反应型铜离子荧光探针的研究进展
Review on the Development of Reaction-Based Fluorescent Sensor for Copper Ion
DOI:10.12677/CC.2024.73003,PDF,HTML,XML,下载: 446浏览: 856国家自然科学基金支持
作者:刘晏希,朱西挺,陈婷婷,张玉明*:南通大学化学化工学院,江苏 南通;刘 泉:南通大学化学化工学院,江苏 南通;南通大学杏林学院,江苏 南通
关键词:荧光探针铜离子反应型探针Fluorescent SensorCopper IonReaction-Based Sensor
摘要:铜离子在生命体内发挥重要作用,其含量异常与多种疾病关系密切。对生命体内铜离子进行原位实时检测具有重要意义。荧光成像作为一种非侵入性的新型检测方法,具有高灵敏度、高选择性、响应快速等优点,在生物医学领域有重要应用。本文按照探针响应铜离子的不同反应机理进行分类,对近五年报导的反应型铜离子荧光探针进行了综述,以期铜离子荧光探针能收获更多重要成果。
Abstract:Copper ion plays important roles in living system, whose abnormality relates closely with many diseases. Thus it’s meaningful to detect changes of copper ion in living systems in situ and in re-al-time. Fluorescent imaging is gaining great development in life science, which is characterized as non-invasive, high sensitivity and specificity, short response-time. We summarized the reac-tion-based fluorescent sensors for copper ion reported within the past five years, with the hope of more important works about fluorescent sensors for copper ion in the near future.
文章引用:刘晏希, 朱西挺, 刘泉, 陈婷婷, 张玉明. 反应型铜离子荧光探针的研究进展[J]. 比较化学, 2023, 7(3): 19-32. https://doi.org/10.12677/CC.2024.73003

1. 引言

铜离子是生命体内含量第三的过渡金属离子,在许多生理过程中发挥着重要作用 [1] 。Cu2+含量异常与多种疾病密切相关。过量的Cu2+可能诱发神经退行性疾病,如阿尔茨海默症 [2] 、威尔逊病 [3] 、帕金森病 [4] 、肌萎缩侧索硬化症(ALS) [5] 等。Cu2+缺乏则可能致使生长和代谢紊乱,导致冠心病 [6] 和贫血 [7] 。因此,检测生命体内铜离子含量具有重要意义。传统的检测方法包括原子吸收光谱法(AAS) [8] 、电感耦合等离子体质谱法(ICP-MS) [9] 、循环伏安法(CV)等 [10] ,这些方法在样品前处理、响应时间和价格等方面有很多局限性,需要复杂的设备、繁琐和耗时的预处理程序,无法对生命体内铜离子进行原位实时检测。因此,开发一种能够原位、快速、准确响应生命体内铜离子的方法具有重要意义。

荧光成像作为一种非侵入性的新型检测方法,具有高选择性和高灵敏度,操作简单、响应快速等优点,在生物医学领域得到广泛应用 [11] 。设计对Cu2+特异性响应的荧光探针已成为人们关注的重点。到目前为止,人们根据不同的机理设计出多种Cu2+荧光探针。利用Cu2+的顺磁性可猝灭荧光 [12] ,报道了多例开关型荧光探针 [13] [14] ,利用Cu2+能诱导罗丹明螺内酯环开环反应报导了多例增强型荧光探针 [15] 。按照识别机理不同,可以把Cu2+探针分为两大类:基于配位相互作用的配位型荧光探针和基于化学反应的反应型荧光探针。配位型探针与Cu2+通过配位键结合,配位前后探针的荧光性质发生改变。通过增减配位原子的个数可以调节探针与Cu2+的配位能力,设计出不同线性响应范围的荧光探针 [16] 。配位作用一般是可逆的快速过程,因此这类探针有望实现对生命体内Cu2+的快速原位跟踪。通常选择性不高是配位型荧光探针的缺陷。反应型探针在Cu2+存在时发生特异性化学反应,生成的产物与探针有显著的荧光性质差异从而实现对Cu2+的检测 [17] 。鉴于大部分化学反应不可逆,反应型荧光探针通常较难实现可逆响应,但反应的高特异性使得这类探针通常具有较高选择性,对铜离子的识别不易受其他物种干扰 [18] 。本文重点对近五年来反应型铜离子荧光探针进行综述。

2. Cu2+诱导螺环开环的反应型探针

罗丹明、荧光素等形成分子内螺环结构时,荧光团的大共轭结构被打破,探针没有荧光。分子内螺环打开后大共轭结构恢复,探针发出荧光信号。外部诱导剂,如Lewis酸等可以诱导螺环的开环反应。铜离子属于Lewis酸,具有催化活性,可以诱导分子中的取代基亲核进攻螺环并使螺环打开,生成有强烈荧光信号的产物。螺环结构的染料中,罗丹明及其类似物具有荧光量子产率高,光稳定性好,摩尔吸收系数大等显著优点,被广泛应用于荧光探针的开发。酰肼基团能特异性识别铜离子,常被用作Cu2+识别基团。以罗丹明及其类似物为荧光团,酰肼为识别基团,人们开发了一系列具有高选择性和高灵敏度的Cu2+荧光探针。

2019年,黄等人 [19] 报导了一种Cu2+荧光探针BCX-Cu。探针分子内存在一个螺内酰肼结构,探针几乎没有荧光信号。当Cu2+存在时,探针发生螺内酰胺开环和酰肼水解反应,生成含有共轭大π结构荧光团的产物,在570 nm处释放出强烈的荧光信号并实现对Cu2+的高灵敏度响应(图1)。该探针在生命体相关pH条件下荧光信号稳定,且不受其他生命体常见金属离子的干扰,对Cu2+的检测限较低,达到88.7 μM。在L929细胞中探针能够响应外源性Cu2+浓度的变化。动力学实验表明加入铜离子后探针荧光信号40 min左右达到稳定,响应时间较长,不利于实时检测Cu2+变化,后续有望开发响应更迅速、更灵敏的荧光探针。

Figure 1. Sensing mechanism of probe BCX-Cu to Cu2+[19]

图1. 探针BCX-Cu对Cu2+的识别机理 [19]

2021年,Erman Karaku等人 [20] 通过罗丹明与肼基膦酸酯基相结合设计了荧光探针RhP。探针中罗丹明以螺内酰肼结构存在,探针几乎没有荧光信号。Cu2+存在时与探针分子中的N、O和P原子同时发生配位作用,引发罗丹明的螺环开环反应,同时酰胺键断裂生成罗丹明B,在584 nm处释放出强烈的荧光信号从而实现对铜离子的识别(图2)。该识别过程需要20 min完成。由于罗丹明对环境pH变化敏感,该探针在中性及碱性环境下几乎没有荧光信号,而酸性环境下有明显的荧光信号产生,一定程度上减弱了探针对Cu2+的选择性,降低了信噪比。探针与Cu2+配合物的荧光信号较为稳定,在pH 4到8的范围内没有显著变化。同时生命体其他常见金属离子存在时探针也没有明显的响应,包括Cu+、Zn2+、Cd2+等。探针孵育的HCT-116细胞中几乎没有荧光信号,用探针和Cu2+共孵育后细胞中出现了明显的荧光信号,显示该探针能够响应细胞中外源性Cu2+浓度的变化。

2023年杜等人 [21] 报导了一例含喹啉–荧烷杂合荧光团的探针QFH。该探针亦是通过Cu2+诱导螺内酰胺的开环和水解反应释放荧光信号,从而实现对铜离子的选择性识别(图3)。与罗丹明类探针不同的是,喹啉–荧烷杂合的荧光团本身对环境pH变化不敏感,pH条件的改变不会使探针内的螺环开环而改变荧光信号,提高了探针的选择性。由于共轭结构更大,该荧光团的激发波长和发射波长较罗丹明而言都发生了红移,且斯托克斯位移近80 nm,成像时受激发光干扰小。反应产物的荧光信号亦不受pH变化影响,其他常见金属离子不干扰探针对Cu2+的识别,因此探针QFH对Cu2+的响应具有高度选择性,且检测限(LOD)低至1.54 nM。在HeLa细胞中探针能够响应外源性Cu2+浓度的变化。动力学实验表明铜离子存在时该探针的荧光信号需要60 min才能达到平衡,响应时间比较长,难以实时检测铜离子的变化。

2023年孙等人 [22] 报导的一例探针PEGR能快速响应铜离子,30 s内探针荧光强度增强近29倍,大大快于同类型的其他探针 [19] [20] [21] 。酰肼基取代的罗丹明其螺环闭环时探针没有荧光信号,铜离子与酰肼基团配位并导致酰胺键水解断裂,螺环开环给出罗丹明的荧光信号(图4)。生命体常见物种中仅Cu2+能特异性诱导这一开环反应,且铜离子加入后探针荧光信号15 min左右达到平衡,说明此探针能特异性快速响应Cu2+。在HepG2细胞和斑马鱼及食物中探针实现了对Cu2+浓度变化的响应。探针PEGR结构简单,对Cu2+的响应迅速,灵敏度高,线性响应范围宽(0~200 μM),应用前景广泛。

Figure 2. Sensing mechanism of probe RhP to Cu2+[20]

图2. RhP探针与Cu2+离子传感机制 [20]

Figure 3. Sensing mechanism of probe QFH to Cu2+[21]

图3. QFH探针与Cu2+的识别机制 [21]

Figure 4. Sensing mechanism of probe PEGR to Cu2+[22]

图4. 探针PEGR对Cu2+的响应机理 [22]

基于这一机理,还有多个课题组设计出选择性响应铜离子的荧光探针 [23] - [38] ,这一反应机理的探针都表现为荧光增强型,具有较高的响应灵敏度,能检测细胞内或环境样品中铜离子含量的变化。表1显示了这些探针的光物理性质、Cu2+检出限(LOD)以及响应时间等。由于这类探针大多以罗丹明及其类似结构的染料为荧光团,激发波长大多在600 nm以下,发射波长在可见光区,活体成像应用时受到极大限制。事实上,所报道的此类探针除了少数在斑马鱼中进行了实验,几乎没有其他更深层次组织或活体中成像的报导。

Table 1. Property of ring opening reaction-based Cu2+ probes

表1. 部分Cu2+诱导螺环开环的反应型探针的性质

3. Cu2+诱导配位水解的反应型探针

探针中的N、O等杂原子可以与金属离子配位,使探针的荧光性质变化以指示金属离子的存在。由于生命体内存在多种可与N、O原子配位的过渡金属离子,导致配位型探针的选择性不高,容易受到其他性质相近的金属离子干扰。对于配位水解型铜离子探针而言,Cu2+与探针配位的同时进一步诱导环境中的水分子与探针分子反应,促使探针中的酯键、酰胺键等发生水解反应生成新的荧光分子。与单纯的配位型探针相比,这类探针受到其他金属离子的干扰较小,选择性明显提高。

2018年付等人 [39] 报导了一例萘酰亚胺为荧光团的铜离子荧光探针P,该探针通过Cu2+独特的催化水解机理发挥作用。萘酰亚胺本身荧光信号微弱,当6位被席夫碱取代的肼基占据时,探针P在近550 nm处发出强烈的荧光信号。Cu2+能特异性引发探针P上6位的肼基发生水解反应,生成荧光信号微弱的萘酰亚胺,故这一探针为“开–关”形式的铜离子探针(图5)。同时探针P及水解产物的紫外–可见吸收峰有明显位移,故铜离子诱导水解反应发生前后探针溶液的颜色有明显变化,这使得探针可以通过比色法和荧光法双模式检测铜离子(图6)。由于光漂白等因素也能使荧光信号减弱,双模式检测一定程度上弥补了“开–关”型探针的缺陷。细胞实验显示在293T细胞中探针与溶酶体染料有较好的共定位效应,且随着孵育溶液中铜离子浓度的增大,细胞中荧光信号逐渐减弱,表明该探针能够响应外源性铜离子浓度的变化。

Figure 5. Sensing mechanism of probe P to Cu2+[39]

图5. 探针P与Cu2+离子的识别机理 [39]

Figure 6. Photos of probe P with various metal ion under UV-light (up) and Visible light (down) [39]

图6. 不同金属离子存在时探针P在紫外灯(上)及可见光(下)模式下的照片 [39]

2020年该课题组报导了另一例铜离子荧光探针3 [40] 。探针3与探针P结构上相似,都以腙为Cu2+识别基团,探针3的腙基上增加了可参与Cu2+配位的噻吩(图7)。Cu2+存在时探针3的水解反应3 min即达到平衡,大大快于探针P的水解反应速率(近20 min),这应该是噻吩参与配位后,增强了探针与Cu2+的配位作用,显著加速了水解反应,这一设计策略有助于设计快速响应的配位水解型铜离子探针,有利于对生命体内铜离子含量变化的快速实时检测。

Figure 7. Sensing mechanism of probe 3 to Cu2+[40]

图7. 探针3对Cu2+的传感机制 [40]

2022年Nadeem Ahmed等人 [41] 报导了一例低检出限的铜离子荧光探针NC-Cu。探针是由香豆素酮与6-肼基萘酰亚胺通过缩合反应生成的腙类有机物,本身几乎没有荧光。Cu2+能特异性诱导探针中的亚胺键水解,生成6-肼基萘酰亚胺和香豆素酮,其中香豆素酮具有强烈的荧光信号,由此指示铜离子的存在(图8)。生命体常见物种包括金属离子和还原性物种中,只有铜离子能够诱导水解反应发出明显的荧光信号。由于生成了CuS沉淀,所以选择性测试中HS与Cu2+等量共存时没有观察到荧光信号,如果Cu2+过量,应该可以观察到配位水解产物的荧光信号,即HS不会干扰探针识别Cu2+含量异常升高。该探针在KYSE30活细胞中实现了对外源性铜离子浓度变化的响应。

Figure 8. Sensing mechanism of probe NC-Cu to Cu2+[41]

图8. 探针NC-Cu与Cu2+的反应机理 [41]

2023年何等人 [42] 报导了以氨基脲为响应基团的铜离子探针CAA。探针中存在PET效应所以荧光信号微弱,与Cu2+配位后发生水解反应,酰胺键断裂生成具有ICT效应的7-氨基香豆素,438 nm处出现明显的荧光信号指示Cu2+的存在(图9)。这一配位水解反应对铜离子有选择性,当Cu2+在0.1~30 μM范围内,探针438 nm处的荧光强度与Cu2+浓度之间有良好的线性关系。用探针CAA孵育的HeLa细胞中荧光信号微弱,用10 μM CuCl2预处理后再用探针孵育,细胞中出现明显的荧光信号,提示该探针能够响应HeLa细胞中Cu2+浓度变化。

Figure 9. Sensing mechanism of probe CAA to Cu2+[42]

图9. 探针CAA对Cu2+的传感机制 [42]

2-吡啶甲酰胺、腙都能与Cu2+选择性配位,2023年Akarasareenon等人 [43] 报导了铜离子荧光探针JP,以N-吡啶酰基–腙为Cu2+识别基团,可同时与多个Cu2+配位。探针本身荧光信号微弱,Cu2+与探针中N、O原子配位后,荧光团上的亚胺键水解并生成9-醛基久洛尼定,在420 nm处给出明显的荧光信号(图10)。这一配位水解反应同样对铜离子有选择性,探针能选择性识别铜离子。尽管探针与Cu2+以1:2比例配位,但这并没有能够加速探针的配位水解响应速率,对Cu2+的响应需要60 min才达到平衡。

Figure 10. Sensing mechanism of probe JP to Cu2+[43]

图10. 探针JP对Cu2+离子的感应机制 [43]

基于这一机理还报导了多例铜离子荧光探针 [44] - [63] ,表2罗列了这些探针的激发发射波长、检测铜离子的响应时间和检出限(LOD)等。尽管所报导的多例探针激发和发射波长属于可见光区甚至紫外光区,配位水解机理的探针可以选择激发与发射波长位于近红外区域的荧光基团,实现对活体深层次组织中的Cu2+检测。同时此类探针识别选择性高,对于响应迅速的配位水解型近红外铜离子探针,有望得到更多的研究和应用。

Table 2. Property of hydrolysis reaction-based Cu2+ probes

表2. 基于Cu2+诱导配位水解反应型探针的性质

4. Cu2+诱导氧化环化的反应型探针

环化反应是指在有机化合物分子中形成新的碳环或杂环的反应,也称闭环或成环缩合。环化反应是制备此类荧光探针的关键,需要巧妙的设计。目前,这类探针报道较少 [64] - [69] 。

2022年,纪等人 [64] 通过香豆醛与1-羟基-2-乙酰萘的缩合反应,制备了一种光稳定性好、量子产率高的“开启”型探针1。探针本身表现出微弱的荧光特性,加入Cu2+后在540 nm处可以观察到明显增强的荧光信号。这是铜离子诱导的氧化环化反应生成类黄酮中间体(图11),这一机理由NMR和ESI-MS实验得到了验证。动力学跟踪显示Cu2+诱导的探针反应需要近2小时才能达到平衡,响应速率慢不利于实时跟踪成像。其他生命体常见金属离子和还原性物种单独存在于探针溶液中时不会干扰探针的荧光信号,但Ag+与Cu2+共同存在时,会显著抑制探针对Cu2+的识别响应。在HeLa细胞中该探针能够响应外源性Cu2+浓度的变化。

Figure 11. Sensing mechanism of probe 1 to Cu2+[64]

图11. 探针1对Cu2+的识别机理 [64]

2022年Okamoto等人 [65] 报导了一例高选择性检测Cu2+的新型荧光探针OAHP。该探针本身荧光信号微弱,铜离子存在下探针中酰胺键断裂同时分子内发生环化反应,生成荧光信号强烈的恶二唑衍生物(图12)。该探针对铜离子的识别具有高选择性和高灵敏度,成功应用于自来水样品及HepG2细胞内Cu2+的监测。与纪等人 [64] 所报导的荧光探针达到平衡需要2 h相比,这一探针40 min就能达到平衡,大大缩短了响应时间,检出限也更低,探针灵敏度更高。

Figure 12. Sensing mechanism of probe OHAP to Cu2+[65]

图12. 探针OHAP对Cu2+离子的识别机制 [65]

5. 总结与展望

本文主要对近五年报导的反应型铜离子荧光探针进行了综述,举例阐述了各类探针的响应机理。尽管反应型铜离子探针已经报导了上百例,但仍有较大的探索空间,特别是氧化环化反应型探针。由于铜离子发挥着重要的生理、病理作用,从活体成像的需求来看,探针除了要满足生物毒性小,光稳定性好,激发及发射光位于近红外光区等条件以外,由于生命体内铜离子始终处于动态变化过程中,原位实时动态跟踪的需求要求探针能够对铜离子可逆成像,即反应型探针与铜离子之间的反应需要可逆,已经报导的探针中尚没有满足这一要求,未来或许有望解决这一需求,取得更多重要成果。

致谢

感谢国家自然科学基金(22107054)、南通市基础科学基金(JC2021114)和南通大学大型仪器开放基金的资助。

NOTES

*通讯作者。

参考文献

[1] Festa, R.A. and Thiele, D.J. (2011) Copper: An Essential Metal in Biology. Current Biology, 21, R877-R883.
https://doi.org/10.1016/j.cub.2011.09.040
[2] Pöhler, M., Guttmann, S., Nadzemova, O., et al. (2020) CRISPR/Cas9-Mediated Correction of Mutated Copper Transporter ATP7B. PLOS One, 15, e0239411.
https://doi.org/10.1371/journal.pone.0239411
[3] Hao, C., Qu, A., Xu, L., et al. (2018) Chiral Molecule-Mediated Porous CuxO Nanoparticle Clusters with Antioxidation Activity for Ameliorating Parkinson’s Disease. Journal of the American Chemical Society, 141, 1091-1099.
https://doi.org/10.1021/jacs.8b11856
[4] Han, Y., Shen, T., Jiang, W., et al. (2007) DNA Cleavage Mediated by Copper Superoxide Dismutase via Two Pathways. Journal of Inorganic Biochemistry, 101, 214-224.
https://doi.org/10.1016/j.jinorgbio.2006.09.014
[5] Ejaz, H.W., Wang, W. and Lang, M., (2020) Copper Toxicity Links to Pathogenesis of Alzheimer’s Disease and Therapeutics Approaches. International Journal of Molecular Scienc-es, 21, Article 7660.
https://doi.org/10.3390/ijms21207660
[6] Torrado, A., Walkup, G.K. and Imperiali, B. (1998) Exploiting Poly-peptide Motifs for the Design of Selective Cu (II) Ion Chemosensors. Journal of the American Chemical Society, 120, 609-610.
https://doi.org/10.1021/ja973357k
[7] Mu, H.R., Yu, M., Wang, L., et al. (2020) Catching S2- and Cu2+ by a Highly Sensitive and Efficient Salamo-Like Fluorescence-Ultraviolet Dual Channel Chemosensor. Phosphorus, Sulfur, and Silicon and the Related Elements, 195, 730-739.
https://doi.org/10.1080/10426507.2020.1756807
[8] Pourreza, N. and Hoveizavi, R. (2005) Simultaneous Pre-concentration of Cu, Fe and Pb as Methylthymol Blue Complexes on Naphthalene Adsorbent and Flame Atomic Absorp-tion Determination. Analytica Chimica Acta, 549, 124-128.
https://doi.org/10.1016/j.aca.2005.06.037
[9] Pourmand, N., Sanagi, M.M., Naim, A.A., et al. (2015) Dispersive Micro-Solid Phase Extraction Method Using Newly Prepared Poly (Methyl Methacrylate) Grafted Agarose Combined with ICP-MS for the Simultaneous Determination of Cd, Ni, Cu and Zn in Vegetable and Natural Water Samples. Ana-lytical Methods, 7, 3215-3223.
https://doi.org/10.1039/C4AY02889A
[10] Etienne, M., Bessiere, J. and Walcarius, A. (2001) Voltammetric De-tection of Copper (II) at a Carbon Paste Electrode Containing an Organically Modified Silica. Sensors and Actuators B: Chemical, 76, 531-538.
https://doi.org/10.1016/S0925-4005(01)00614-1
[11] Aydin, D. (2020) A Novel Turn on Fluorescent Probe for the Determination of Al3+ and Zn2+ Ions and Its Cells Applications. Talanta, 210, Article ID: 120615.
https://doi.org/10.1016/j.talanta.2019.120615
[12] More, P.A. and Shankarling, G.S. (2017) Reversible ‘Turn off’ Fluorescence Response of Cu2+ Ions towards 2-Pyridyl Quinoline Based Chemosensor with Visible Colour Change. Sensors and Actuators B: Chemical, 241, 552-559.
https://doi.org/10.1016/j.snb.2016.10.121
[13] Sun, T., Li, Y., Niu, Q., et al. (2018) Highly Selective and Sensitive Determination of Cu2+ in Drink and Water Samples Based on A 1, 8-Diaminonaphthalene Derived Fluorescent Sensor. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 195, 142-147.
https://doi.org/10.1016/j.saa.2018.01.058
[14] Wang, Y., Wu, H., Wu, W.N., et al. (2018) An AIRE Active Schiff Base Bearing Coumarin and Pyrrole Unit: Cu2+ Detection in Either Solution or Aggregation States. Sensors and Actua-tors B: Chemical, 260, 106-115.
https://doi.org/10.1016/j.snb.2017.12.201
[15] Sada, P.K., Bar, A., Jassal, A.K., et al. (2023) A Dual Channel Rhodamine Appended Smart Probe for Selective Recognition of Cu2+ and Hg2+ via “Turn on” Optical Readout. Analytica Chimica Acta, 1263, Article ID: 341299.
https://doi.org/10.1016/j.aca.2023.341299
[16] Zhao, H., Ding, H., Kang, H., et al. (2019) A Solvent-Dependent Chemosensor for Fluorimetric Detection of Hg2+ and Colorimetric Detection of Cu2+ Based on a New Diarylethene with a Rhodamine B Unit. RSC Advances, 9, 42155-42162.
https://doi.org/10.1039/C9RA08557B
[17] Sóvári, D., Keserű, G.M. and Ábrányi-Balogh, P. (2020) Application of Boroisoquinoline Fluorophores as Chemodosimeters for Fluoride Ion and Pd(0). Materials, 13, Article 199.
https://doi.org/10.3390/ma13010199
[18] Tang, L., Yu, H., Zhong, K., et al. (2019) An Aggregation-Induced Emission-Based Fluorescence Turn-on Probe for Hg2+ and Its Appli-cation to Detect Hg2+ in Food Samples. RSC Advances, 9, 23316-23323.
https://doi.org/10.1039/C9RA04440J
[19] Huang, K., Han, D., Li, X., et al. (2019) A Novel Biscarba-zole-Xanthene Hybrid Fluorescent Probe for Selective and Sensitive Detection of Cu2+ and Applications in Bioimaging. Journal of Fluorescence, 29, 727-735.
https://doi.org/10.1007/s10895-019-02393-1
[20] Karakuş, E. (2021) A Rhodamine Based Fluorescent Chemo-dosimeter for the Selective and Sensitive Detection of Copper (II) Ions in Aqueous Media and Living Cells. Journal of Molecular Structure, 1224, Article ID: 129037.
https://doi.org/10.1016/j.molstruc.2020.129037
[21] Du, B., Li, Q., Huang, K., et al. (2023) A Quinoline-Fluoran Hybrid Fluorescent Probe for Selectively and Sensitively Sensing Copper Ions and Fluorescence Imaging Application. Journal of Molecular Structure, 1271, Article ID: 134015.
https://doi.org/10.1016/j.molstruc.2022.134015
[22] Sun, H., Xu, Q., Xu, C., et al. (2023) Construction of a Wa-ter-Soluble Fluorescent Probe for Copper (II) Ion Detection in Live Cells and Food Products. Food Chemistry, 418, Ar-ticle ID: 135994.
https://doi.org/10.1016/j.foodchem.2023.135994
[23] Ge, Y., Ji, R., Shen, S., et al. (2017) A Ratiometric Fluores-cent Probe for Sensing Cu2+ Based on New Imidazo [1, 5-A] Pyridine Fluorescent Dye. Sensors and Actuators B: Chemical, 245, 875-881.
https://doi.org/10.1016/j.snb.2017.01.169
[24] Maji, A., Lohar, S., Pal, S., et al. (2017) A New Rhodamine Based ‘Turn-On’ Cu2+ Ion Selective Chemosensor in Aqueous System Applicable in Bioimaging. Journal of Chemical Sciences, 129, 1423-1430.
https://doi.org/10.1007/s12039-017-1349-4
[25] Huang, K., Yue, Y., Jiao, X., et al. (2017) Fluorescence Regula-tion of 4-Aminobenzofluoran and Its Applications for Cu2+-Selective Fluorescent Probe and Bioimaging. Dyes and Pig-ments, 143, 379-386.
https://doi.org/10.1016/j.dyepig.2017.04.064
[26] Huang, K., Han, D., Li, X., et al. (2019) A New Cu2+-Selective Fluorescent Probe with Six-Membered Spirocyclic Hydrazide and Its Application in Cell Imaging. Dyes and Pigments, 171, Article ID: 107701.
https://doi.org/10.1016/j.dyepig.2019.107701
[27] Qiu, Q., Yu, B., Huang, K. and Qin, D.B. (2020) A Fluo-ran-Based Cu2+-Selective Fluorescent Probe and Its Application in Cell Imaging. Journal of Fluorescence, 30, 859-866.
https://doi.org/10.1007/s10895-020-02551-w
[28] Dong, M., Tang, J., Lv, Y., et al. (2020) A Dual-Function Flu-orescent Probe for Hg (II) and Cu (II) Ions with Two Mutually Independent Sensing Pathways and Its Logic Gate Be-havior. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 226, Article ID: 117645.
https://doi.org/10.1016/j.saa.2019.117645
[29] Xu, X., Zhang, X., Cao, C., et al. (2020) Cu2+-Selective Naked-Eye ‘Off-On’ Fluorescent Probe with Multisignals: Chromaticity, Fluorescence, Electrochemistry. Luminescence, 35, 1142-1150.
https://doi.org/10.1002/bio.3827
[30] Sun, L.P., Sun, Z., Li, Z., et al. (2020) Rh6G-HS-Based Opto-fluidic Laser Sensor for Selective Detection of Cu2+ Ions. IEEE Photonics Technology Letters, 32, 714-717.
https://doi.org/10.1109/LPT.2020.2993151
[31] Wang, Y., Wang, Y., Guo, F., et al. (2021) A New Naked-Eye Fluorescent Chemosensor for Cu (II) and Its Practical Applications. Research on Chemical Intermediates, 47, 3515-3528.
https://doi.org/10.1007/s11164-021-04489-5
[32] Tian, M., He, H., Wang, B.B., et al. (2019) A Reaction-Based Turn-On Fluorescent Sensor for the Detection of Cu (II) with Excellent Sensitivity and Selectivity: Synthesis, DFT Cal-culations, Kinetics and Application in Real Water Samples. Dyes and Pigments, 165, 383-390.
https://doi.org/10.1016/j.dyepig.2019.02.043
[33] Wechakorn, K., Prabpai, S., Suksen, K., et al. (2018) A Rhoda-mine-Triazole Fluorescent Chemodosimeter for Cu2+ Detection and Its Application in Bioimaging. Luminescence, 33, 64-70.
https://doi.org/10.1002/bio.3373
[34] Zheng. A,Q., Zhao, C.X., Wang, X.J., et al. (2020) Simultaneous De-tection and Speciation of Mono-And Di-Valent Copper Ions with a Dual-Channel Fluorescent Nanoprobe. Chemical Communications, 56, 15337-15340.
https://doi.org/10.1039/D0CC06750D
[35] Chen, J., Wang, N., Tong, H., et al. (2021) A Compact Fluores-cence/Circular Dichroism Dual-Modality Probe for Detection, Differentiation, and Detoxification of Multiple Heavy Met-al Ions via Bond-Cleavage Cascade Reactions. Chinese Chemical Letters, 32, 3876-3881.
https://doi.org/10.1016/j.cclet.2021.05.047
[36] Yan, L., Xie, Y. and Li, J., (2019) A Colorimetric and Fluorescent Probe Based on Rhodamine B for Detection of Fe3+ and Cu2+ Ions. Journal of Fluorescence, 29, 1221-1226.
https://doi.org/10.1007/s10895-019-02438-5
[37] Foytong, W., Pattaweepaiboon, S., Kaewchangwat, N., et al. (2022) Synthesis, Structural Analysis and Sensing Performance of a Novel Spirooxazine Derivative as a Turn-On Fluo-rescence Probe for Cu2+ Detection with High Selectivity and Sensitivity. Supramolecular Chemistry, 34, 46-58.
https://doi.org/10.1080/10610278.2023.2221365
[38] Zeng, X., Gao, S., Jiang, C., et al. (2021) Rhodol-Derived Turn-On Fluorescent Probe for Copper Ions with High Selectivity and Sensitivity. Luminescence, 36, 1761-1766.
https://doi.org/10.1002/bio.4118
[39] Fu, Y., Pang, X.X., Wang, Z.Q., et al. (2019) A Highly Sensitive and Selec-tive Fluorescent Probe for Determination of Cu (II) and Application in Live Cell Imaging. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 208, 198-205.
https://doi.org/10.1016/j.saa.2018.10.005
[40] Liu, Y.L., Yang, L., Li, P., et al. (2020) A Novel Colorimetric and “Turn-Off” Fluorescent Probe Based on Catalyzed Hydrolysis Reaction for Detection of Cu2+ in Real Water and in Living Cells. Spectrochimica Acta Part A: Molecular and Biomolec-ular Spectroscopy, 227, Article ID: 117540.
https://doi.org/10.1016/j.saa.2019.117540
[41] Ahmed, N., Zareen, W., Zhang, D., et al. (2022) Irreversible Coumarin Based Fluorescent Probe for Selective Detection of Cu2+ in Living Cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 264, Article ID: 120313.
https://doi.org/10.1016/j.saa.2021.120313
[42] He, Y., Wang, H., Fang, X., et al. (2023) Semicarbazide-Based Fluorescent Probe for Detection of Cu2+ and Formaldehyde in Different Channels. Spectrochimica Acta Part A: Molecu-lar and Biomolecular Spectroscopy, 299, Article ID: 122818.
https://doi.org/10.1016/j.saa.2023.122818
[43] Akarasareenon, W., Chanmungkalakul, S., Liu, X.G. and Rashatasakhon, P. (2023) Selective Fluorescent Sensors for Copper (II) Ion From Julolidine Hydrazone Derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 437, Article ID: 114422.
https://doi.org/10.1016/j.jphotochem.2022.114422
[44] Ryu, H., Choi, M.G., Cho, E.J. and Chang, S.K. (2018) Cu2+-Selective Fluorescent Probe Based on the Hydrolysis of Semicarbazide Derivative of 2-(2-Aminophenyl) Benzo-thiazole. Dyes and Pigments, 149, 620-625.
https://doi.org/10.1016/j.dyepig.2017.11.022
[45] Xu, T., Huang, J., Fang, M., et al. (2020) A Novel “Turn-On” Fluorescent Probe Based on Naphthalimide for the Tracking of Lysosomal Cu2+ in Living Cells. New Journal of Chem-istry, 44, 21167-21175.
https://doi.org/10.1039/D0NJ04416D
[46] You, Q., Zhuo, Y., Feng, Y., et al. (2021) A Highly Selective Fluores-cent Probe for the Sensing of Cu2+ Based on the Hydrolysis of a Quinoline-2-Carboxylate and Its Application in Cell Imaging. Journal of Chemical Research, 45, 315-321.
https://doi.org/10.1177/1747519820973929
[47] Chen, Y., Long, Z., Wang, C., et al. (2022) A Lysosome-Targeted Near-Infrared Fluorescent Probe for Cell Imaging of Cu2+. Dyes and Pigments, 204, Article ID: 110472.
https://doi.org/10.1016/j.dyepig.2022.110472
[48] 张长丽, 张虹, 何凤云, 等. 基于香豆素的增强型铜离子荧光探针及其在细胞成像中的应用[J]. 无机化学学报, 2019, 35(10): 1869-1876.
[49] Jiang, J., Sun, H., Hu, Y., et al. (2021) AIE+ ESIPT Activity-Based NIR Cu2+ Sensor with Dye Par-ticipated Binding Strategy. Chemical Communications, 57, 7685-7688.
https://doi.org/10.1039/D1CC02233D
[50] Wang, H., Cui, J., Fang, X., et al. (2022) Fluorescent Detection of Copper Ions with Acylhydrazine-Based Probes: Effects of Substitute and Its Position. Dyes and Pigments, 197, Article ID: 109954.
https://doi.org/10.1016/j.dyepig.2021.109954
[51] Shen, Y., Zheng, W., Yao, Y., et al. (2020) Phenoxazine-Based Near-Infrared Fluorescent Probes for the Specific Detection of Copper (II) Ions in Living Cells. Chemistry: An Asian Journal, 15, 2864-2867.
https://doi.org/10.1002/asia.202000783
[52] Imran, K., Pandey, D., Kaur, J., et al. (2023) An ESIPT Solvato-chromic Fluorescent and Colorimetric Probe for Sensitive and Selective Detection of Copper Ions in Environmental Sam-ples and Cell Lines. Analyst, 148, 4513-4524.
https://doi.org/10.1039/D3AN00870C
[53] Sheng, X., Kong, L., Wang, J., et al. (2022) A Phthalimide-Based ESIPT Fluorescent Probe for Sensitive Detection of Cu2+ in Complete Aqueous Solution. Analytical Sciences, 38, 689-694.
https://doi.org/10.1007/s44211-022-00084-9
[54] Yao, W., Zhu, D., Ye, Y., et al. (2023) A Novel Col-orimetric and Ratiometric Fluorescent Probe for Detection of Cu2+ with Large Stokes Shift in Complete Aqueous Solu-tion. Journal of Molecular Structure, 1278, Article ID: 134970.
https://doi.org/10.1016/j.molstruc.2023.134970
[55] Xu, J., Wang, Z., Liu, C., et al. (2018) A Colorimetric and Fluorescent Probe for the Detection of Cu2+ in a Complete Aqueous Solution. Analytical Sciences, 34, 453-457.
https://doi.org/10.2116/analsci.17P517
[56] Ren, A., Zhu, D., et al. (2018) A Novel Reaction-Based Fluorescent Probe for Sensitive and Selective Detection of Cu2+. Inorganica Chimica Acta, 476, 136-141.
https://doi.org/10.1016/j.ica.2018.02.015
[57] Li, Y., Ji, Y.X., Song, L.J., et al. (2018) A Novel BF2-Curcumin-Based Fluorescent Chemosensor for Detection of Cu2+ in Aqueous Solution and Living Cells. Research on Chemical Intermediates, 44, 5169-5180.
https://doi.org/10.1007/s11164-018-3416-y
[58] Gu, B., Huang, L., Xu, Z., et al. (2018) A Reaction-Based, Col-orimetric and Near-Infrared Fluorescent Probe for Cu2+ and Its Applications. Sensors and Actuators B: Chemical, 273, 118-125.
https://doi.org/10.1016/j.snb.2018.06.032
[59] Li, M., Chen, H., Liu, X., et al. (2020) A Selective and Sensitive Sequential Ratio/“Turn-Off” Dual Mode Fluorescent Chemosensor for Detection of Copper Ions in Aqueous Solution and Serum. Inorganica Chimica Acta, 511, Article ID: 119825.
https://doi.org/10.1016/j.ica.2020.119825
[60] Zeng, X., Gao, S., Jiang, C., et al. (2021) A Colorimetric and Long-Wavelength “Turn-On” Fluorescent Probe for Copper Ions Detection with High Selectivity and Sensitivity. Chem-istrySelect, 6, 6619-6624.
https://doi.org/10.1002/slct.202101520
[61] Zhu, D., Jiang, S., Zhao, W., et al. (2021) A Novel Ratiometric Fluo-rescent Probe for Sensitive and Selective Detection of Cu2+ Based on Boranil Derivatives. Inorganica Chimica Acta, 524, Article ID: 120438.
https://doi.org/10.1016/j.ica.2021.120438
[62] Nguyen, K.H., Hao, Y., Zeng, K., et al. (2018) A Reaction-Based Long-Wavelength Fluorescent Probe for Cu2+ Detection and Imaging in Living Cells. Journal of Photochemistry and Photobiology A: Chemistry, 358, 201-206.
https://doi.org/10.1016/j.jphotochem.2018.03.023
[63] Li, X., Guo, Y., Xu, T., et al. (2020) A Highly Sensitive Naphthalimide-Based Fluorescent Probe for Detection of Cu2+ via Selective Hydrolysis Reaction and Its Application in Practical Samples. Journal of the Chinese Chemical Society, 67, 1070-1077.
https://doi.org/10.1002/jccs.201900315
[64] Ji, L., Fu, Y., Yang, N., et al. (2022) A Fluorescence “Turn-On” Probe for Cu (II) Based on Flavonoid Intermediates Generated by Copper-Induced Oxidative Cyclization and Its Fluo-rescence Imaging in Living Cells. Analytical Biochemistry, 655, Article ID: 114855.
https://doi.org/10.1016/j.ab.2022.114855
[65] Okamoto, Y., Kishikawa, N., Hagimori, M., et al. (2022) A Turn-On Hydrazide Oxidative Decomposition-Based Fluorescence Probe for Highly Selective Detection of Cu2+ in Tap Water as Well as Cell Imaging. Analytica Chimica Acta, 1217, Article ID: 340024.
https://doi.org/10.1016/j.aca.2022.340024
[66] Jung, J., Jo, J. and Dinescu, A., (2017) Rapid Turn-On Fluores-cence Detection of Copper (II): Aromatic Substituent Effects on the Response Rate. Organic Process Research & De-velopment, 21, 1689-1693.
https://doi.org/10.1021/acs.oprd.7b00269
[67] Jung, J., Dinescu, A. and Kukrek, A., (2020) Synthesis and Com-parative Kinetic Study of Reaction-Based Copper (II) Probes to Visualize Aromatic Substituent Effects on Reactivity. Journal of Chemical Education, 97, 533-537.
https://doi.org/10.1021/acs.jchemed.7b00924
[68] Hong, R., Fei, L., et al. (2020) Development of A Colorimetric and Fluorescent Cu2+ Ion Probe Based on 2’-Hydroxy-2, 4-Diaminoazobenzene and Its Application in Real Water Sam-ple and Living Cells. Inorganica Chimica Acta, 507, Article ID: 119583.
https://doi.org/10.1016/j.ica.2020.119583
[69] Hong, R., Ping, W., Fei, L., et al. (2020) Development of A Color-imetric and Fluorescent Cu2+ Ion Probe Based on 2-Hydroxy-2, 4-Diaminoazobenzene and Its Application in Real Water Sample and Living Cells. Inorganica Chimica Acta, 507, Article ID: 119583.
https://doi.org/10.1016/j.ica.2020.119583

Baidu
map