对流扩散特征值问题的hp-局部不连续伽辽金方法
The hp-Local Discontinuous GalerkinMethod for Convection-DiffusionEigenvalue Problems
DOI:10.12677/IJFD.2023.114013,PDF,下载: 203浏览: 426科研立项经费支持
作者:袁梦瑶,刘芳,杨青松:贵州师范大学,数学科学学院,贵州 贵阳
关键词:对流扩散特征值hp-局部不连续断伽辽金法先验误差Convection-Diffusion Eigenvaluehp-Local Discontinuous Galerkin MethodA Prior Error Estimate
摘要:对流扩散方程是偏微分方程一个很重要的分支并且在许多领域都有广泛的应用,对流扩散方程特征值问题的数值方法的研究有重要的实际应用,所以这也是前计算数学界的热点,本文研究了对流扩散特征值问题的hp- 局部不连续断伽辽金方法(LDG),通过分析得到了先验误差估计,即关于网格尺寸h 是最优以及关于p 是次优的hp- 误差估计,并且进行了相应的数值实验。
Abstract:Convection-diffusion equation is a very important branch of partial differential equation and is widely used in many fields, The study of numerical methods for eigenvalue problems of convection-diffusion equation has important practical applications, so it is also a hot spot in pre-computational mathematics, In this paper, the hp-local discontinuous discontinuity Galerkin method (DG) for convection-difusion eigenvalue problems is studied, and the prior error estimates, that is, the hp-error estimates about the mesh size h is optimal and p is suboptimal, are obtained through analysis, and the corresponding numerical experiments are carried out.
文章引用:袁梦瑶, 刘芳, 杨青松. 对流扩散特征值问题的hp-局部不连续伽辽金方法[J]. 流体动力学, 2023, 11(4): 141-159. https://doi.org/10.12677/IJFD.2023.114013

参考文献

[1] 曾晓艳,陈建业,孙乐林.对流扩散方程的一种新型差分格式J.数学杂志,2003,23(1): 37-42.
[2] Li, Y., Bi, H. and Yang, Y.(2022) The a Priori and a Posteriori Error Estimates of DG Methodfor the Steklov Eigenvalue Problem in Inverse Scattering. Journal of Scientific Computing, 91 Article No.20.
https://doi.org/10.1007/s10915-022-01787-x
[3] 杨凯丽,何斯日古楞,肖宇宇.对流扩散方程的三次有限体积元法.内蒙古大学学报(自然科学版),2021,52(3): 250-256.
[4] 胡学佳,玉林,王桂霞,王雅楠.变系数对流扩散方程的变限积分法.内蒙古农业大学学报(自然科学版),2022,43(4): 108-113.
[5] 刘利斌,徐磊,包小兵.二维奇异摄动对流扩散方程的自适应移动网格算法.纯粹数学与应用数学,2023,39(2): 199-213.
[6] 杜莹玉,韩家宇.对流扩散特征值问题的Crouzeix-Raviart元二网格离散方案J.贵州师范大学学报(自然科学版),2021.39(6): 8-12.
[7] 彭忠兰.对流扩散特征值问题的一种多水平校正方法[D]: [硕士学位论文]贵阳: 贵州师范大学2016.
[8] Herbert, E. and Christian, W.(2013) hp Analysis of a Hybrid DG Method for Stokes Flow. IMA Journal of Numerical Analysi, 33, 687-721.
https://doi.org/10.1093/imanum/drs018
[9] Wihler, T.P.and Riviere, B.(2011) Discontinuous Galerkin Methods for Second-Order Elliptic PDE with Low-Regularity Solutions. Journal of Scientific Computing, 46, 151-165.
https://doi.org/10.1007/s10915-010-9387-9
[10] Perugia, I.and Schotzau, D.(2003) The hp-Local Discontinuous Galerkin Method for low-Frequency Time-Harmonic Maxwell Equations. Mathematics of Computation, 72, 1179-1214.
https://doi.org/10.1090/S0025-5718-02-01471-0
[11] Babuska,I.and Osborn, J.E.(1991) Eigenvalue Problems. In: Ciarlet, P.G.and Lions.J.L.Eds., Finite Element Methods (Part I). Handbook of Numerical Analysis, Vol. 2, Elsevier Science Publishers, North Holland, 641-787.
https://doi.org/10.1016/S1570-8659(05)80042-0

为你推荐


Baidu
map