[1] |
Wang, G., Zhang, L. and Zhang, J. (2012) A Review of Electrode Materials for Electrochemical Supercapacitors. Chemical Society Reviews, 41, 797-828. https://doi.org/10.1039/C1CS15060J |
[2] |
Scibioh, M.A. and Viswanathan, B. (2020) Supercapacitor: An Introduction. In: Scibioh, M.A. and Viswanathan, B., Eds., Materials for Supercapacitor Applications, Elsevier, Amsterdam, 1-13. https://doi.org/10.1016/B978-0-12-819858-2.00001-9 |
[3] |
程友良, 丁瑞, 毛绍宽, 等. 不同铂碳比下PEMFC梯度阴极催化层性能数值模拟[J/OL]. 太阳能学报: 1-8. https://doi.org/10.19912/j.0254-0096.tynxb.2023-1173, 2024-01-27. |
[4] |
Kim, E., Kim, S., Choi, Y.M., et al. (2020) Ultrathin Hematite on Mesoporous WO3 from Atomic Layer Deposition for Minimal Charge Recombi-nation. ACS Sustainable Chemistry & Engineering, 8, 11358-11367. https://doi.org/10.1021/acssuschemeng.0c03579 |
[5] |
González, A., Goikolea, E., Barrena, J.A., et al. (2016) Review on Supercapacitors: Technologies and Materials. Renewable and Sustainable Energy Reviews, 58, 1189-1206. https://doi.org/10.1016/j.rser.2015.12.249 |
[6] |
Najib, S. and Erdem, E. (2019) Current Progress Achieved in Novel Materials for Supercapacitor Electrodes: Mini Review. Nanoscale Advances, 1, 2817-2827. https://doi.org/10.1039/C9NA00345B |
[7] |
Xin, L. and Wei, B. (2012) Supercapacitors Based on Nanostruc-tured Carbon. Nano Energy, 2, 159-173. https://doi.org/10.1016/j.nanoen.2012.09.008 |
[8] |
Huang, Y., Yang, H., Xiong, T., et al. (2019) Adsorption Energy Engineering of Nickel Oxide Hybrid Nanosheets for High Areal Capacity Flexible Lithium-Ion Batteries. Energy Storage Materials, 25, 41-51. https://doi.org/10.1016/j.ensm.2019.11.001 |
[9] |
Xiong, T., Su, H., Yang, F., et al. (2020) Harmonizing Self-Supportive VN/MoS2 Pseudocapacitance Core-Shell Electrodes for Boosting the Areal Capacity of Lithium Storage. Materials Today Energy, 17, Article ID: 100461. https://doi.org/10.1016/j.mtener.2020.100461 |
[10] |
Dai, J., Fu, K., Palanisamy, R., et al. (2017) A Solid State Energy Storage Device with Supercapacitor—Battery Hybrid Design. Journal of Materials Chemistry A, 5, 15266-15272. https://doi.org/10.1039/C7TA02638B |
[11] |
Dubal, D.P., Ayyad, O., Ruiz, V., et al. (2015) Hy-brid Energy Storage: The Merging of Battery and Supercapacitor Chemistries. Chemical Society Reviews, 44, 1777-1790. https://doi.org/10.1039/C4CS00266K |
[12] |
石文明, 刘意华, 吕湘连, 等. 超级电容器材料及应用研究进展[J]. 微纳电子技术, 2022, 59(11): 1105-1118. |
[13] |
Zhu, Q., Zhao, D., Cheng, M., Zhou, J., Owusu, K.A., Mai, L. and Yu, Y. (2019) A New View of Supercapacitors: Integrated Supercapacitors. Advanced Energy Materials, 9, 1901081. https://doi.org/10.1002/aenm.201901081 |
[14] |
Li, K.S., Lu, X.Y., Zhang, Y., et al. (2020) Bi3TaO7/Ti3C2 Heterojunctions for Enhanced Photocatalytic Removal of Water-Borne Contaminants. Envi-ronmental Research, 185, Article ID: 109409. |
[15] |
Peigney, A., Laurent, C., Flahaut, E., et al. (2001) Specific Surface Area of Carbon Nanotubes and Bundles of Carbon Nanotubes. Carbon, 39, 507-514. https://doi.org/10.1016/S0008-6223(00)00155-X |
[16] |
Bosca, A., Pedros, J., Martinez, J., et al. (2015) Method for Extracting Relevant Electrical Parameters from Graphene Field-Effect Transistors Using a Physical Model. Journal of Applied Physics, 117, Article ID: 044504. https://doi.org/10.1063/1.4906972 |
[17] |
Chen, S., Sun, Z.M. and Feng, L. (2016) Strain Engineering of Gra-phene: A Review. Nanoscale, 8, 3207-3217. https://doi.org/10.1039/C5NR07755A |
[18] |
Liu, Y., Wen, S.Y. and Shi, W.D. (2018) Co3S4 Nanoneedles Decorated on NiCo2O4 Nanosheets for High-Performance Asymmetric Supercapacitors. Materials Letters, 214, 194-197. https://doi.org/10.1016/j.matlet.2017.12.014 |
[19] |
Li, L., Peng, S., Cheah, Y., et al. (2013) Electro-spun Porous NiCo2O4 Nanotubes as Advanced Electrodes for Electrochemical Capacitors. Chemistry: A European Journal, 19, 5892-5898. https://doi.org/10.1002/chem.201204153 |
[20] |
Zhang, H., Li, H., Wang, H., et al. (2015) NiCo2O4/N-Doped Graphene as an Advanced Electrocatalyst for Oxygen Reduction Reaction. Journal of Power Sources, 280, 640-648. https://doi.org/10.1016/j.jpowsour.2015.01.147 |
[21] |
Yuan, C., Li, J., Hou, L., et al. (2012) Ultrathin Mesoporous NiCo2O4 Nanosheets Supported on Ni Foamas Advanced Electrodes for Su-percapacitors. Advanced Functional Materials, 22, 4592-4597. https://doi.org/10.1002/adfm.201200994 |
[22] |
Lei, Y., Li, J., Wang, Y., et al. (2014) Rapid Micro-wave-Assisted Green Synthesis of 3D Hierarchical Flower-Shaped NiCo2O4 Microsphere for High-Performance Supercapacitor. ACS Applied Materials and Interfaces, 6, 1773-1780. https://doi.org/10.1021/am404765y |
[23] |
Wang, Y., Hu, X., Li, W., et al. (2020) Preparation of Boron Nitrogen Co-Doped Carbon Quantum Dots for Rapid Detection of Cr(VI). Spectrochimica Acta Part A: Molecular and Bi-omolecular Spectroscopy, 243, Article ID: 118807. https://doi.org/10.1016/j.saa.2020.118807 |
[24] |
Wang, Y., et al. (2015) Facile Microwave-Assisted Solid-Phase Synthesis of Highly Fluorescent Nitrogen-Sulfur-Codoped Carbon Quantum Dots for Cellular Imaging Applications. Chemistry: A European Journal, 21, 13004-13011. https://doi.org/10.1002/chem.201501723 |
[25] |
Sahu, S., Behera, B., Maiti, T.K., et al. (2012) Simple One-Step Synthesis of Highly Luminescent Carbon Dots from Orange Juice: Application as Excellent Bio-Imaging Agents. Chemical Communications, 48, 8835-8837. https://doi.org/10.1039/c2cc33796g |
[26] |
Mehta, V.N., Jha, S. and Kailasa, S.K. (2014) One-Pot Green Syn-thesis of Carbon Dots by Using Saccharum officinarum Juice for Fluorescent Imaging of Bacteria (Escherichia coli) and Yeast (Saccharomyces cerevisiae) Cells. Materials Science & Engineering C, 38, 20-27. https://doi.org/10.1016/j.msec.2014.01.038 |
[27] |
Zhang, Z., Hao, J., Zhang, J., et al. (2012) Protein as the Source for Synthesizing Fluorescent Carbon Dots by a One-Pot Hydrothermal Route. RSC Advances, 2, 8599-8601. https://doi.org/10.1039/c2ra21217j |
[28] |
Tang, Q., Zhu, W., He, B., et al. (2017) Rapid Conversion from Carbohydrates to Large-Scale Carbon Quantum Dots for All-Weather Solar Cells. ACS Nano, 11, 1540-1547. https://doi.org/10.1021/acsnano.6b06867 |
[29] |
Fan, G., Wang, H., Xiang, X., et al. (2013) Co-Al Mixed Metal Oxides/Carbon Nanotubes Nanocomposite Prepared via a Precursor Route and Enhanced Catalytic Property. Journal of Solid State Chemistry, 197, 14-22. https://doi.org/10.1016/j.jssc.2012.08.016 |
[30] |
Wang, Y., Yang, W. and Yang, J. (2007) A Co-Al Layered Double Hydroxides Nanosheets Thin-Film Electrode: Fabrication and Electrochemical Study. Electrochemical and Solid State Letters, 10, A233. https://doi.org/10.1149/1.2768166 |
[31] |
Ansaldo, A., Bondavalli, P., Bellani, S., et al. (2017) High‐Power Graphene-Carbon Nanotube Hybrid Supercapacitors. ChemNanoMat, 3, 436-446. https://doi.org/10.1002/cnma.201700093 |
[32] |
覃奇贤, 刘淑兰. 电极的极化和极化曲线(I)——电极的极化[J]. 电镀与精饰, 2008, 30(6): 28-30. |
[33] |
Hosseini, M.G., et al. (2016) Synthesis, Characterization and Electro-chemical Study of Graphene Oxide-Multi Walled Carbon Nanotube-Manganese Oxide-Polyaniline Electrode as Supercapacitor. Journal of Materials Science & Technology, 32, 763-773. https://doi.org/10.1016/j.jmst.2016.05.008 |
[34] |
王文聪. 层状双金属氢氧化物超级电容器电极材料的制备和电化学性能研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2019. |
[35] |
Ajami, N. (2020) PANOA/MnO2/MWCNT Nanocomposite: Synthesis, Characterization, and Electrochemical Performance as Efficient Electrode Materials for Supercapacitors. Journal of Macromolecular Science: Pure & Applied Chemistry, 57, 1-8. https://doi.org/10.1080/10601325.2018.1559697 |
[36] |
Chen, S., Zhao, L., Wei, W., et al. (2020) A Novel Strategy to Synthesize NiCo Layered Double Hydroxide Nanotube from Metal Organic Framework Composite for High-Performance Supercapacitor. Journal of Alloys and Compounds, 831, Article ID: 154794. https://doi.org/10.1016/j.jallcom.2020.154794 |