[1] |
Barbagallo, S., Cirelli, G.L., Consoli, S., et al. (2012) Analysis of Treated Wastewater Reuse Potential for Irrigation in Sicily. Water Science and Technology, 65, 2024-2033. https://doi.org/10.2166/wst.2012.102 |
[2] |
Sharma, R., Vymazal, J. and Malaviya, P. (2021) Application of Floating Treatment Wetlands for Stormwater Runoff: A Critical Re-view of the Recent Developments with Emphasis on Heavy Metals and Nutrient Removal. Science of the Total Environ-ment, 777, Article ID: 146044. https://doi.org/10.1016/j.scitotenv.2021.146044 |
[3] |
Ventura, D., Ferrante, M., Copat, C., et al. (2021) Metal Removal Processes in a Pilot Hybrid Constructed Wetland for the Treatment of Semi-Synthetic Stormwater. Science of the Total Environment, 754, Article ID: 142221. https://doi.org/10.1016/j.scitotenv.2020.142221 |
[4] |
Oyuela Leguizamo, M.A., Sarmiento, M.C.G., et al. (2017) Native Herbaceous Plant Species with Potential Use in Phytoremediation of Heavy Metals, Spotlight on Wetlands—A Review. Chemosphere, 168, 1230-1247. https://doi.org/10.1016/j.chemosphere.2016.10.075 |
[5] |
Knox, A.S., Paller, M.H., Seaman, J.C., et al. (2021) Re-moval, Distribution and Retention of Metals in a Constructed Wetland over 20 Years. Science of the Total Environment, 796, Article ID: 149062. https://doi.org/10.1016/j.scitotenv.2021.149062 |
[6] |
Zhang, Y., Li, Y., Wang, J., et al. (2021) Interactions of Chlorpyrifos Degradation and Cd Removal in Iron-Carbon-Based Constructed Wetlands for Treating Synthetic Farmland Wastewater. Journal of Environmental Management, 299, Article ID: 113559. https://doi.org/10.1016/j.jenvman.2021.113559 |
[7] |
Walaszek, M., Bois, P., Laurent, J., et al. (2018) Urban Stormwater Treatment by a Constructed Wetland: Seasonality Impacts on Hydraulic Efficiency, Physico-Chemical Be-havior and Heavy Metal Occurrence. Science of the Total Environment, 637-638, 443-454. https://doi.org/10.1016/j.scitotenv.2018.04.325 |
[8] |
戴保琳. 利用农作物秸秆强化人工湿地对降雨径流中氮及重金属去除的研究[D]: [硕士学位论文]. 南京: 东南大学, 2015. |
[9] |
赵慧, 崔保山, 白军红, 等. 纵向岭谷区高速公路对沿线土壤-植物系统的影响[J]. 科学通报, 2007, 52(A2): 176-184. |
[10] |
Rizzo, A., Tondera, K., et al. (2020) Constructed Wetlands for Combined Sewer Overflow Treatment: A State-of-the- Art Review. Science of the Total Envi-ronment, 727, Article ID: 138618. https://doi.org/10.1016/j.scitotenv.2020.138618 |
[11] |
王怀中. 饲料和猪粪中重金属含量特征及堆肥耐铅镉菌株的筛选鉴定[D]: [硕士学位论文]. 济南: 山东农业大学, 2019. |
[12] |
周德刚, 丁美方. 饲料安全风险因素分析及应对措施[J]. 饲料研究, 2008(11): 74-77. |
[13] |
付红波. 珠三角滩涂围垦农田土壤和农作物重金属污染特征与评价[D]: [硕士学位论文]. 广州: 暨南大学, 2009. |
[14] |
任华丽, 崔保山, 白军红, 等. 哈尼梯田湿地核心区水稻土重金属分布与潜在的生态风险[J]. 生态学报, 2008, 28(4): 1625-1634. |
[15] |
唐述虞. 铁矿酸性排水的人工湿地处理[J]. 环境工程, 1996, 14(4): 3-7. |
[16] |
苏丹. 湖泊湿地沉积物重金属时空变异特征与来源判别研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨师范大学, 2012. |
[17] |
Walaszek, M., Bois, P., Laurent, J., et al. (2018) Micropollutants Re-moval and Storage Efficiencies in Urban Stormwater Constructed Wetland. Science of the Total Environment, 645, 854-864. https://doi.org/10.1016/j.scitotenv.2018.07.156 |
[18] |
Nsenga, K.M., Zhu, B., Moore, M.T., et al. (2021) Can Vege-tated Drainage Ditches Be Effective in a Similar Way as Constructed Wetlands? Heavy Metal and Nutrient Standing Stock by Ditch Plant Species. Ecological Engineering, 166, Article ID: 106234. https://doi.org/10.1016/j.ecoleng.2021.106234 |
[19] |
孙保金, 庄起帆, 罗小进, 等. 苏州海绵城市试点区湿地沉积物中重金属的分布特征——以苏州工业园区为例[J]. 天津科技, 2020, 47(3): 62-68. |
[20] |
Shi, W., Li, T., Feng, Y., et al. (2022) Source Apportionment and Risk Assessment for Available Occurrence Forms of Heavy Metals in Dongdahe Wetland Sediments, Southwest of China. Science of the Total Environment, 815, Article ID: 152837. https://doi.org/10.1016/j.scitotenv.2021.152837 |
[21] |
张浩, 于先坤, 徐修平, 等. 基于XRD与SEM研究风淬渣微粉用于重金属污染土壤的修复机理[J]. 光谱学与光谱分析, 2021, 41(1): 278. |
[22] |
王茂林, 吴世军, 杨永强, 等. 微生物诱导碳酸盐沉淀及其在固定重金属领域的应用进展[J]. 环境科学研究, 2018, 31(2): 206-214. |
[23] |
夏银, 刘月迎, 王丽娟, 等. 蛭石对水中重金属离子的吸附性能[J]. 硅酸盐学报, 2022, 50(5): 1357-1363. |
[24] |
Elsayed, E.E. (2018) Natural Diatomite as an Effective Adsorbent for Heavy Metals in Water and Wastewater Treatment (a Batch Study). Water Science, 32, 32-43. https://doi.org/10.1016/j.wsj.2018.02.001 |
[25] |
王瑞刚. 人工湿地中强化吸附型填料筛选及其去污性能比较研究[D]: [硕士学位论文]. 杨凌: 西北农林科技大学, 2019. |
[26] |
Nguyen, T.T., Huang, H., Nguyen, T.A.H., et al. (2022) Recycling Clamshell as Substrate in Lab-Scale Constructed Wetlands for Heavy Metal Removal from Simulated Acid Mine Drainage. Process Safety and Environmental Protection, 165, 950-958. https://doi.org/10.1016/j.psep.2022.04.026 |
[27] |
Yinxiu L, Hui Z, Gary B, et al. (2019) Preliminary Study on the Dynamics of Heavy Metals in Saline Wastewater Treated in Constructed Wetland Mesocosms or Microcosms Filled with Porous Slag. Environmental Science and Pollution Research International, 26, 33804-33815. https://doi.org/10.1007/s11356-018-2486-0 |
[28] |
高素霞. 人工湿地基质配置对含Pb和Cd废水的处理效果研究[D]: [博士学位论文]. 兰州: 兰州交通大学, 2021. |
[29] |
Rai, P.K. (2019) Heavy Metals/Metalloids Remediation from Wastewater Using Free Floating Macrophytes of a Natural Wetland. Environmental Technology & Innovation, 15, Article ID: 100393. https://doi.org/10.1016/j.eti.2019.100393 |
[30] |
He, W., Xu, F.-L., Zhang, Y., et al. (2014) Chapter 7. Modeling the Purification Effects of the Constructed Sphagnum Wetland on Phosphorus and Heavy Metals in Dajiuhu Wetland Re-serve, China. In: Rgensen, S.E., Chang, N.-B. and Xu, F.-L., Eds., Developments in Environmental Modelling, Elsevier, Amsterdam, 185-207. https://doi.org/10.1016/B978-0-444-63249-4.00008-7 |
[31] |
Nabuyanda, M.M., Kelderman, P., Van Bruggen, J., et al. (2022) Distribution of the Heavy Metals Co, Cu, and Pb in Sediments and Typha spp. and Phragmites mauritianus in Three Zambian Wetlands. Journal of Environmental Management, 304, Article ID: 114133. https://doi.org/10.1016/j.jenvman.2021.114133 |
[32] |
Bhat, S.A., Bashir, O., Ul Haq, S.A., et al. (2022) Phytoreme-diation of Heavy Metals in Soil and Water: An Eco-Friendly, Sustainable and Multidisciplinary Approach. Chemosphere, 2022, Article ID: 134788. https://doi.org/10.1016/j.chemosphere.2022.134788 |
[33] |
Sharma, P., Pandey, A.K., Udayan, A., et al. (2021) Role of Microbial Community and Metal-Binding Proteins in Phytoremediation of Heavy Metals from Industrial Wastewater. Bioresource Technology, 326, Article ID: 124750. https://doi.org/10.1016/j.biortech.2021.124750 |
[34] |
Ullah, I., Mateen, A., Ahmad, M.A., et al. (2022) Heavy Metal ATPase Genes (HMAs) Expression Induced by Endophytic Bacteria, “AI001, and AI002” Mediate Cadmium Transloca-tion and Phytoremediation. Environmental Pollution, 293, Article ID: 118508. https://doi.org/10.1016/j.envpol.2021.118508 |
[35] |
Gavrilescu, M. (2022) Enhancing Phytoremediation of Soils Polluted with Heavy Metals. Current Opinion in Biotechnology, 74, 21-31. https://doi.org/10.1016/j.copbio.2021.10.024 |
[36] |
Rai, P.K. (2021) Heavy Metals and Arsenic Phytoremediation Potential of Invasive Alien Wetland Plants Phragmites karka and Arundo donax: Water-Energy-Food (W-E-F) Nexus Linked Sustainability Implications. Bioresource Technology Reports, 15, Article ID: 100741. https://doi.org/10.1016/j.biteb.2021.100741 |
[37] |
Williams, L.E., Pittman, J.K. and Hall, J.L. (2000) Emerging Mechanisms for Heavy Metal Transport in Plants. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1465, 104-126. https://doi.org/10.1016/S0005-2736(00)00133-4 |
[38] |
卢陈彬, 刘祖文, 张军, 等. 化学诱导剂强化植物提取修复重金属污染土壤研究进展[J]. 应用化工, 2018, 47(7): 1531-1535. |
[39] |
Wu, J.-W., Shi, Y., Zhu, Y.-X., et al. (2013) Mechanisms of Enhanced Heavy Metal Tolerance in Plants by Silicon: A Review. Pedosphere, 23, 815-825. https://doi.org/10.1016/S1002-0160(13)60073-9 |
[40] |
Guittonny-Philippe, A., Masotti, V., et al. (2014) Construct-ed Wetlands to Reduce Metal Pollution from Industrial Catchments in Aquatic Mediterranean Ecosystems: A Review to Overcome Obstacles and Suggest Potential Solutions. Environment International, 64, 1-16. https://doi.org/10.1016/j.envint.2013.11.016 |
[41] |
Yu, G., Wang, G., Li, J., et al. (2020) Enhanced Cd2+ and Zn2+ Removal from Heavy Metal Wastewater in Constructed Wetlands with Resistant Microorganisms. Bioresource Technol-ogy, 316, Article ID: 123898. https://doi.org/10.1016/j.biortech.2020.123898 |
[42] |
Kurniawan, S.B., Ramli, N.N., Said, N.S.M., et al. (2022) Practical Limitations of Bioaugmentation in Treating Heavy Metal Contaminated Soil and Role of Plant Growth Promot-ing Bacteria in Phytoremediation as a Promising Alternative Approach. Heliyon, 8, e08995. https://doi.org/10.1016/j.heliyon.2022.e08995 |
[43] |
Manoj, S.R., Karthik, C., Kadirvelu, K., et al. (2020) Under-standing the Molecular Mechanisms for the Enhanced Phytoremediation of Heavy Metals through Plant Growth Promot-ing Rhizobacteria: A Review. Journal of Environmental Management, 254, Article ID: 109779. https://doi.org/10.1016/j.jenvman.2019.109779 |
[44] |
Sharma, P. (2021) Efficiency of Bacteria and Bacterial Assist-ed Phytoremediation of Heavy Metals: An Update. Bioresource Technology, 328, Article ID: 124835. https://doi.org/10.1016/j.biortech.2021.124835 |
[45] |
Singh, B.S.M., Singh, D. and Dhal, N.K. (2022) Enhanced Phytoremediation Strategy for Sustainable Management of Heavy Metals and Radionuclides. Case Studies in Chemical and Environmental Engineering, 5, Article ID: 100176. https://doi.org/10.1016/j.cscee.2021.100176 |
[46] |
Mathur, P., Tripathi, D.K., Baluška, F., et al. (2022) Aux-in-Mediated Molecular Mechanisms of Heavy Metal and Metalloid Stress Regulation in Plants. Environmental and Ex-perimental Botany, 196, Article ID: 104796. https://doi.org/10.1016/j.envexpbot.2022.104796 |