[1] |
Li, P.C., Zhu, Y.F., Cao, W.M., et al. (2024) ER-Positive and BRCA2-Mutated Breast Cancer: A Literature Review. European Journal of Medical Research, 29, Article No. 30. https://doi.org/10.1186/s40001-023-01618-1 |
[2] |
Zhong, X.D., Chen, L.J., Xu, X.Y., et al. (2022) Berberine as a Potential Agent for Breast Cancer Therapy. Frontiers in Oncology, 12, Article 993775. https://doi.org/10.3389/fonc.2022.993775 |
[3] |
El-Baba, C., Baassiri, A., Kiriako, G., et al. (2021) Terpenoids’ An-ti-Cancer Effects: Focus on Autophagy. Apoptosis: An International Journal on Programmed Cell Death, 26, 491-511. https://doi.org/10.1007/s10495-021-01684-y |
[4] |
Rufino, A.T., Costa, V.M., Carvalho, F., et al. (2021) Flavo-noids as Antiobesity Agents: A Review. Medicinal Research Reviews, 41, 556-585. https://doi.org/10.1002/med.21740 |
[5] |
Ribeiro, D., Freitas, M., Lima, J.L, et al. (2015) Proinflammatory Path-ways: The Modulation by Flavonoids. Medicinal Research Reviews, 35, 877-936. https://doi.org/10.1002/med.21347 |
[6] |
Almeida Rezende, B., Pereira, A.C., Cortes, S.F., et al. (2016) Vascular Effects of Flavonoids. Current Medicinal Chemistry, 23, 87-102. https://doi.org/10.2174/0929867323666151111143616 |
[7] |
Mira, A., Alkhiary, W. and Shimizu, K. (2017) An-tiplatelet and Anticoagulant Activities of Angelica Shikokiana Extract and Its Isolated Compounds. Clinical and Applied Thrombosis/Hemostasis, 23, 91-99. https://doi.org/10.1177/1076029615595879 |
[8] |
Proença, C., Freitas, M., Ribeiro, D., et al. (2017) α-Glucosidase Inhibition by Flavonoids: An in Vitro and in Silico Structure-Activity Relationship Study. Journal of Enzyme Inhibition and Medicinal Chemistry, 32, 1216-1228. https://doi.org/10.1080/14756366.2017.1368503 |
[9] |
Frandsen, J.R. and Narayanasamy, P. (2018) Neuroprotec-tion through Flavonoid: Enhancement of the Glyoxalase Pathway. Redox Biology, 14, 465-473. https://doi.org/10.1016/j.redox.2017.10.015 |
[10] |
Khan, H., Perviz, S., Sureda, A., et al. (2018) Current Standing of Plant Derived Flavonoids as an Antidepressant. Food and Chemical Toxicology, 119, 176-188. https://doi.org/10.1016/j.fct.2018.04.052 |
[11] |
Kopustinskiene, D.M., Jakstas, V., Savickas, A., et al. (2020) Fla-vonoids as Anticancer Agents. Nutrients, 12, Article 457. https://doi.org/10.3390/nu12020457 |
[12] |
Zhang, Q., Le-nardo, M.J. and Baltimore, D. (2017) 30 Years of NF-κB: A Blossoming of Relevance to Human Pathobiology. Cell, 168, 37-57. https://doi.org/10.1016/j.cell.2016.12.012 |
[13] |
Sen, R. and Baltimore, D. (1986) Multiple Nuclear Factors Interact with the Immunoglobulin Enhancer Sequences. Cell, 46, 705-716. https://doi.org/10.1016/0092-8674(86)90346-6 |
[14] |
Song, L., Chen, X., Mi, L., et al. (2020) Icariin-Induced Inhi-bition of SIRT6/NF-κB Triggers Redox Mediated Apoptosis and Enhances Anti-Tumor Immunity in Triple-Negative Breast Cancer. Cancer Science, 111, 4242-4256. https://doi.org/10.1111/cas.14648 |
[15] |
Sharma, V.R., Gupta, G.K., Sharma, A.K., et al. (2017) PI3K/Akt/MTOR Intracellular Pathway and Breast Cancer: Factors, Mechanism and Regulation. Current Pharmaceutical Design, 23, 1633-1638. https://doi.org/10.2174/1381612823666161116125218 |
[16] |
Hussain, Y., Khan, H., Alam, W., et al. (2022) Fla-vonoids Targeting the MTOR Signaling Cascades in Cancer: A Potential Crosstalk in Anti-Breast Cancer Therapy. Oxi-dative Medicine and Cellular Longevity, 2022, Article ID: 4831833. https://doi.org/10.1155/2022/4831833 |
[17] |
Chen, L., Zeng, T., Pan, X., et al. (2019) Identifying Methylation Pat-tern and Genes Associated with Breast Cancer Subtypes. International Journal of Molecular Sciences, 20, Article 4269. https://doi.org/10.3390/ijms20174269 |
[18] |
Yang, G.J., Zhong, H.J., Ko, C.N., et al. (2018) Identification of a Rhodium(III) Complex as a Wee1 Inhibitor against TP53-Mutated Triple-Negative Breast Cancer Cells. Chemical Com-munications (Cambridge, England), 54, 2463-2466. https://doi.org/10.1039/C7CC09384E |
[19] |
Li, X., Zhou, N., Wang, J., et al. (2018) Quercetin Suppresses Breast Cancer Stem Cells (CD44+/CD24−) by Inhibiting the PI3K/Akt/MTOR-Signaling Pathway. Life Sciences, 196, 56-62. https://doi.org/10.1016/j.lfs.2018.01.014 |
[20] |
Syed, D.N., Adhami, V.M., Khan, M.I., et al. (2013) Inhibition of Akt/MTOR Signaling by the Dietary Flavonoid Fisetin. Anti-Cancer Agents in Medicinal Chemistry, 13, 995-1001. https://doi.org/10.2174/18715206113139990129 |
[21] |
Zhou, R., Chen, H., Chen, J., et al. (2018) Extract from Astragalus membranaceus Inhibit Breast Cancer Cells Proliferation via PI3K/AKT/MTOR Signaling Pathway. BMC Complementary and Alternative Medicine, 18, Article No. 83. https://doi.org/10.1186/s12906-018-2148-2 |
[22] |
Rivera Rivera, A., Castillo-Pichardo, L., Gerena, Y., et al. (2016) Anti-Breast Cancer Potential of Quercetin via the Akt/AMPK/Mammalian Target of Rapamycin (MTOR) Signaling Cas-cade. PLOS ONE, 11, e0157251. https://doi.org/10.1371/journal.pone.0157251 |
[23] |
Won, Y.S. and Seo, K.I. (2020) Lupiwighteone Induces Caspa-se-Dependent and -Independent Apoptosis on Human Breast Cancer Cells via Inhibiting PI3K/Akt/MTOR Pathway. Food and Chemical Toxicology, 135, Article 110863. https://doi.org/10.1016/j.fct.2019.110863 |
[24] |
Bonizzi, A., Truffi, M., Sevieri, M., et al. (2019) Everolimus Nanoformulation in Biological Nanoparticles Increases Drug Responsiveness in Resistant and Low-Responsive Breast Cancer Cell Lines. Pharmaceutics, 11, Article 384. https://doi.org/10.3390/pharmaceutics11080384 |
[25] |
Fleming, G.F., Ma, C.X., Huo, D., et al. (2012) Phase II Trial of Temsirolimus in Patients with Metastatic Breast Cancer. Breast Cancer Research and Treatment, 136, 355-363. https://doi.org/10.1007/s10549-011-1910-7 |
[26] |
Bachelot, T., Bourgier, C., Cropet, C., et al. (2012) Randomized Phase II Trial of Everolimus in Combination with Tamoxifen in Patients with Hormone Receptor-Positive, Human Epi-dermal Growth Factor Receptor 2-Negative Metastatic Breast Cancer with Prior Exposure to Aromatase Inhibitors: A GINECO Study. Journal of Clinical Oncology, 30, 2718-2724. https://doi.org/10.1200/JCO.2011.39.0708 |
[27] |
AndrE, F., O’Regan, R., Ozguroglu, M., et al. (2014) Everolimus for Women with Trastuzumab-Resistant, HER2-Positive, Advanced Breast Cancer (BOLERO-3): A Randomised, Dou-ble-Blind, Placebo-Controlled Phase 3 Trial. The Lancet. Oncology, 15, 580-591. https://doi.org/10.1016/S1470-2045(14)70138-X |
[28] |
Seiler, M., Ray-Coquard, I., Melichar, B., et al. (2015) Oral Ridaforolimus plus Trastuzumab for Patients with HER2+ Trastuzumab-Refractory Metastatic Breast Cancer. Clinical Breast Cancer, 15, 60-65. https://doi.org/10.1016/j.clbc.2014.07.008 |
[29] |
Hurvitz, S.A., Dalenc, F., Campone, M., et al. (2013) A Phase 2 Study of Everolimus Combined with Trastuzumab and Paclitaxel in Patients with HER2-Overexpressing Advanced Breast Cancer That Progressed During Prior Trastuzumab and Taxane Therapy. Breast Cancer Research and Treatment, 141, 437-446. https://doi.org/10.1007/s10549-013-2689-5 |
[30] |
Upadhyay, S., Jeena, G.S., Shikha, et al. (2018) Recent Advances in Steroidal Saponins Biosynthesis and in Vitro Production. Planta, 248, 519-544. https://doi.org/10.1007/s00425-018-2911-0 |
[31] |
Yendo, A.C., De Costa, F., Gosmann, G., et al. (2010) Produc-tion of Plant Bioactive Triterpenoid Saponins: Elicitation Strategies and Target Genes to Improve Yields. Molecular Biotechnology, 46, 94-104. https://doi.org/10.1007/s12033-010-9257-6 |
[32] |
Zhao, Y.Z., Zhang, Y.Y., Han, H., et al. (2018) Advances in the Antitumor Activities and Mechanisms of Action of Steroidal Saponins. Chinese Journal of Natural Medicines, 16, 732-748. https://doi.org/10.1016/S1875-5364(18)30113-4 |
[33] |
Man, S., Gao, W., Zhang, Y., et al. (2010) Chemical Study and Medical Application of Saponins as Anti-Cancer Agents. Fitoterapia, 81, 703-714. https://doi.org/10.1016/j.fitote.2010.06.004 |
[34] |
Zhang, S., He, Y., Tong, Q., et al. (2013) Deltonin Induces Apoptosis in MDA-MB-231 Human Breast Cancer Cells via Reactive Oxygen Species-Mediated Mitochondrial Dys-function and ERK/AKT Signaling Pathways. Molecular Medicine Reports, 7, 1038-1044. https://doi.org/10.3892/mmr.2013.1273 |
[35] |
Fang, J.Y. and Richardson, B.C. (2005) The MAPK Signalling Path-ways and Colorectal Cancer. The Lancet. Oncology, 6, 322-327. https://doi.org/10.1016/S1470-2045(05)70168-6 |
[36] |
Viglietto, G., Motti, M.L., Bruni, P., et al. (2002) Cytoplas-mic Relocalization and Inhibition of the Cyclin-Dependent Kinase Inhibitor P27Kip1 by PKB/Akt-Mediated Phosphoryla-tion in Breast Cancer. Nature Medicine, 8, 1136-1144. https://doi.org/10.1038/nm762 |
[37] |
Si, Y., Ji, X., Cao, X., et al. (2017) Src Inhibits the Hippo Tumor Suppressor Pathway through Tyrosine Phosphorylation of Lats1. Cancer Research, 77, 4868-4880. https://doi.org/10.1158/0008-5472.CAN-17-0391 |
[38] |
Calses, P.C., Crawford, J.J., Lill, J.R., et al. (2019) Hippo Pathway in Cancer: Aberrant Regulation and Therapeutic Opportunities. Trends in Cancer, 5, 297-307. https://doi.org/10.1016/j.trecan.2019.04.001 |
[39] |
Cao, J. and Huang, W. (2017) Two Faces of Hippo: Activate Or Suppress the Hippo Pathway in Cancer. Anti-Cancer Drugs, 28, 1079-1085. https://doi.org/10.1097/CAD.0000000000000559 |
[40] |
Zheng, Y. and Pan, D. (2019) The Hippo Signaling Path-way in Development and Disease. Developmental Cell, 50, 264-282. https://doi.org/10.1016/j.devcel.2019.06.003 |
[41] |
Xiang, Y.C., Peng, P., Liu, X.W., et al. (2022) Paris Saponin VII, a Hippo Pathway Activator, Induces Autophagy and Exhibits Therapeutic Potential against Human Breast Cancer Cells. Acta Pharmacologica Sinica, 43, 1568-1580. https://doi.org/10.1038/s41401-021-00755-9 |
[42] |
Wang, D., Sha, L., Xu, C., et al. (2022) Natural Saponin and Cholesterol Assembled Nanostructures as the Promising Delivery Method for Saponin. Colloids and Surfaces B, Bioin-terfaces, 214, Article 112448. https://doi.org/10.1016/j.colsurfb.2022.112448 |
[43] |
Tan, H., Zhang, M., Wu, X., et al. (2021) New An-ti-Proliferative Triterpenes from Hydrolyzate of Total Gynostemma pentaphyllum Saponins Induces Cell Cycle Arrest and Apoptosis in Human Breast Cancer Cells. Phytochemistry Letters, 46, 166-171. https://doi.org/10.1016/j.phytol.2021.10.010 |
[44] |
Yin, L., Fan, Z., Liu, P., et al. (2021) Anemoside A3 Activates TLR4-Dependent M1-Phenotype Macrophage Polarization to Represses Breast Tumor Growth and Angiogenesis. Toxi-cology and Applied Pharmacology, 432, Article 115755. https://doi.org/10.1016/j.taap.2021.115755 |
[45] |
Xia, L., Liu, X., Mao, W., et al. (2023) Panax notoginseng Saponins Normalises Tumour Blood Vessels by Inhibiting EphA2 Gene Expression to Modulate the Tumour Microenvironment of Breast Cancer. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 114, Article 154787. https://doi.org/10.1016/j.phymed.2023.154787 |
[46] |
Wang, P., Cui, J., Du, X., et al. (2014) Panax notoginseng Saponins (PNS) Inhibits Breast Cancer Metastasis. Journal of Ethnopharmacology, 154, 663-671. https://doi.org/10.1016/j.jep.2014.04.037 |
[47] |
Li, Y., Sun, Y., Tang, T., et al. (2019) Paris Saponin VII Reverses Chemoresistance in Breast MCF-7/ADR Cells. Journal of Ethnopharmacology, 232, 47-54. https://doi.org/10.1016/j.jep.2018.12.018 |
[48] |
Ziegler, J. and Facchini, P.J. (2008) Alkaloid Biosynthesis: Metabo-lism and Trafficking. Annual Review of Plant Biology, 59, 735-769. https://doi.org/10.1146/annurev.arplant.59.032607.092730 |
[49] |
Chipiti, T., Viljoen, A.M., Cordero-Maldonado, M.L., et al. (2021) Anti-Seizure Activity of African Medicinal Plants: The Identification of Bioactive Alkaloids from the Stem Bark of Rauvolfia Caffra Using an in Vivo Zebrafish Model. Journal of Ethnopharmacology, 279, Article 114282. https://doi.org/10.1016/j.jep.2021.114282 |
[50] |
Takayama, H., Ishikawa, H., Kurihara, M., et al. (2002) Studies on the Synthesis and Opioid Agonistic Activities of Mitragynine-Related Indole Alkaloids: Discovery of Opioid Agonists Structurally Different from Other Opioid Ligands. Journal of Medicinal Chemistry, 45, 1949-1956. https://doi.org/10.1021/jm010576e |
[51] |
Nair, J.J. and Van Staden, J. (2023) Antiviral Alkaloid Principles of the Plant Family Amaryllidaceae. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 108, Arti-cle 154480. https://doi.org/10.1016/j.phymed.2022.154480 |
[52] |
Chen, D., Ma, Y., Guo, Z., et al. (2020) Two Natural Alka-loids Synergistically Induce Apoptosis in Breast Cancer Cells by Inhibiting STAT3 Activation. Molecules (Basel, Swit-zerland), 25, Article 216. https://doi.org/10.3390/molecules25010216 |
[53] |
Grabarska, A., Wróblewska-Łuczka, P., Kukula-Koch, W., et al. (2021) Palmatine, a Bioactive Protoberberine Alkaloid Isolated from Berberis Cretica, Inhibits the Growth of Human Es-trogen Receptor-Positive Breast Cancer Cells and Acts Synergistically and Additively with Doxorubicin. Molecules (Basel, Switzerland), 26, Article 6253. https://doi.org/10.3390/molecules26206253 |
[54] |
Liu, X.Y., Wang, Y.M., Zhang, X.Y., et al. (2022) Alkaloid De-rivative (Z)-3β-Ethylamino-Pregn-17(20)-En Inhibits Triple-Negative Breast Cancer Metastasis and Angiogenesis by Targeting HSP90α. Molecules (Basel, Switzerland), 27, Article 7132. https://doi.org/10.3390/molecules27207132 |
[55] |
Zhao, W., Zheng, X.D., Tang, P.Y, Z., et al. (2023) Advances of Antitumor Drug Discovery in Traditional Chinese Medicine and Natural Active Products by Using Multi-Active Com-ponents Combination. Medicinal Research Reviews, 43, 1778-1808. https://doi.org/10.1002/med.21963 |
[56] |
Thomas, C.J., Rahier, N.J. and Hecht, S.M. (2004) Camptothecin: Current Perspectives. Bioorganic & Medicinal Chemistry, 12, 1585-1604. https://doi.org/10.1016/j.bmc.2003.11.036 |
[57] |
Wang, Y.L., Wu, W., Su, Y.N., et al. (2020) Buxus Alkaloid Compound Destabilizes Mutant P53 through Inhibition of the HSF1 Chaperone Axis. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 68, Article 153187. https://doi.org/10.1016/j.phymed.2020.153187 |
[58] |
Huang, M. and Xin, W. (2018) Matrine Inhibiting Pancreatic Cells Epithelial-Mesenchymal Transition and Invasion through ROS/NF-κB/MMPs Pathway. Life Sciences, 192, 55-61. https://doi.org/10.1016/j.lfs.2017.11.024 |
[59] |
Luo, D., Dai, X., Tian, H., et al. (2023) Sophflarine A, a Novel Matrine-Derived Alkaloid from Sophora flavescens with Therapeutic Potential for Non-Small Cell Lung Cancer through ROS-Mediated Pyroptosis and Autophagy. Phytomedicine, 116, Article 154909. https://doi.org/10.1016/j.phymed.2023.154909 |
[60] |
Abe, A. and Kokuba, H. (2013) Harmol Induces Autophagy and Subsequent Apoptosis in U251MG Human Glioma Cells through the Downregulation of Survivin. Oncology Re-ports, 29, 1333-1342. https://doi.org/10.3892/or.2013.2242 |
[61] |
Wang, X.D., Li, C.Y., Jiang, M.M., et al. (2016) Induction of Apoptosis in Human Leukemia Cells through an Intrinsic Pathway by Cathachunine, a Unique Alkaloid Isolated from Catharanthus roseus. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 23, 641-653. https://doi.org/10.1016/j.phymed.2016.03.003 |
[62] |
Withers, S.T. and Keasling, J.D. (2007) Biosynthesis and Engineering of Isoprenoid Small Molecules. Applied Microbiology and Biotechnology, 73, 980-990. https://doi.org/10.1007/s00253-006-0593-1 |
[63] |
Kim, S.J. and Kim, A.K. (2015) Anti-Breast Cancer Activity of Fine Black Ginseng (Panax ginseng Meyer) and Ginsenoside Rg5. Journal of Ginseng Research, 39, 125-134. https://doi.org/10.1016/j.jgr.2014.09.003 |
[64] |
Lan, T., Wang, L., Xu, Q., et al. (2013) Growth Inhibitory Effect of Cucurbitacin E on Breast Cancer Cells. International Journal of Clinical and Experimental Pathology, 6, 1799-1805. |
[65] |
Cho, M., So, I., Chun, J.N., et al. (2016) The Antitumor Effects of Geraniol: Modulation of Cancer Hallmark Pathways (Review). International Journal of Oncology, 48, 1772-1782. https://doi.org/10.3892/ijo.2016.3427 |
[66] |
Lu, Q., Chen, W., Ji, Y., et al. (2022) Ursolic Acid Enhances Cytotoxi-city of Doxorubicin-Resistant Triple-Negative Breast Cancer Cells via ZEB1-AS1/miR-186-5p/ABCC1 Axis. Cancer Bi-otherapy & Radiopharmaceuticals, 37, 673-683. https://doi.org/10.1089/cbr.2020.4147 |
[67] |
Eelen, G., Treps, L., Li, X., et al. (2020) Basic and Therapeutic Aspects of Angiogenesis Updated. Circulation Research, 127, 310-329. https://doi.org/10.1161/CIRCRESAHA.120.316851 |
[68] |
Teleanu, R.I., Chircov, C., Grumezescu, A.M., et al. (2019) Tumor Angiogenesis and Anti-Angiogenic Strategies for Cancer Treatment. Journal of Clinical Medicine, 9, Arti-cle 84. https://doi.org/10.3390/jcm9010084 |
[69] |
Ribatti, D., Nico, B., Ruggieri, S., et al. (2016) Angiogenesis and Antiangiogenesis in Triple-Negative Breast Cancer. Translational Oncology, 9, 453-457. https://doi.org/10.1016/j.tranon.2016.07.002 |
[70] |
Rao, Q., Yu, H., Li, R., et al. (2023) Dihydroartemisinin Inhibits Angiogenesis in Breast Cancer via Regulating VEGF and MMP-2/-9. Fundamental & Clinical Pharmacology, 509, 321-233. https://doi.org/10.1111/fcp.12941 |
[71] |
Gonzalez-Angulo, A.M., Morales-Vasquez, F. and Hortobagyi, G.N. (2007) Overview of Resistance to Systemic Therapy in Patients with Breast Cancer. In: Yu, D. and Hung, M.C., Eds., Advances in Experimental Medicine and Biology, Vol. 608, Springer, New York, 1-22. https://doi.org/10.1007/978-0-387-74039-3_1 |
[72] |
Zhai, Z., Qu, X., Li, H., et al. (2015) Inhibition of MDA-MB-231 Breast Cancer Cell Migration and Invasion Activity by Andrographolide via Suppression of Nuclear Factor-κB-Dependent Matrix Metalloproteinase-9 Expression. Molecular Medicine Reports, 11, 1139-1145. https://doi.org/10.3892/mmr.2014.2872 |
[73] |
Rabi, T. and Bishayee, A. (2009) Terpenoids and Breast Cancer Chemoprevention. Breast Cancer Research and Treatment, 115, 223-239. https://doi.org/10.1007/s10549-008-0118-y |
[74] |
Giovannucci, E. (1999) Tomatoes, Tomato-Based Products, Ly-copene, and Cancer: Review of the Epidemiologic Literature. Journal of the National Cancer Institute, 91, 317-331. https://doi.org/10.1093/jnci/91.4.317 |
[75] |
Giovannucci, E., Rimm, E.B., Liu, Y., et al. (2002) A Prospective Study of Tomato Products, Lycopene, and Prostate Cancer Risk. Journal of the National Cancer Institute, 94, 391-398. https://doi.org/10.1093/jnci/94.5.391 |
[76] |
Trejo-Solis, C., Pedraza-Chaverri, J., Torres-Ramos, M., et al. (2013) Multiple Molecular and Cellular Mechanisms of Action of Lycopene in Cancer Inhibition. Evidence-Based Complemen-tary and Alternative Medicine, 2013, Article ID: 705121. https://doi.org/10.1155/2013/705121 |
[77] |
Luo, H., Vong, C.T., Chen, H., et al. (2019) Naturally Occurring Anti-Cancer Compounds: Shining from Chinese Herbal Medicine. Chinese Medicine, 14, Article No. 48. https://doi.org/10.1186/s13020-019-0270-9 |