[1] |
Chen, X.Y., Zhang, J. and Zhu, J.S. (2019) The Role of m6A RNA Methylation in Human Cancer. Molecular Cancer, 18, Article No. 103. https://doi.org/10.1186/s12943-019-1033-z |
[2] |
Qu, J., Yan, H., Hou, Y., Cao, W., Liu, Y., Zhang, E., et al. (2022) RNA Demethylase ALKBH5 in Cancer: From Mechanisms to Therapeutic Potential. Journal of Hematology & Oncology, 15, Article No. 8. https://doi.org/10.1186/s13045-022-01224-4 |
[3] |
Desrosiers, R., Friderici, K. and Rottman, F. (1974) Identifica-tion of Methylated Nucleosides in Messenger RNA from Novikoff Hepatoma Cells. Proceedings of the National Acade-my of Sciences of the United States of America, 71, 3971-3975. https://doi.org/10.1073/pnas.71.10.3971 |
[4] |
Perry, R.P. and Kelley, D.E. (1974) Existence of Methylated Messenger RNA in Mouse L Cells. Cell, 1, 37-42. https://doi.org/10.1016/0092-8674(74)90153-6 |
[5] |
Liu, H., Lyu, H., Jiang, G., Chen, D., Ruan, S., Liu, S., et al. (2022) ALKBH5-Mediated m6A Demethylation of GLUT4 mRNA Promotes Glycolysis and Resistance to HER2-Targeted Therapy in Breast Cancer. Cancer Research, 82, 3974-3986. https://doi.org/10.1158/0008-5472.CAN-22-0800 |
[6] |
Meyer, K.D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C.E. and Jaffrey, S.R. (2012) Comprehensive Analysis of mRNA Methylation Reveals Enrichment in 3’UTRs and Near Stop Codons. Cell, 149, 1635-1646. https://doi.org/10.1016/j.cell.2012.05.003 |
[7] |
Peng, H., Chen, B., Wei, W., Guo, S., Han, H., Yang, C., et al. (2022) N6-Methyladenosine (m6A) in 18S rRNA Promotes Fatty Acid Metabolism and Oncogenic Transformation. Na-ture Metabolism, 4, 1041-1054. https://doi.org/10.1038/s42255-022-00622-9 |
[8] |
Correia De Sousa, M., Gjorgjieva, M., Dolicka, D., Sobolewski, C. and Foti, M. (2019) Deciphering miRNAs’ Action through miRNA Editing. International Journal of Molecular Sci-ences, 20, Article 6249. https://doi.org/10.3390/ijms20246249 |
[9] |
Li, Y., Yan, B., Wang, X., Li, Q., Kan, X., Wang, J., et al. (2021) ALKBH5-Mediated m6A Modification of LncRNA KCNQ1OT1 Triggers the Development of LSCC via Upregulation of HOXA9. https://doi.org/10.21203/rs.3.rs-637073/v1 |
[10] |
Yu, H. and Zhang, Z. (2021) ALKBH5-Mediated m6A Demethyl-ation of lncRNA RMRP Plays an Oncogenic Role in Lung Adenocarcinoma. Mammalian Genome, 32, 195-203. https://doi.org/10.1007/s00335-021-09872-6 |
[11] |
Chen, S., Zhou, L. and Wang, Y. (2020) ALKBH5-Mediated m6A Demethylation of lncRNA PVT1 Plays an Oncogenic Role in Osteosarcoma. Cancer Cell International, 20, Article No. 34. https://doi.org/10.1186/s12935-020-1105-6 |
[12] |
Liang, L., Zhu, Y., Li, J., Zeng, J. and Wu, L. (2022) ALKBH5-Mediated m6A Modification of circCCDC134 Facilitates Cervical Cancer Metastasis by Enhancing HIF1A Transcription. Journal of Experimental & Clinical Cancer Research, 41, Article No. 261. https://doi.org/10.1186/s13046-022-02462-7 |
[13] |
Zhang, L., Hou, C., Chen, C., Guo, Y., Yuan, W., Yin, D., et al. (2020) The Role of N6-Methyladenosine (m6A) Modification in the Regulation of circRNAs. Molecular Cancer, 19, Ar-ticle No. 105. https://doi.org/10.1186/s12943-020-01224-3 |
[14] |
Pendleton, K.E., Chen, B., Liu, K., Hunter, O.V., Xie, Y., Tu, B.P., et al. (2017) The U6 snRNA m6A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention. Cell, 169, 824-835.E14. https://doi.org/10.1016/j.cell.2017.05.003 |
[15] |
Han, J., Wang, J., Yang, X., Yu, H., Zhou, R., Lu, H.C., et al. (2019) METTL3 Promote Tumor Proliferation of Bladder Cancer by Accelerating pri-miR221/222 Maturation in m6A-Dependent Manner. Molecular Cancer, 18, Article No. 110. https://doi.org/10.1186/s12943-019-1036-9 |
[16] |
Li, T., Hu, P.S., Zuo, Z., Lin, J.F., Li, X., Wu, Q.N., et al. (2019) METTL3 Facilitates Tumor Progression via an m6A-IGF2BP2-Dependent Mechanism in Colorectal Carcinoma. Molec-ular Cancer, 18, Article No. 112. https://doi.org/10.1186/s12943-019-1038-7 |
[17] |
Liu, J., Yue, Y., Han, D., Wang, X., Fu, Y., Zhang, L., et al. (2014) A METTL3-METTL14 Complex Mediates Mammalian Nuclear RNA N6-Adenosine Methylation. Nature Chemical Biology, 10, 93-95. https://doi.org/10.1038/nchembio.1432 |
[18] |
Wan, W., Ao, X., Chen, Q., Yu, Y., Ao, L., Xing, W., et al. (2022) METTL3/IGF2BP3 Axis Inhibits Tumor Immune Surveillance by Upregulating N6-Methyladenosine Modification of PD-L1 mRNA in Breast Cancer. Molecular Cancer, 21, Article No. 60. https://doi.org/10.1186/s12943-021-01447-y |
[19] |
Zeng, C., Huang, W., Li, Y. and Weng, H. (2020) Roles of METTL3 in Cancer: Mechanisms and Therapeutic Targeting. Journal of Hematology & Oncology, 13, Article No. 117. https://doi.org/10.1186/s13045-020-00951-w |
[20] |
Zhou, H., Yin, K., Zhang, Y., Tian, J. and Wang, S. (2021) The RNA m6A Writer METTL14 in Cancers: Roles, Structures, and Applications. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1876, Article ID: 188609. https://doi.org/10.1016/j.bbcan.2021.188609 |
[21] |
Ping, X.L., Sun, B.F., Wang, L., Xiao, W., Yang, X., Wang, W.J., et al. (2014) Mammalian WTAP Is a Regulatory Subunit of the RNA N6-Methyladenosine Methyltransferase. Cell Research, 24, 177-189. https://doi.org/10.1038/cr.2014.3 |
[22] |
Han, Z., Niu, T., Chang, J., Lei, X., Zhao, M., Wang, Q., et al. (2010) Crys-tal Structure of the FTO Protein Reveals Basis for Its Substrate Specificity. Nature, 464, 1205-1209. https://doi.org/10.1038/nature08921 |
[23] |
Xu, C., Liu, K., Tempel, W., Demetriades, M., Aik, W., Schofield, C.J., et al. (2014) Structures of Human ALKBH5 Demethylase Reveal a Unique Binding Mode for Specific Single-Stranded N6-Methyladenosine RNA Demethylation. Journal of Biological Chemistry, 289, 17299-17311. https://doi.org/10.1074/jbc.M114.550350 |
[24] |
Maimaiti, A., Tuersunniyazi, A., Meng, X., Pei, Y., Ji, W., Feng, Z., et al. (2022) N6-Methyladenosine RNA Methylation Regulator-Related Alternative Splicing Gene Signature as Prognos-tic Predictor and in Immune Microenvironment Characterization of Patients with Low-Grade Glioma. Frontiers in Genet-ics, 13, Article 872186. https://doi.org/10.3389/fgene.2022.872186 |
[25] |
Tang, C., Klukovich, R., Peng, H., Wang, Z., Yu, T., Zhang, Y., et al. (2018) ALKBH5-Dependent m6A Demethylation Controls Splicing and Stability of Long 3’-UTR mRNAs in Male Germ Cells. Proceedings of the National Academy of Sciences of the United States of America, 115, E325-E333. https://doi.org/10.1073/pnas.1717794115 |
[26] |
Roundtree, I.A., Luo, G.Z., Zhang, Z., Wang, X., Zhou, T., Cui, Y., et al. (2017) YTHDC1 Mediates Nuclear Export of N6-Methyladenosine Methylated mRNAs. eLife, 6, e31311. https://doi.org/10.7554/eLife.31311 |
[27] |
Chen, R.X., Chen, X., Xia, L.P., Zhang, J.X., Pan, Z.Z., Ma, X.D., et al. (2019) N6-Methyladenosine Modification of circNSUN2 Facilitates Cytoplasmic Export and Stabilizes HMGA2 to Pro-mote Colorectal Liver Metastasis. Nature Communications, 10, Article No. 4695. https://doi.org/10.1038/s41467-019-12651-2 |
[28] |
Li, H.B., Tong, J., Zhu, S., Batista, P.J., Duffy, E.E., Zhao, J., et al. (2017) m6A mRNA Methylation Controls T Cell Homeostasis by Targeting the IL-7/STAT5/SOCS Pathways. Na-ture, 548, 338-342. https://doi.org/10.1038/nature23450 |
[29] |
Liu, T., Wei, Q., Jin, J., Luo, Q., Liu, Y., Yang, Y., et al. (2020) The m6A Reader YTHDF1 Promotes Ovarian Cancer Progression via Augmenting EIF3C Translation. Nucleic Acids Re-search, 48, 3816-3831. https://doi.org/10.1093/nar/gkaa048 |
[30] |
Wang, X., Zhao, B.S., Roundtree, I.A., Lu, Z., Han, D., Ma, H., et al. (2015) N6-Methyladenosine Modulates Messenger RNA Translation Efficiency. Cell, 161, 1388-1399. https://doi.org/10.1016/j.cell.2015.05.014 |
[31] |
Yu, B., Edstrom, W.C., Benach, J., Hamuro, Y., Weber, P.C., Gib-ney, B.R., et al. (2006) Crystal Structures of Catalytic Complexes of the Oxidative DNA/RNA Repair Enzyme AlkB. Nature, 439, 879-884. https://doi.org/10.1038/nature04561 |
[32] |
Feng, C., Liu, Y., Wang, G., Deng, Z., Zhang, Q., Wu, W., et al. (2014) Crystal Structures of the Human RNA Demethylase Alkbh5 Reveal Basis for Substrate Recognition. Journal of Biologi-cal Chemistry, 289, 11571-11583. https://doi.org/10.1074/jbc.M113.546168 |
[33] |
Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., Yang, Y., et al. (2011) N6-Methyladenosine in Nuclear RNA Is a Major Substrate of the Obesity-Associated FTO. Nature Chemical Biology, 7, 885-887. https://doi.org/10.1038/nchembio.687 |
[34] |
Zhang, X., Wei, L.H., Wang, Y., Xiao, Y., Liu, J., Zhang, W., et al. (2019) Structural Insights into FTO’s Catalytic Mechanism for the Demethylation of Multiple RNA Substrates. Proceedings of the National Academy of Sciences of the United States of America, 116, 2919-2924. https://doi.org/10.1073/pnas.1820574116 |
[35] |
Gerken, T., Girard, C.A., Tung, Y.C.L., Webby, C.J., Saudek, V., Hewitson, K.S., et al. (2007) The Obesity-Associated FTO Gene Encodes a 2-Oxoglutarate-Dependent Nucleic Acid Demethylase. Science, 318, 1469-1472. https://doi.org/10.1126/science.1151710 |
[36] |
Jia, G., Yang, C.G., Yang, S., Jian, X., Yi, C., Zhou, Z., et al. (2008) Oxidative Demethylation of 3-Methylthymine and 3-Methyluracil in Single-Stranded DNA and RNA by Mouse and Human FTO. FEBS Letters, 582, 3313-3319. https://doi.org/10.1016/j.febslet.2008.08.019 |
[37] |
Zheng, G., Dahl, J.A., Niu, Y., Fedorcsak, P., Huang, C.M., Li, C.J., et al. (2013) ALKBH5 Is a Mammalian RNA Demethylase That Impacts RNA Metabolism and Mouse Fertility. Molecular Cell, 49, 18-29. https://doi.org/10.1016/j.molcel.2012.10.015 |
[38] |
Baltz, A.G., Munschauer, M., Schwanhäusser, B., Vasile, A., Murakawa, Y., Schueler, M., et al. (2012) The mRNA-Bound Proteome and Its Global Occupancy Profile on Pro-tein-Coding Transcripts. Molecular Cell, 46, 674-690. https://doi.org/10.1016/j.molcel.2012.05.021 |
[39] |
Han, Z., Wang, X., Xu, Z., Cao, Y., Gong, R., Yu, Y., et al. (2021) ALKBH5 Regulates Cardiomyocyte Proliferation and Heart Regeneration by Demethylating the mRNA of YTHDF1. Theranostics, 11, 3000-3016. https://doi.org/10.7150/thno.47354 |
[40] |
Cheng, P., Han, H., Chen, F., Cheng, L., Ma, C., Huang, H., et al. (2022) Amelioration of Acute Myocardial Infarction Injury through Targeted Ferritin Nanocages Loaded with an ALKBH5 In-hibitor. Acta Biomaterialia, 140, 481-491. https://doi.org/10.1016/j.actbio.2021.11.041 |
[41] |
Du, T., Li, G., Yang, J. and Ma, K. (2020) RNA Demethylase Alkbh5 Is Widely Expressed in Neurons and Decreased during Brain Development. Brain Research Bulletin, 163, 150-159. https://doi.org/10.1016/j.brainresbull.2020.07.018 |
[42] |
Kumari, R., Dutta, R., Ranjan, P., Suleiman, Z.G., Goswami, S.K., Li, J., et al. (2022) ALKBH5 Regulates SPHK1-Dependent Endothelial Cell Angiogenesis Following Ischemic Stress. Frontiers in Cardiovascular Medicine, 8, Article 817304. https://doi.org/10.3389/fcvm.2021.817304 |
[43] |
Liu, Y., Song, R., Zhao, L., Lu, Z., Li, Y., Zhan, X., et al. (2022) m6A Demethylase ALKBH5 Is Required for Antibacterial Innate Defense by Intrinsic Motivation of Neutrophil Migra-tion. Signal Transduction and Targeted Therapy, 7, Article No. 194. https://doi.org/10.1038/s41392-022-01020-z |
[44] |
You, Y., Wen, D., Zeng, L., Lu, J., Xiao, X., Chen, Y., et al. (2022) ALKBH5/MAP3K8 Axis Regulates PD-L1+ Macrophage Infiltration and Promotes Hepatocellular Carcinoma Progression. International Journal of Biological Sciences, 18, 5001-5018. https://doi.org/10.7150/ijbs.70149 |
[45] |
Luo, Q., Fu, B., Zhang, L., Guo, Y., Huang, Z. and Li, J. (2020) Decreased Peripheral Blood ALKBH5 Correlates with Markers of Autoimmune Response in Systemic Lupus Erythematosus. Dis-ease Markers, 2020, Article ID: 8193895. https://doi.org/10.1155/2020/8193895 |
[46] |
Zhao, Y., Sun, J. and Jin, L. (2022) The N6-Methyladenosine Regula-tor ALKBH5 Mediated Stromal Cell-Macrophage Interaction via VEGF Signaling to Promote Recurrent Spontaneous Abortion: A Bioinformatic and in Vitro Study. International Journal of Molecular Sciences, 23, Article 15819. https://doi.org/10.3390/ijms232415819 |
[47] |
Ding, C., Xu, H., Yu, Z., Roulis, M., Qu, R., Zhou, J., et al. (2022) RNA m6A Demethylase ALKBH5 Regulates the Development of γδ T Cells. Proceedings of the National Academy of Sciences of the United States of America, 119, e2203318119. https://doi.org/10.1073/pnas.2203318119 |
[48] |
Wei, C., Wang, B., Peng, D., Zhang, X., Li, Z., Luo, L., et al. (2022) Pan-Cancer Analysis Shows That ALKBH5 Is a Poten-tial Prognostic and Immunotherapeutic Biomarker for Multiple Cancer Types Including Gliomas. Frontiers in Immunol-ogy, 13, Article 849592. https://doi.org/10.3389/fimmu.2022.849592 |
[49] |
Dong, F., Qin, X., Wang, B., Li, Q., Hu, J., Cheng, X., et al. (2021) ALKBH5 Facilitates Hypoxia-Induced Paraspeckle Assembly and IL8 Secretion to Generate an Immunosuppressive Tumor Microenvironment. Cancer Research, 81, 5876-5888. https://doi.org/10.1158/0008-5472.CAN-21-1456 |
[50] |
Zhou, J., Zhang, X., Hu, J., Qu, R., Yu, Z., Xu, H., et al. (2021) m6A Demethylase ALKBH5 Controls CD4+ T Cell Pathogenicity and Promotes Autoimmunity. Science Advanc-es, 7, eabg0470. https://doi.org/10.1126/sciadv.abg0470 |
[51] |
Song, R., Zhao, J., Gao, C., Qin, Q. and Zhang, J. (2021) Inclusion of ALKBH5 as a Candidate Gene for the Susceptibility of Autoimmune Thyroid Disease. Advances in Medical Sciences, 66, 351-358. https://doi.org/10.1016/j.advms.2021.07.006 |
[52] |
Shulman, Z. and Stern-Ginossar, N. (2020) The RNA Modifica-tion N6-Methyladenosine as a Novel Regulator of the Immune System. Nature Immunology, 21, 501-512. https://doi.org/10.1038/s41590-020-0650-4 |
[53] |
Kreslavsky, T., Gleimer, M. and von Boehmer, H. (2010) αβ ver-sus γδ Lineage Choice at the First TCR-Controlled Checkpoint. Current Opinion in Immunology, 22, 185-192. https://doi.org/10.1016/j.coi.2009.12.006 |
[54] |
Pennington, D.J., Silva-Santos, B. and Hayday, A.C. (2005) γδ T Cell Development—Having the Strength to Get There. Current Opinion in Immunology, 17, 108-115. https://doi.org/10.1016/j.coi.2005.01.009 |
[55] |
Washburn, T., Schweighoffer, E., Gridley, T., Chang, D., Fowlkes, B.J., Cado, D., et al. (1997) Notch Activity Influences the αβ versus γδ T Cell Lineage Decision. Cell, 88, 833-843. https://doi.org/10.1016/S0092-8674(00)81929-7 |
[56] |
Bajrami, B., Zhu, H., Kwak, H.J., Mondal, S., Hou, Q., Geng, G., et al. (2016) G-CSF Maintains Controlled Neutrophil Mobilization during Acute Inflammation by Negatively Regulating CXCR2 Signaling. Journal of Experimental Medicine, 213, 1999-2018. https://doi.org/10.1084/jem.20160393 |
[57] |
Olson, T.S. and Ley, K. (2002) Chemokines and Chemokine Receptors in Leukocyte Trafficking. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 283, R7-R28. https://doi.org/10.1152/ajpregu.00738.2001 |
[58] |
Zhu, S. and Lu, Y. (2020) Dexmedetomidine Suppressed the Bi-ological Behavior of HK-2 Cells Treated with LPS by Down-Regulating ALKBH5. Inflammation, 43, 2256-2263. https://doi.org/10.1007/s10753-020-01293-y |
[59] |
Liu, Y., You, Y., Lu, Z., Yang, J., Li, P., Liu, L., et al. (2019) N6-Methyladenosine RNA Modification-Mediated Cellular Metabolism Rewiring Inhibits Viral Replication. Science, 365, 1171-1176. https://doi.org/10.1126/science.aax4468 |
[60] |
Wang, A., Tao, W., Tong, J., Gao, J., Wang, J., Qian, C., et al. (2022) m6A Modifications Regulate Intestinal Immunity and Rotavirus Infection. eLife, 11, e73628. |
[61] |
Barro, M. and Patton, J.T. (2005) Rotavirus Nonstructural Protein 1 Subverts Innate Immune Response by Inducing Degradation of IFN Reg-ulatory Factor 3. Proceedings of the National Academy of Sciences of the United States of America, 102, 4114-4119. https://doi.org/10.1073/pnas.0408376102 |
[62] |
Ding, S., Mooney, N., Li, B., Kelly, M.R., Feng, N., Loktev, A.V., et al. (2016) Comparative Proteomics Reveals Strain-Specific β-TrCP Degradation via Rotavirus NSP1 Hijacking a Host Cullin-3-Rbx1 Complex. PLOS Pathogens, 12, e1005929. https://doi.org/10.1371/journal.ppat.1005929 |
[63] |
Rubio, R.M., Depledge, D.P., Bianco, C., Thompson, L. and Mohr, I. (2018) RNA m6A Modification Enzymes Shape Innate Responses to DNA by Regulating Interferon β. Genes & Development, 32, 1472-1484. |
[64] |
Zhao, T., Qi, J., Liu, T., Wu, H. and Zhu, Q. (2022) N6-Methyladenosine Modification Participates in the Progression of Hepatitis B Vi-rus-Related Liver Fibrosis by Regulating Immune Cell Infiltration. Frontiers in Medicine, 9, Article 821710. https://doi.org/10.3389/fmed.2022.821710 |
[65] |
Kaneko, S., Kurosaki, M., Inada, K., Kirino, S., Hayakawa, Y., Yamashita, K., et al. (2021) Hepatitis B Core-Related Antigen Predicts Disease Progression and Hepatocellular Carcino-ma in Hepatitis B e Antigen-Negative Chronic Hepatitis B Patients. Journal of Gastroenterology and Hepatology, 36, 2943-2951. https://doi.org/10.1111/jgh.15563 |
[66] |
Chen, S., Kumar, S., Espada, C.E., Tirumuru, N., Cahill, M.P., Hu, L., et al. (2021) N6-Methyladenosine Modification of HIV-1 RNA Suppresses Type-I Interferon Induction in Dif-ferentiated Monocytic Cells and Primary Macrophages. PLOS Pathogens, 17, e1009421. https://doi.org/10.1371/journal.ppat.1009421 |
[67] |
Tang, W., Xu, N., Zhou, J., He, Z., Lenahan, C., Wang, C., et al. (2022) ALKBH5 Promotes PD-L1-Mediated Immune Escape through m6A Modification of ZDHHC3 in Glioma. Cell Death Discovery, 8, Article No. 497. https://doi.org/10.1038/s41420-022-01286-w |
[68] |
Zhang, Z., Zhang, C., Luo, Y., Wu, P., Zhang, G., Zeng, Q., et al. (2021) m6A Regulator Expression Profile Predicts the Prognosis, Benefit of Adjuvant Chemotherapy, and Response to Anti-PD-1 Immunotherapy in Patients with Small- Cell Lung Cancer. BMC Medicine, 19, Article No. 284. https://doi.org/10.1186/s12916-021-02148-5 |
[69] |
Ji, H., Zhang, J., Liu, H., Li, K., Wang, Z. and Zhu, X. (2022) Comprehensive Characterization of Tumor Microenvironment and m6A RNA Methylation Regulators and Its Effects on PD-L1 and Immune Infiltrates in Cervical Cancer. Frontiers in Immunology, 13, Article 976107. https://doi.org/10.3389/fimmu.2022.976107 |
[70] |
Zhang, T., Sheng, P. and Jiang, Y. (2022) m6A Regulators Are Differently Expressed and Correlated with Immune Response of Pancreatic Adenocarcinoma. Journal of Cancer Re-search and Clinical Oncology, 149, 2805-2822. https://doi.org/10.1007/s00432-022-04150-7 |
[71] |
Guo, X., Li, K., Jiang, W., Hu, Y., Xiao, W., Huang, Y., et al. (2020) RNA Demethylase ALKBH5 Prevents Pancreatic Cancer Progression by Posttranscriptional Activation of PER1 in an m6A-YTHDF2-Dependent Manner. Molecular Cancer, 19, Article No. 91. https://doi.org/10.1186/s12943-020-01158-w |
[72] |
Yan, G., An, Y., Xu, B., Wang, N., Sun, X. and Sun, M. (2021) Potential Impact of ALKBH5 and YTHDF1 on Tumor Immunity in Colon Adenocarcinoma. Frontiers in Oncology, 11, Article 670490. https://doi.org/10.3389/fonc.2021.670490 |
[73] |
Sharpe, B.P., Hayden, A., Manousopoulou, A., Cowie, A., Walker, R.C., Harrington, J., et al. (2022) Phosphodiesterase Type 5 Inhibitors Enhance Chemotherapy in Preclinical Models of Esophageal Adenocarcinoma by Targeting Cancer-Associated Fibroblasts. Cell Reports Medicine, 3, Article ID: 100541. https://doi.org/10.1016/j.xcrm.2022.100541 |
[74] |
Ji, T., Gao, X., Li, D., Huai, S., Chi, Y., An, X., et al. (2023) Identification and Validation of Signature for Prognosis and Immune Microenvironment in Gastric Cancer Based on m6A Demethylase ALKBH5. Frontiers in Oncology, 12, Article 1079402. https://doi.org/10.3389/fonc.2022.1079402 |
[75] |
Hu, Y., Gong, C., Li, Z., Liu, J., Chen, Y., Huang, Y., et al. (2022) Demethylase ALKBH5 Suppresses Invasion of Gastric Cancer via PKMYT1 m6A Modification. Molecular Cancer, 21, Article No. 34. https://doi.org/10.1186/s12943-022-01522-y |
[76] |
Zhang, J., Guo, S., Piao, H., Wang, Y., Wu, Y., Meng, X., et al. (2019) ALKBH5 Promotes Invasion and Metastasis of Gastric Cancer by Decreasing Methylation of the lncRNA NEAT1. Journal of Physiology and Biochemistry, 75, 379-389. https://doi.org/10.1007/s13105-019-00690-8 |
[77] |
Wang, S., Wang, Y., Zhang, Z., Zhu, C., Wang, C., Yu, F., et al. (2021) Long Non-Coding RNA NRON Promotes Tumor Proliferation by Regulating ALKBH5 and Nanog in Gastric Cancer. Journal of Cancer, 12, 6861-6872. https://doi.org/10.7150/jca.60737 |
[78] |
Zhao, H., Xu, Y., Xie, Y., Zhang, L., Gao, M., Li, S., et al. (2021) m6A Regulators Is Differently Expressed and Correlated with Immune Response of Esophageal Cancer. Frontiers in Cell and Developmental Biology, 9, Article 650023. https://doi.org/10.3389/fcell.2021.650023 |
[79] |
Xue, J., Xiao, P., Yu, X. and Zhang, X. (2021) A Positive Feed-back Loop between AlkB Homolog 5 and miR-193a-3p Promotes Growth and Metastasis in Esophageal Squamous Cell Carcinoma. Human Cell, 34, 502-514. https://doi.org/10.1007/s13577-020-00458-z |
[80] |
Nagaki, Y., Motoyama, S., Yamaguchi, T., Hoshizaki, M., Sato, Y., Sato, T., et al. (2020) m6A demethylase ALKBH5 Promotes Proliferation of Esophageal Squamous Cell Carcinoma Associated with Poor Prognosis. Genes Cells, 25, 547-561. https://doi.org/10.1111/gtc.12792 |
[81] |
Xiao, D., Fang, T.X., Lei, Y., Xiao, S.J., Xia, J.W., Lin, T.Y., et al. (2021) m6A Demethylase ALKBH5 Suppression Contributes to Esophageal Squamous Cell Carcinoma Progression. Aging, 13, 21497-21512. https://doi.org/10.18632/aging.203490 |
[82] |
Jiang, H., Ning, G., Wang, Y. and Lv, W. (2021) Identification of an m6A-Related Signature as Biomarker for Hepatocellular Carcinoma Prognosis and Correlates with Sorafenib and An-ti-PD-1 Immunotherapy Treatment Response. Disease Markers, 2021, Article ID: 5576683. https://doi.org/10.1155/2021/5576683 |
[83] |
Han, S., Xue, L., Wei, Y., Yong, T., Jia, W., Qi, Y., et al. (2023) Bone Lesion-Derived Extracellular Vesicles Fuel Prometastatic Cascades in Hepatocellular Carcinoma by Transferring ALKBH5-Targeting miR-3190-5p. Advanced Science, 10, Article ID: 2207080. https://doi.org/10.1002/advs.202207080 |
[84] |
Chen, Y., Zhao, Y., Chen, J., Peng, C., Zhang, Y., Tong, R., et al. (2020) ALKBH5 Suppresses Malignancy of Hepatocellular Carcinoma via m6A-Guided Epigenetic Inhibition of LYPD1. Molecular Cancer, 19, Article No. 123. https://doi.org/10.1186/s12943-020-01239-w |
[85] |
Wang, W., Huang, Q., Liao, Z., Zhang, H., Liu, Y., Liu, F., et al. (2023) ALKBH5 Prevents Hepatocellular Carcinoma Progression by Post-Transcriptional Inhibition of PAQR4 in an m6A Dependent Manner. Experimental Hematology & Oncology, 12, Article No. 1. https://doi.org/10.1186/s40164-022-00370-2 |
[86] |
Li, L.J., Fan, Y.G., Leng, R.X., Pan, H.F. and Ye, D.Q. (2018) Potential Link between m6A Modification and Systemic Lupus Erythematosus. Molecular Immunology, 93, 55-63. https://doi.org/10.1016/j.molimm.2017.11.009 |
[87] |
Brito-Zerón, P., et al. (2016) Sjögren Syndrome. Nature Re-views Disease Primers, 2, Article No. 16047. https://doi.org/10.1038/nrdp.2016.47 |
[88] |
Xiao, Q., Wu, X., Deng, C., Zhao, L., Peng, L., Zhou, J., et al. (2022) The Potential Role of RNA N6-Methyladenosine in Primary Sjögren’s Syndrome. Frontiers in Medicine, 9, Article 959388. https://doi.org/10.3389/fmed.2022.959388 |
[89] |
Sun, X., Lu, J., Li, H. and Huang, B. (2022) The Role of m6A on Female Reproduction and Fertility: From Gonad Development to Ovarian Aging. Frontiers in Cell and Devel-opmental Biology, 10, Article 884295. https://doi.org/10.3389/fcell.2022.884295 |
[90] |
Zhao, S., Lu, J., Chen, Y., Wang, Z., Cao, J. and Dong, Y. (2021) Exploration of the Potential Roles of m6A Regulators in the Uterus in Pregnancy and Infertility. Journal of Reproductive Immunology, 146, Article ID: 103341. https://doi.org/10.1016/j.jri.2021.103341 |
[91] |
Jiang, Y., Wan, Y., Gong, M., Zhou, S., Qiu, J. and Cheng, W. (2020) RNA Demethylase ALKBH5 Promotes Ovarian Carcinogenesis in a Simulated Tumour Microenvironment through Stimulating NF-κB Pathway. Journal of Cellular and Molecular Medicine, 24, 6137-6148. |
[92] |
Qu, S., Jin, L., Huang, H., Lin, J., Gao, W. and Zeng, Z. (2021) A Positive-Feedback Loop between HBx and ALKBH5 Promotes Hepatocellular Carcinogenesis. BMC Cancer, 21, Article No. 686. https://doi.org/10.1186/s12885-021-08449-5 |
[93] |
Zhu, Z., Qian, Q., Zhao, X., Ma, L. and Chen, P. (2020) N6-Methyladenosine ALKBH5 Promotes Non-Small Cell Lung Cancer Progress by Regulating TIMP3 Stability. Gene, 731, Article ID: 144348. https://doi.org/10.1016/j.gene.2020.144348 |
[94] |
Yu, H., Yang, X., Tang, J., Si, S., Zhou, Z., Lu, J., et al. (2021) ALKBH5 Inhibited Cell Proliferation and Sensitized Bladder Cancer Cells to Cisplatin by m6A-CK2α-Mediated Glycol-ysis. Molecular Therapy: Nucleic Acids, 23, 27-41. https://doi.org/10.1016/j.omtn.2020.10.031 |
[95] |
Yuan, Y., Yan, G., He, M., Lei, H., Li, L., Wang, Y., et al. (2021) ALKBH5 Suppresses Tumor Progression via an m6A-Dependent Epigenetic Silencing of pre-miR-181b-1/YAP Signal-ing Axis in Osteosarcoma. Cell Death & Disease, 12, Article No. 60. https://doi.org/10.1038/s41419-020-03315-x |
[96] |
Qiu, X., Yang, S., Wang, S., Wu, J., Zheng, B., Wang, K., et al. (2021) M6A Demethylase ALKBH5 Regulates PD-L1 Expression and Tumor Immunoenvironment in Intrahepatic Cholangiocarcinoma. Cancer Research, 81, 4778-4793. https://doi.org/10.1158/0008-5472.CAN-21-0468 |
[97] |
Fang, Z., Mu, B., Liu, Y., Guo, N., Xiong, L., Guo, Y., et al. (2022) Discovery of a Potent, Selective and Cell Active Inhibitor of m6A Demethylase ALKBH5. European Journal of Medicinal Chemistry, 238, Article ID: 114446. https://doi.org/10.1016/j.ejmech.2022.114446 |
[98] |
Perry, G.S., Das, M. and Woon, E.C.Y. (2021) Inhibition of AlkB Nucleic Acid Demethylases: Promising New Epigenetic Targets. Journal of Medicinal Chemistry, 64, 16974-17003. https://doi.org/10.1021/acs.jmedchem.1c01694 |
[99] |
Chen, G., Zhao, Q., Yuan, B., Wang, B., Zhang, Y., Li, Z., et al. (2021) ALKBH5-Modified HMGB1-STING Activation Contributes to Radiation Induced Liver Disease via Innate Immune Response. International Journal of Radiation Oncology∙Biology∙Physics, 111, 491-501. https://doi.org/10.1016/j.ijrobp.2021.05.115 |
[100] |
Li, Y., Lu, R., Niu, Z., Wang, D. and Wang, X.L. (2023) Suxiao Jiuxin Pill Alleviates Myocardial Ischemia—Reperfusion Injury through the ALKBH5/GSK3β/mTOR Pathway. Chinese Medicine, 18, Article No. 31. https://doi.org/10.1186/s13020-023-00736-6 |