[1] |
Cao, W., Chen, H.D., Yu, Y.W., et al. (2021) Changing Profiles of Cancer Burden Worldwide and in China: A Second-ary Analysis of the Global Cancer Statistics 2020. Chinese Medical Journal (England), 134, 783-791. https://doi.org/10.1097/CM9.0000000000001474 |
[2] |
Valentini, V., Glimelius, B., Haustermans, K., et al. (2014) EURECCA Consensus Conference Highlights about Rectal Cancer Clinical Management: The Radiation Oncologist’s Expert Review. Radiotherapy and Oncology, 110, 195-198. https://doi.org/10.1016/j.radonc.2013.10.024 |
[3] |
Fujita, S., Mizusawa, J., Kanemitsu, Y., et al. (2017) Mesorectal Excision with or without Lateral Lymph Node Dissection for Clinical Stage II/III Lower Rectal Cancer (JCOG0212): A Multicenter, Randomized Controlled, Noninferiority Trial. Annals of Surgery, 266, 201-207. https://doi.org/10.1097/SLA.0000000000002212 |
[4] |
Biller, L.H. and Schrag, D. (2021) Diagnosis and Treatment of Metastatic Colorectal Cancer: A Review. JAMA, 325, 669-685. https://doi.org/10.1001/jama.2021.0106 |
[5] |
Zhou, J., Ji, Q. and Li, Q. (2021) Resistance to Anti-EGFR Therapies in Metastatic Colorectal Cancer: Underlying Mechanisms and Reversal Strategies. Journal of Experimental & Clinical Cancer Research, 40, Article No. 328. https://doi.org/10.1186/s13046-021-02130-2 |
[6] |
Herreros-Villanueva, M., Chen, C.C., Yuan, S.S., et al. (2014) KRAS Mutations: Analytical Considerations. Clinica Chimica Acta, 431, 211-220. https://doi.org/10.1016/j.cca.2014.01.049 |
[7] |
Lambin, P., Rios-Velazquez, E., Leijenaar, R., et al. (2012) Radi-omics: Extracting More Information from Medical Images Using Advanced Feature Analysis. European Journal of Cancer, 48, 441-446. https://doi.org/10.1016/j.ejca.2011.11.036 |
[8] |
Engin, G., Sharifov, R., Gural, Z., et al. (2012) Can Diffu-sion-Weighted MRI Determine Complete Responders after Neoadjuvant Chemoradiation for Locally Advanced Rectal Cancer? Diagnostic and Interventional Radiology, 18, 574-581. https://doi.org/10.4261/1305-3825.DIR.5755-12.1 |
[9] |
Aerts, H.J., Grossmann, P., Tan, Y., et al. (2016) Defining a Radiomic Response Phenotype: A Pilot Study Using Targeted Therapy in NSCLC. Scientific Reports, 6, Article No. 33860. https://doi.org/10.1038/srep33860 |
[10] |
Litjens, G., Kooi, T., Bejnordi, B.E., et al. (2017) A Survey on Deep Learning in Medical Image Analysis. Medical Image Analysis, 42, 60-88. https://doi.org/10.1016/j.media.2017.07.005 |
[11] |
Zhang, Q., Yang, L.T., Chen, Z., et al. (2018) A Survey on Deep Learning for Big Data. Information Fusion, 42, 146-157. https://doi.org/10.1016/j.inffus.2017.10.006 |
[12] |
Roth, A.D., Tejpar, S., Delorenzi, M., et al. (2010) Prognostic Role of KRAS and BRAF in Stage II and III Resected Colon Cancer: Results of the Translational Study on the PETACC-3, EORTC 40993, SAKK 60-00 Trial. Journal of Clinical Oncology, 28, 466-474. https://doi.org/10.1200/JCO.2009.23.3452 |
[13] |
Dienstmann, R., Connor, K., Byrne, A.T., et al. (2020) Precision Therapy in RAS Mutant Colorectal Cancer. Gastroenterology, 158, 806-811. https://doi.org/10.1053/j.gastro.2019.12.051 |
[14] |
Imamura, Y., Morikawa, T., Liao, X., et al. (2012) Specific Mu-tations in KRAS Codons 12 and 13, and Patient Prognosis in 1075 BRAF Wild-Type Colorectal Cancers. Clinical Can-cer Research, 18, 4753-4763. https://doi.org/10.1158/1078-0432.CCR-11-3210 |
[15] |
Jones, R.P., Sutton, P.A., Evans, J.P., et al. (2017) Specific Mutations in KRAS Codon 12 Are Associated with Worse Overall Survival in Patients with Advanced and Recurrent Colorectal Cancer. British Journal of Cancer, 116, 923-929. https://doi.org/10.1038/bjc.2017.37 |
[16] |
Di Fiore, F., Charbonnier, F., Lefebure, B., et al. (2008) Clinical Interest of KRAS Mutation Detection in Blood for Anti-EGFR Therapies in Metastatic Colorectal Cancer. British Journal of Cancer, 99, 551-552. https://doi.org/10.1038/sj.bjc.6604451 |
[17] |
Marisa, L., De Reynies, A., Duval, A., et al. (2013) Gene Expression Classification of Colon Cancer into Molecular Subtypes: Characterization, Validation, and Prognostic Value. PLOS Med-icine, 10, e1001453. https://doi.org/10.1371/journal.pmed.1001453 |
[18] |
Pershad, Y., Govindan, S., Hara, A.K., et al. (2017) Using Naive Bayesian Analysis to Determine Imaging Characteristics of KRAS Mutations in Metastatic Colon Cancer. Diag-nostics (Basel), 7, Article No. 50. https://doi.org/10.3390/diagnostics7030050 |
[19] |
Xu, Y., Xu, Q., Sun, H., et al. (2018) Could IVIM and ADC Help in Predicting the KRAS Status in Patients with Rectal Cancer? European Radiology, 28, 3059-3065. https://doi.org/10.1007/s00330-018-5329-y |
[20] |
Jo, S.J. and Kim, S.H. (2019) Association between Oncogenic RAS Mutation and Radiologic-Pathologic Findings in Patients with Primary Rectal Cancer. Quantitative Imaging in Medicine and Surgery, 9, 238-246. https://doi.org/10.21037/qims.2018.12.10 |
[21] |
Gultekin, M.A., Turk, H.M., Besiroglu, M., et al. (2020) Relation-ship between KRAS Mutation and Diffusion Weighted Imaging in Colorectal Liver Metastases; Preliminary Study. Eu-ropean Journal of Radiology, 125, Article No. 108895. https://doi.org/10.1016/j.ejrad.2020.108895 |
[22] |
Song, C., Shen, B., Dong, Z., et al. (2020) Diameter of Superior Rectal Vein-CT Predictor of KRAS Mutation in Rectal Carcinoma. Cancer Management and Research, 12, 10919-10928. https://doi.org/10.2147/CMAR.S270727 |
[23] |
Promsorn, J., Chadbunchachai, P., Somsap, K., et al. (2021) Imaging Features Associated with Survival Outcomes among Colorectal Cancer Patients with and without KRAS Mutation. Egyptian Journal of Radiology and Nuclear Medicine, 52, Article No. 15. https://doi.org/10.1186/s43055-020-00393-x |
[24] |
Lv, Y., Wang, X., Liang, L., et al. (2019) SUVmax and Metabolic Tumor Volume: Surrogate Image Biomarkers of KRAS Mutation Status in Colorectal Cancer. OncoTargets and Therapy, 12, 2115-2121. https://doi.org/10.2147/OTT.S196725 |
[25] |
Arslan, E., Aksoy, T., Gursu, R.U., et al. (2020) The Prognostic Value of (18)F-FDG PET/CT and KRAS Mutation in Colorectal Cancers. Molecular Imaging and Radionuclide Therapy, 29, 17-24. https://doi.org/10.4274/mirt.galenos.2019.33866 |
[26] |
He, P., Zou, Y., Qiu, J., et al. (2021) Pretreatment (18)F-FDG PET/CT Imaging Predicts the KRAS/NRAS/BRAF Gene Mutational Status in Colorectal Cancer. Journal of Oncology, 2021, Article ID: 6687291. https://doi.org/10.1155/2021/6687291 |
[27] |
Liu, X., Wang, S.C., Ni, M., et al. (2022) Correlation between (18)F-FDG PET/CT Intra-Tumor Metabolic Heterogeneity Parameters and KRAS Mutation in Colorectal Cancer. Ab-dominal Radiology (NY), 47, 1255-1264. https://doi.org/10.1007/s00261-022-03432-5 |
[28] |
Song, K., Zhao, Z., Ma, Y., et al. (2022) A Multitask Du-al-Stream Attention Network for the Identification of KRAS Mutation in Colorectal Cancer. Medical Physics, 49, 254-270. https://doi.org/10.1002/mp.15361 |
[29] |
Taguchi, N., Oda, S., Yokota, Y., et al. (2019) CT Texture Analy-sis for the Prediction of KRAS Mutation Status in Colorectal Cancer via a Machine Learning Approach. European Jour-nal of Radiology, 118, 38-43. https://doi.org/10.1016/j.ejrad.2019.06.028 |
[30] |
Wu, X., Li, Y., Chen, X., et al. (2020) Deep Learning Features Improve the Performance of a Radiomics Signature for Predicting KRAS Status in Patients with Colorectal Cancer. Aca-demic Radiology, 27, e254-e262. https://doi.org/10.1016/j.acra.2019.12.007 |
[31] |
Jiricny, J. (2006) The Multifaceted Mismatch-Repair System. Na-ture Reviews Molecular Cell Biology, 7, 335-346. https://doi.org/10.1038/nrm1907 |
[32] |
Bao, X., Zhang, H., Wu, W., et al. (2020) Analysis of the Molecular Nature Associated with Microsatellite Status in Colon Cancer Identifies Clinical Implications for Immunotherapy. The Journal for ImmunoTherapy of Cancer, 8, e001437. https://doi.org/10.1136/jitc-2020-001437 |
[33] |
De’Angelis, G.L., Bottarelli, L., Azzoni, C., et al. (2018) Microsatel-lite Instability in Colorectal Cancer. Acta Biomedica, 89, 97-101. |
[34] |
Mei, W.J., Mi, M., Qian, J., et al. (2022) Clinico-pathological Characteristics of High Microsatellite Instability/Mismatch Repair-Deficient Colorectal Cancer: A Narrative Review. Frontiers in Immunology, 13, Article ID: 1019582. https://doi.org/10.3389/fimmu.2022.1019582 |
[35] |
Cohen, R., Buhard, O., Cervera, P., et al. (2017) Clinical and Molecular Characterisation of Hereditary and Sporadic Metastatic Colorectal Cancers Harbouring Microsatellite Instabil-ity/DNA Mismatch Repair Deficiency. European Journal of Cancer, 86, 266-274. https://doi.org/10.1016/j.ejca.2017.09.022 |
[36] |
Luchini, C., Bibeau, F., Ligtenberg, M.J.L., et al. (2019) ESMO Recommendations on Microsatellite Instability Testing for Immunotherapy in Cancer, and Its Relationship with PD-1/PD-L1 Expression and Tumour Mutational Burden: A Systematic Review-Based Approach. Annals of Oncology, 30, 1232-1243. https://doi.org/10.1093/annonc/mdz116 |
[37] |
Bhargava, R. and Madabhushi, A. (2016) Emerging Themes in Image Informatics and Molecular Analysis for Digital Pathology. Annual Review of Biomedical Engineering, 18, 387-412. https://doi.org/10.1146/annurev-bioeng-112415-114722 |
[38] |
Kim, S., Lee, J.H., Park, E.J., et al. (2023) Prediction of Microsatellite Instability in Colorectal Cancer Using a Machine Learning Model Based on PET/CT Radiomics. Yonsei Medical Journal, 64, 320-326. https://doi.org/10.3349/ymj.2022.0548 |
[39] |
Chen, X., He, L., Li, Q., et al. (2023) Non-Invasive Prediction of Mi-crosatellite Instability in Colorectal Cancer by a Genetic Algorithm-Enhanced Artificial Neural Network-Based CT Ra-diomics Signature. European Radiology, 33, 11-22. https://doi.org/10.1007/s00330-022-08954-6 |
[40] |
Fan, S., Li, X., Cui, X., et al. (2019) Computed Tomogra-phy-Based Radiomic Features Could Potentially Predict Microsatellite Instability Status in Stage II Colorectal Cancer: A Preliminary Study. Academic Radiology, 26, 1633-1640. https://doi.org/10.1016/j.acra.2019.02.009 |
[41] |
Shi, R., Chen, W., Yang, B., et al. (2020) Prediction of KRAS, NRAS and BRAF Status in Colorectal Cancer Patients with Liver Metastasis Using a Deep Artificial Neural Network Based on Radiomics and Semantic Features. American Journal of Cancer Research, 10, 4513-4526. |
[42] |
Yang, L., Dong, D., Fang, M., et al. (2018) Can CT-Based Radiomics Signature Predict KRAS/NRAS/BRAF Mutations in Colo-rectal Cancer? European Radiology, 28, 2058-2067. https://doi.org/10.1007/s00330-017-5146-8 |