury: Cu-Ce Interaction and Structure.Journal of Hazardous Materials, 455, Article ID: 131585. https://doi.org/10.1016/j.jhazmat.2023.131585 |
[17] |
Yunlon, T., Xiao, Q.M., Xin, F.C.,et al.(2022) The Influence of Shell Thickness on Coke Resistance of Core-Shell Catalyst in CO2Catalytic Reforming of Biomass Tar.International Journal of Hydrogen Energy, 47, 13838-13849. https://doi.org/10.1016/j.ijhydene.2022.02.130 |
[18] |
李永玲, 吴占松. 生物质焦油催化裂解过程中酸性催化剂积碳失活与烧焦再生特性[J]. 中国电机工程学报, 2014, 34(8): 1297-1303. |
[19] |
Wu, Y.W., Hu, Z., Zhou, J.L.,et al.(2023) Improvement in the Resistance to KCl and PbCl2 Synergistic Poisoning of the Commercial SCR Catalyst by Ce(SO4)2 Modification: A Combined Experimental and Spin-Polarized DFT Study.Journal of Environmental Chemical Engineering, 11, Article ID: 109649. https://doi.org/10.1016/j.jece.2023.109649 |
[20] |
Zhang, Y.P., Li, G.B., Wu, P.,et al.(2022) Enhancement of PdV/TiO2Catalyst for Low Temperature DCM Cat-Alytic Removal and Chlorine Poisoning Resistance by Oxygen Vacancy Construction.Chemical Engineering Science, 264, Article ID: 118126. https://doi.org/10.1016/j.ces.2022.118126 |
[21] |
Zhou, F.Y., Xin, Q., Fu, Y.J.,et al.(2023) Efficient Catalytic Oxidation of Chlorinated Volatile Organic Compounds over RuO2-WOx/Sn0.2Ti0.8O2Catalysts: Insight into the Cl Poisoning Mechanism of Acid Sites.Chemical Engineering Journal, 464, Article ID: 142471. https://doi.org/10.1016/j.cej.2023.142471 |
[22] |
王瑞华, 邹伟欣, 聂玮, 等. 稀土铈基NH3-SCR催化剂抗金属离子中毒研究进展[J/OL]. 中国稀土学报: 1-14. http://wxlib.cqust.edu.cn:8000/c/http.kns.cnki.net/kcms/detail/11.2365.TG.20240124.1458.002.html, 2024-04-22. |
[23] |
Liang, S., Liao, Y.F., Li, W.J.,et al.(2023) Enhanced Stability of Iron-Nickel Oxygen Carriers in Biomass Che-Mical Looping Gasification by Core-Shell Structure.Chemical Engineering Journal, 451, Article ID: 138964. https://doi.org/10.1016/j.cej.2022.138964 |
[24] |
Rong, N., Han, L., Ma, K.,et al.(2023) Enhanced Multi-Cycle CO2Capture and Tar Reformingviaa Hybrid CaO-Based Absorbent/Catalyst: Effects of Preparation, Reaction Conditions and Application for Hydrogen Production.International Journal of Hydrogen Energy, 48, 9988-10001. https://doi.org/10.1016/j.ijhydene.2022.08.022 |
[25] |
Chen, W.X., Li, X.Q., Li, Y.L.,et al.(2022) Synergistic Modification of Ca/Co on Ni/HZSM-5 Catalyst for Pyrolysis of Organic Components in Biomass Tar.Journal of Analytical and AppliedPyrolysis, 166, Article ID: 105619. https://doi.org/10.1016/j.jaap.2022.105619 |
[26] |
Huang, P., Liu, M. and Chang, Q.L. (2020) MoO3/Al-SBA-15 Modified Catalyst and Its Application in Coal Tar Hydrocracking.Journal of Fuel Chemistry and Technology, 48, 1079-1086. https://doi.org/10.1016/S1872-5813(20)30072-4 |
[27] |
马志远, 邹雪华, 李宏伟, 等. 热处理白云石-凹凸棒石黏土催化裂解甲苯的性能[J]. 硅酸盐学报, 2018, 46(5): 731-738. |
[28] |
Wang, J.X., Zhang, S.P., Ye, L.,et al.(2023) Investigation on Deactivation Progress of Biochar Supported Ni C-Atalyst during Biomass Catalytic Cracking Process.Fuel Processing Technology, 250, Article ID: 107897. https://doi.org/10.1016/j.fuproc.2023.107897 |
[29] |
Li, X.Q., Liu, P., Huang, S.,et al.(2023) Study on the Mechanism of Syngas Production from Catalytic Pyrolysis of Biomass Tar by Ni-Fe Catalyst in CO2Atmosphere.Fuel, 335, Article ID: 126705. https://doi.org/10.1016/j.fuel.2022.126705 |
[30] |
Wang, X.Q., Liu, Y., Wu, Z.B. (2020) The Poisoning Mechanisms of Different Zinc Species on a Ceria-Based NH3-SCR Catalyst and the Co-Effects of Zinc and Gas-Phase Sulfur/Chlorine Species.Journal of Colloid and Interface Science, 566, 153-162. https://doi.org/10.1016/j.jcis.2020.01.058 |