[1] |
Future Markets, Inc. (2012) The Global Market for Nanomaterials 2002-2016: Production Volumes, Revenues and End User Market Demand. |
[2] |
Golbamaki, N., Rasulev, B., Cassano, A., et al. (2015) Genotoxicity of Metal Oxide Nano-materials: Review of Recent Data and Discussion of Possible Mechanisms. Nanoscale, 7, 2154-2198. https://doi.org/10.1039/C4NR06670G |
[3] |
孙晓红. 纳米及介孔金属氧化物材料新合成方法探索研究[D]: [博士学位论文]. 天津: 南开大学, 2010. |
[4] |
Magara, G., Elia, A.C., Dörr, A.J.M., et al. (2021) Metal Load and Oxida-tive Stress Driven by Organotin Compounds on Rainbow Trout. Environmental Science and Pollution Research, 28, 35012-35022. https://doi.org/10.1007/s11356-021-12984-w |
[5] |
Wang, Y. and Nowack, B. (2018) Dynamic Probabilistic Mate-rial Flow Analysis of Nano-SiO2, Nano Iron Oxides, Nano-CeO2, Nano-Al2O3, and Quantum Dots in Seven European Regions. Environmental Pollution, 235, 589-601. https://doi.org/10.1016/j.envpol.2018.01.004 |
[6] |
Dai, Y., Sun, C., Hou, R., et al. (2023) Transfer of CeO2 Nano-particles between Freshwater Omnivorous Organisms: Effect of Feces and Necrophagy. Journal of Hazardous Materials, 451, Article ID: 131137. https://doi.org/10.1016/j.jhazmat.2023.131137 |
[7] |
Cassee, F.R., Van Balen, E.C., Singh, C., et al. (2011) Behav-iour of Ceria Nanoparticles in Standardized Test Media—Influence on the Results of Ecotoxicological Tests. Journal of Physics: Conference Series, 304, Article ID: 012058. https://doi.org/10.1088/1742-6596/304/1/012058 |
[8] |
陈昱, 樊燕, 舒凡, 等. 纳米氧化铈对斑马鱼胚胎早期发育毒性[J]. 中国职业医学, 2020, 47(1): 48-52. |
[9] |
Lee, S.W., Kim, S.M. and Choi, J. (2009) Genotoxicity and Eco-toxicity Assays Using the Freshwater Crustacean Daphnia Magna and the Larva of the Aquatic Midge Chironomus ri-parius to Screen the Ecological Risks of Nanoparticle Exposure. Environmental Toxicology and Pharmacology, 28, 86-91. https://doi.org/10.1016/j.etap.2009.03.001 |
[10] |
姜勇, 罗深秋. 细胞信号转导的分子基础与功能调控[M]. 北京: 科学出版社, 2006. |
[11] |
Kyriakis, J.M. and Avruch, J. (2001) Mammalian Mitogen-Activated Protein Ki-nase Signal Transduction Pathways Activated by Stress and Inflammation. Physiological Reviews, 81, 807-869. https://doi.org/10.1152/physrev.2001.81.2.807 |
[12] |
Lee, Y., Kim, Y.J., Kim, M.H., et al. (2016) MAPK Cascades in Guard Cell Signal Transduction. Frontiers in Plant Science, 7, Article No. 80. https://doi.org/10.3389/fpls.2016.00080 |
[13] |
Damiani, F., Gianguzza, M. and Dolcemascolo, G. (2009) Effects of Tributyltin Chloride in Ascidian Embryos: Modulation of Kinase-Mediated Signalling Pathways. Invertebrate Survival Journal, 6, S87-S94. |
[14] |
Chen, J., Shao, B., Wang, J., et al. (2021) Chlorpyrifos Caused Necroptosis via MAPK/NF-κB/TNF-α Pathway in Common Carp (Cyprinus carpio L.) Gills. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 249, Article ID: 109126. https://doi.org/10.1016/j.cbpc.2021.109126 |
[15] |
Canesi, L., Ciacci, C., Lorusso, L.C., et al. (2007) Effects of Triclosan on Mytilus galloprovincialis Hemocyte Function and Digestive Gland Enzyme Activities: Possible Modes of Action on Non-Target Organisms. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 145, 464-472. https://doi.org/10.1016/j.cbpc.2007.02.002 |
[16] |
Bettencourt, R., Dando, P., Collins, P., et al. (2009) Innate Immun-ity in the Deep Sea Hydrothermal Vent Mussel Bathymodiolus azoricus. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 152, 278-289. https://doi.org/10.1016/j.cbpa.2008.10.022 |
[17] |
Zhang, X., Shen, G., Guo, Y., Zhang, X., et al. (2023) Genome-Wide Identification and Analysis of the MAPKK Gene Family in Chinese Mitten Crab (Eriocheir sinensis) and Its Response to Bacterial Challenge. Fish & Shellfish Immunology, 143, Article ID: 109132. https://doi.org/10.1016/j.fsi.2023.109132 |
[18] |
Martins, I.K., Pereira, L.G., Nunes, M.E.M., et al. (2023) Exposure to Mancozeb Results in Increased MAPK Phosphorylation and Locomotor Deficits in Zebrafish Larvae. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 270, Article ID: 109659. https://doi.org/10.1016/j.cbpc.2023.109659 |
[19] |
Mohammadi-Sardoo, M., Mandegary, A., Nematollahi-Mahani, S.N., et al. (2021) Cytotoxicity of Mancozeb on Sertoli-Germ Cell Co-Culture System: Role of MAPK Signaling Path-way. Toxicology and Industrial Health, 37, 674-684. https://doi.org/10.1177/07482337211044028 |
[20] |
Park, J., An, G., Park, H., et al. (2023) Developmental Defects Induced by Thiabendazole Are Mediated via Apoptosis, Oxidative Stress and Alteration in PI3K/Akt and MAPK Path-ways in Zebrafish. Environment International, 176, Article ID: 107973. https://doi.org/10.1016/j.envint.2023.107973 |
[21] |
Park, J., Hong, T., An, G., et al. (2022) Triadimenol Promotes the Production of Reactive Oxygen Species and Apoptosis with Cardiotoxicity and Developmental Abnormalities in Zebrafish. Science of the Total Environment, 862, Article ID: 160761. https://doi.org/10.1016/j.scitotenv.2022.160761 |
[22] |
Forró, L., Korovchinsky, N.M., Kotov, A.A., et al. (2008) Global Diversity of Cladocerans (Cladocera; Crustacea) in Freshwater. Hydrobiologia, 595, 177-184. https://doi.org/10.1007/s10750-007-9013-5 |
[23] |
Galdiero, E., Falanga, A., Siciliano, A., et al. (2017) Daphnia Magna and Xenopus laevis as in Vivo Models to Probe Toxicity and Uptake of Quantum Dots Functionalized with gH625. International Journal of Nanomedicine, 12, 2717-2731. https://doi.org/10.2147/IJN.S127226 |
[24] |
Martins, J., Oliva Teles, L. and Vasconcelos, V. (2007) Assays with Daphnia Magna and Danio rerio as Alert Systems in Aquatic Toxicology. Environment International, 33, 414-425. https://doi.org/10.1016/j.envint.2006.12.006 |
[25] |
Byeon, E., Kim, M.S., Kim, D.H., et al. (2022) The Freshwater Water Flea Daphnia Magna NIES Strain Genome as a Resource for CRISPR/Cas9 Gene Targeting: The Glutathione S-Transferase Omega 2 Gene. Aquatic Toxicology, 42, Article ID: 106021. https//doi.org/10.1016/j.aquatox.2021.106021 |
[26] |
Wang, W., Yang, Y., Yang, L., Luan, T., et al. (2021) Effects of Undissociated SiO2 and TiO2 Nano-Particles on Molting of Daphnia pulex: Comparing with Dissociated ZnO Nano Particles. Ecotoxicology and Environmental Safety, 222, Article ID: 112491. https://doi.org/10.1016/j.ecoenv.2021.112491 |
[27] |
Poynton, H.C., Lazorchak, J.M., Impellitteri, C.A., et al. (2013) Toxicogenomic Responses of Nanotoxicity in Daphnia magna Exposed to Silver Nitrate and Coated Silver Nanoparticles. Environmental Science & Technology, 46, 6288-6296. https://doi.org/10.1021/es3001618 |
[28] |
Lin, L., Xu, M., Mu, H., et al. (2019) Quantitative Proteomic Analysis to Understand the Mechanisms of Zinc Oxide Nanoparticle Toxicity to Daphnia pulex (Crustacea: Daphniidae): Comparing with Bulk Zinc Oxide and Zinc Salt. Environmental Science and Technology, 53, 5436-5444. https://doi.org/10.1021/acs.est.9b00251 |
[29] |
Sudhir, K., Glen, S. and Koichiro, T. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33, 1870-1874. https://doi.org/10.1093/molbev/msw054 |
[30] |
Lyu, K., Zhu, X., Wang, Q., et al. (2013) Copper/Zinc Superoxide Dismutase from the Cladoceran Daphnia magna: Molecular Cloning and Expression in Response to Different Acute En-vironmental Stressors. Environmental Science & Technology, 47, 8887-8893. https://doi.org/10.1021/es4015212 |
[31] |
Zhang, W., Pu, Z., Du, S., et al. (2016) Fate of Engineered Cerium Oxide Nanoparticles in an Aquatic Environment and Their Toxicity toward 14 Ciliated Protist Species. Environmental Pollution, 212, 584-591. https://doi.org/10.1016/j.envpol.2016.03.011 |
[32] |
Xie, C., Li, X., Hei, L., Chen, Y., et al. (2023) Toxicity of Ceria Nanoparticles to the Regeneration of Freshwater Planarian Dugesia japonica: The Role of Biotransformation. Science of the Total Environment, 857, Article ID: 159590. https://doi.org/10.1016/j.scitotenv.2022.159590 |
[33] |
Xiong, J.Q., Ru, S., Zhang, Q., et al. (2020) Insights into the Effect of Cerium Oxide Nanoparticle on Microalgal Degradation of Sulfonamides. Bioresource Technology, 309, Article ID: 123452. https://doi.org/10.1016/j.biortech.2020.123452 |
[34] |
郝丽芬, 燕孟娇, 房永雨, 等. 黑胫病菌侵染过程中油菜响应基因的表达分析[J]. 西北植物学报, 2021, 41(2): 197-211. |
[35] |
Wang, X., Zhang, C., Zou, N., et al. (2022) Lipocalin-2 Silencing Suppresses Inflammation and Oxidative Stress of Acute Respiratory Distress Syndrome by Fer-roptosis via Inhibition of MAPK/ERK Pathway in Neonatal Mice. Bioengineered, 13, 508-520. https://doi.org/10.1080/21655979.2021.2009970 |
[36] |
Gooding, E.L., et al. (2019) Black Gill Increases the Suscep-tibility of White Shrimp, Penaeus setiferus (Linnaeus, 1767), to Common Estuarine Predators. Journal of Experimental Marine Biology and Ecology, 524, Article ID: 151284. https://doi.org/10.1016/j.jembe.2019.151284 |
[37] |
Fan, H.D., et al. (2021) Isolation and Characterization of a MAPKK Gene from Penaeus monodon in Response to Bacterial Infection and Low-Salinity Challenge. Aquaculture Re-ports, 20, Article ID: 100671. https://doi.org/10.1016/j.aqrep.2021.100671 |
[38] |
Hu, Z., Song, H., Feng, J., et al. (2022) Genome-Wide Analysis of the Hard Clam Mitogen-Activated Protein Kinase Kinase Gene Family and Their Transcriptional Profiles under Abiotic Stress. Marine Environmental Research, 176, Article ID: 105606. https://doi.org/10.1016/j.marenvres.2022.105606 |
[39] |
Shilo, B.Z. (2014) The Regulation and Functions of MAPK Pathways in Drosophila. Methods, 68, 151-159. https://doi.org/10.1016/j.ymeth.2014.01.020 |
[40] |
范红第. 斑节对虾MAPK信号通路相关基因的克隆及其在盐度胁迫中的功能研究[D]: [硕士学位论文]. 上海: 上海海洋大学, 2020. |
[41] |
马阿妮, 王艺磊, 张子平, 等. MAPK信号途径及其在水生无脊椎动物的研究进展[J]. 生命科学, 2010, 22(10): 978-984. |
[42] |
Chang, L. and Ka-rin, M. (2023) Mammalian MAP Kinase Signalling Cascades. Nature, 410, 37-40. https://doi.org/10.1038/35065000 |
[43] |
Anestis, A., Lazou, A., Hans, O., Pörtner, et al. (2007) Behavioral, Meta-bolic, and Molecular Stress Responses of Marine Bivalve Mytilus galloprovincialis during Long-Term Acclimation at In-creasing Ambient Temperature. The American Journal of Physiology-Regulatory, Integrative and Comparative Physiol-ogy, 293, R911-R921. https://doi.org/10.1152/ajpregu.00124.2007 |
[44] |
Kefaloyianni, E., Gourgou, E., Ferle, V., et al. (2005) Acute Thermal Stress and Various Heavy Metals Induce Tissue-Specific Pro- or Anti-Apoptotic Events via the p38-MAPK Signal Transduction Pathway in Mytilus galloprovincialis (Lam). Journal of Experimental Biology, 208, 4427-4436. https://doi.org/10.1242/jeb.01924 |
[45] |
Ciacci, C., Canesi, L., Fantinati, A., et al. (2008) Immunotoxicity of Carbon Black Nanoparticles to Blue Mussel Hemocytes. Environment International, 34, 1114-1119. https://doi.org/10.1016/j.envint.2008.04.002 |
[46] |
Canesi, L., Ciacci, C., Betti, M., et al. (2003) Effects of PCB Congeners on the Immune Function of Mytilus Hemocytes: Alterations of Tyrosine Kinase-Mediated Cell Signaling. Aquatic Toxicology, 63, 293-306. https://doi.org/10.1016/S0166-445X(02)00186-8 |
[47] |
Wei, S., Huang, Y., Huang, X., et al. (2015) Characteriza-tion of c-Jun from Orange-Spotted Grouper, Epinephelus coioides Involved in SGIV Infection. Fish and Shellfish Im-munology, 43, 230-240. https://doi.org/10.1016/j.fsi.2014.12.033 |
[48] |
Jing, H., Zhang, Q., Li, S., Gao, X.J., et al. (2020) Pb Exposure Triggers MAPK-Dependent Inflammation by Activating Oxidative Stress and miRNA-155 Expression in Carp Head Kidney. Fish and Shellfish Immunology, 106, 219-227. https://doi.org/10.1016/j.fsi.2020.08.015 |
[49] |
Park, S.Y. and Choi, J. (2017) Molecular Characterization and Ex-pression Analysis of P38 MAPK Gene and Protein in Aquatic Midge, Chironomus riparius (Diptera: Chironomidae), Exposed to Environmental Contaminants. Archives of Environmental Contamination and Toxicology, 72, 428-438. https://doi.org/10.1007/s00244-017-0366-0 |
[50] |
Liu, M., Ai, W., Sun, L., et al. (2019) Triclosan-Induced Liver Injury in Zebrafish (Danio rerio) via Regulating MAPK/p53 Signaling Pathway. Comparative Biochemistry and Physi-ology Part C: Pharmacology, Toxicology, 222, 108-117. https://doi.org/10.1016/j.cbpc.2019.04.016 |
[51] |
Hu, Q., Wang, H., He, C., et al. (2021) Polystyrene Nanoparticles Trigger the Activation of p38 MAPK and Apoptosis via Inducing Oxidative Stress in Zebrafish and Macrophage Cells. Environmental Pollution, 269, Article ID: 116075. https://doi.org/10.1016/j.envpol.2020.116075 |