[1] |
Guo, X., Zhang, J., Shang, J., Cheng, Y., Tian, S. and Yao, Y. (2023) Human Leukocyte Antigen-G in Gynaecological Tumours. International Journal of Immunogenetics, 50, 163-176. https://doi.org/10.1111/iji.12626 |
[2] |
Shi, X., Wang, J., Lei, Y., Cong, C., Tan, D. and Zhou, X. (2019) Research Progress on the PI3K/AKT Signaling Pathway in Gynecological Cancer (Review). Molecular Medicine Reports, 19, 4529-4535. https://doi.org/10.3892/mmr.2019.10121 |
[3] |
Dibble, C.C. and Cantley, L.C. (2015) Regulation of mTORC1 by PI3K Signaling. Trends in Cell Biology, 25, 545-555. https://doi.org/10.1016/j.tcb.2015.06.002 |
[4] |
Diaz-Padilla, I., et al. (2012) Biologic Rationale and Clinical Activity of mTOR Inhibitors in Gynecological Cancer. Cancer Treatment Reviews, 38, 767-775. https://doi.org/10.1016/j.ctrv.2012.02.001 |
[5] |
Osaki, M., Oshimura, M. and Ito, H. (2004) PI3K-Akt Pathway: Its Functions and Alterations in Human Cancer. Apoptosis, 9, 667-676. https://doi.org/10.1023/B:APPT.0000045801.15585.dd |
[6] |
Passirani, C., Vessières, A., La Regina, G., Link, W. and Silvestri, R. (2022) Modulating Undruggable Targets to Overcome Cancer Therapy Resistance. Drug Resistance Updates, 60, Article ID: 100788. https://doi.org/10.1016/j.drup.2021.100788 |
[7] |
Mayer, I.A. and Arteaga, C.L. (2016) The PI3K/AKT Pathway as a Target for Cancer Treatment. Annual Review of Medicine, 67, 11-28. https://doi.org/10.1146/annurev-med-062913-051343 |
[8] |
Margaria, J.P., Ratto, E., Gozzelino, L., Li, H. and Hirsch, E. (2019) Class II PI3Ks at the Intersection between Signal Transduction and Membrane Trafficking. Biomole-cules, 9, Article No. 104. https://doi.org/10.3390/biom9030104 |
[9] |
Li, Q., Li, Z., Luo, T. and Shi, H. (2022) Tar-geting the PI3K/AKT/mTOR and RAF/MEK/ERK Pathways for Cancer Therapy. Molecular Biomedicine, 3, Article No. 47. https://doi.org/10.1186/s43556-022-00110-2 |
[10] |
Fergusson, A.D., Zhang, R., Riffle, J.S. and Davis, R.M. (2023) Encapsulation of PI3K Inhibitor LY294002 within Polymer Nanoparticles Using Ion Pairing Flash Nanoprecipi-tation. Pharmaceutics, 15, Article No. 1157. https://doi.org/10.3390/pharmaceutics15041157 |
[11] |
Lenz, G., Hawkes, E., Verhoef, G., Haioun, C., Thye Lim, S., Seog Heo, D., et al. (2020) Single-Agent Activity of Phosphatidylinositol 3-Kinase Inhibition with Copanlisib in Patients with Molecularly Defined Relapsed or Refractory Diffuse Large B-Cell Lymphoma. Leukemia, 34, 2184-2197. https://doi.org/10.1038/s41375-020-0743-y |
[12] |
Savas, P., Lo, L.L., Luen, S.J., Blackley, E.F., Callahan, J., Moodie, K., et al. (2022) Alpelisib Monotherapy for PI3K-Altered, Pretreated Advanced Breast Cancer: A Phase II Study. Cancer Discovery, 12, 2058-2073. |
[13] |
Jones, R.H., Casbard, A., Carucci, M., Cox, C., Butler, R., Alchami, F., et al. (2020) Fulvestrant plus Capivasertib versus Placebo after Relapse or Progression on an Aromatase Inhibitor in Metastatic, Oestrogen Receptor-Positive Breast Cancer (FAKTION): A Multicentre, Randomised, Controlled, Phase 2 Trial. The Lancet Oncology, 21, 345-357. https://doi.org/10.1016/S1470-2045(19)30817-4 |
[14] |
Sidaway, P. (2023) Capivasertib Delays Disease Progression. Nature Reviews Clinical Oncology, 20, 579. https://doi.org/10.1038/s41571-023-00790-x |
[15] |
Sorolla, M.A., Parisi, E. and Sorolla, A. (2020) Determinants of Sensitivity to Radiotherapy in Endometrial Cancer. Cancers (Basel), 12, Article No. 1906. https://doi.org/10.3390/cancers12071906 |
[16] |
Xie, P., et al. (2019) TRAF4 Promotes Endometrial Cancer Cell Growth and Migration by Activation of PI3K/AKT/ Oct4 Signaling. Experimental and Molecular Pathology, 108, 9-16. https://doi.org/10.1016/j.yexmp.2019.03.003 |
[17] |
Liao, J., Chen, H., Qi, M., Wang, J. and Wang, M. (2022) MLLT11-TRIL Complex Promotes the Progression of Endometrial Cancer through PI3K/AKT/mTOR Signaling Path-way. Cancer Biology & Therapy, 23, 211-224. https://doi.org/10.1080/15384047.2022.2046450 |
[18] |
Hirai, H., Sootome, H., Nakatsuru, Y., Miyama, K., Taguchi, S., Tsujioka, K., et al. (2010) MK-2206, an Allosteric Akt Inhibitor, Enhances Antitumor Efficacy by Standard Chemo-therapeutic Agents or Molecular Targeted Drugs in Vitro and in Vivo. Molecular Cancer Therapeutics, 9, 1956-1967. https://doi.org/10.1158/1535-7163.MCT-09-1012 |
[19] |
Che, Y., Li, Y., Zheng, F., et al. (2019) TRIP4 Promotes Tumor Growth and Metastasis and Regulates Radiosensitivity of Cervical Cancer by Activating MAPK, PI3K/AKT, and hTERT Signaling. Cancer Letters, 28, 1-13. https://doi.org/10.1016/j.canlet.2019.03.017 |
[20] |
Yap, T.A., Garrett, M.D., Walton, M.I., Raynaud, F., de Bono, J.S. and Workman, P. (2008) Targeting the PI3K-AKT- mTOR Pathway: Progress, Pitfalls, and Promises. Current Opinion in Pharmacology, 8, 393-412. https://doi.org/10.1016/j.coph.2008.08.004 |
[21] |
Aoki, M. and Fujishita, T. (2017) Oncogenic Roles of the PI3K/AKT/mTOR Axis. Current Topics in Microbiology and Immunology, 407, 153-189. https://doi.org/10.1007/82_2017_6 |
[22] |
Cheaib, B., Auguste, A. and Leary, A. (2015) The PI3K/Akt/mTOR Pathway in Ovarian Cancer: Therapeutic Opportunities and Challenges. Chinese Journal of Cancer, 34, 4-16. https://doi.org/10.5732/cjc.014.10289 |
[23] |
Ediriweera, M.K., Tennekoon, K.H. and Samarakoon, S.R. (2019) Role of the PI3K/AKT/mTOR Signaling Pathway in Ovarian Cancer: Biological and Therapeutic Significance. Seminars in Cancer Biology, 59, 147-160. https://doi.org/10.1016/j.semcancer.2019.05.012 |
[24] |
van der Ploeg, P., Uittenboogaard, A., Thijs, A.M.J., West-geest, H.M., Boere, I.A., Lambrechts, S., van de Stolpe, A., Bekkers, R.L.M. and Piek, J.M.J. (2021) The Effectiveness of Monotherapy with PI3K/AKT/mTOR Pathway Inhibitors in Ovarian Cancer: A Meta-Analysis. Gynecologic Oncolo-gy, 163, 433-444. https://doi.org/10.1016/j.ygyno.2021.07.008 |
[25] |
Chu, X., Lou, J., Yi, Y., Zhong, L. and Huang, O. (2023) Knockdown of ARHGAP30 Inhibits Ovarian Cancer Cell Proliferation, Migration, and Invasiveness by Suppressing the PI3K/AKT/mTOR Signaling Pathway. European Journal of Histochemistry, 67, 3653. https://doi.org/10.4081/ejh.2023.3653 |
[26] |
Mak, V.C., Wong, O.G., Siu, M.K., Wong, E.S., Ng, W.Y., Wong, R.W., Chan, K.K., Ngan, H.Y. and Cheung, A.N. (2015) FBI-1 Is Overexpressed in Gestational Trophoblastic Disease and Promotes Tumor Growth and Cell Aggressiveness of Choriocarcinoma via PI3K/Akt Signaling. The American Journal of Pathology, 185, 2038-2048. https://doi.org/10.1016/j.ajpath.2015.03.011 |
[27] |
Shih, I.M. (2007) Gestational Trophoblastic Neo-plasia—Pathogenesis and Potential Therapeutic Targets. The Lancet Oncology, 8, 642-650. https://doi.org/10.1016/S1470-2045(07)70204-8 |