ALKBH5在不同免疫环境中的调控作用
Regulation of ALKBH5 in Different Immune Environment
DOI:10.12677/BP.2023.134025,PDF,HTML,XML,下载: 309浏览: 746
作者:张晓娴,谢 锦,费 欢,邱 郑*:中国药科大学生命科学与技术学院,江苏 南京
关键词:m6A修饰ALKBH5肿瘤免疫自身免疫ALKBH5抑制剂 ALKBH5Tumor ImmunityAutoimmuneALKBH5 Inhibitor
摘要:m6A修饰在转录后水平调控多种细胞过程,而RNA m6A水平受RNA去甲基化酶ALKBH5调节,维持正常的生理功能的同时也促进多种人类疾病发生发展。在这篇综述中,我们讨论了ALKBH5与免疫之间的联系以及在免疫系统和癌症中的多重作用。我们分析了ALKBH5在不同免疫环境中的调节作用,包括促进正常免疫细胞发育成熟和细胞因子释放,在多种肿瘤组织中异常表达对肿瘤免疫微环境的调节和ALKBH5失调促进自身免疫疾病发生等。在不同免疫环境中的诸多调节作用使得ALKBH5可能作为肿瘤免疫、自身免疫性疾病以及在其他与ALKBH5免疫调节相关疾病的潜在药物靶标,为开发免疫治疗药物提供理论参考。
Abstract:The modification of m6A regulates various cellular processes at post-transcription level. While RNA m6A level is regulated by RNA demethylase ALKBH5, which maintains normal physiological functions and promotes the initiation and development of various human diseases. In this review, we discuss multiple roles of ALKBH5 in immune system and cancers. We summarize the regulatory effects of ALKBH5 in different immune environments, including promotion of normal immune cells maturation and cytokines release, regulation of tumor immune microenvironment in a variety of tumor tissues, and initiation of autoimmune diseases by abnormal expression of ALKBH5. Due to its various roles in different immune environments, ALKBH5 may serve as a potential drug target for tumor immunity, autoimmune diseases and other diseases related to ALKBH5, providing a theoretical basis for developing immunotherapeutic drugs.
文章引用:张晓娴, 谢锦, 费欢, 邱郑. ALKBH5在不同免疫环境中的调控作用[J]. 生物过程, 2023, 13(4): 174-186. https://doi.org/10.12677/BP.2023.134025

1. 引言

RNA的转录后修饰相关研究报道不断涌现 [1] [2] ,其中N6-甲基腺苷(m6A)是迄今为止研究最为深入的RNA修饰。m6A是大多数真核生物物种中最常见的聚腺苷酸mRNA的内部修饰 [3] [4] ,并且几乎存在于所有RNA类型中,如mRNA、核糖体RNA (rRNA)、microRNAs (miRNA)、长链非编码RNA (lncRNA)、环状RNA (circRNAs)和核小RNA (snRNA) [5] - [14] 。m6A的可逆动态调控由RNA甲基转移酶(writer)和去甲基化酶(eraser)维持,RNA的m6A修饰积累通过m6A甲基转移酶复合物如METTLE3-METTLE14异源二聚体核心和其他配体催化“写入” [15] - [21] 。而从RNA中“擦除”m6A修饰可以通过m6A去甲基化酶执行,包括脂肪–肥胖相关蛋白(FTO)和α-酮戊二酸依赖的双加氧酶AlkB同源物5 (ALKBH5) [22] [23] 。m6A修饰的RNA需要依赖m6A“阅读器”蛋白(reader)识别m6A信号并选择性地与m6A相互作用,调控mRNA剪接 [24] [25] ,促进mRNA核输出 [26] [27] ,改变mRNA稳定性 [5] [25] [28] ,提高翻译效率 [29] [30] 。m6A修饰在转录后水平参与RNA代谢和基因表达调控,在正常生理和疾病条件下的许多生物过程中发挥重要作用。

ALKBH5是非血红素Fe(II)/2-氧代戊二酸(2-OG)依赖的双加氧酶中保守的AlkB家族成员,通过氧化去甲基化N-烷基化碱基的修饰 [2] [23] 。人类AlkB家族共有9个成员,包括ALKBH1-8和FTO [31] ,它们具有相同的双链β-螺旋(DSBH)结构以及2-OG (也称α-酮戊二酸,α-KG)和Fe(II)结合位点,但在催化底物和功能上有所不同 [22] [32] [33] [34] 。FTO和ALKBH5这两种m6A去甲基化酶由于底物结合口袋大小及重点氨基酸残基空间分布差异,对催化底物的偏好性有较大区别。已有研究表明FTO的底物结合口袋较ALKBH5大,不仅可以靶向mRNA去除内部m6A修饰,还可以靶向去除其他ssRNA和ssDNA中腺苷的部分甲基化修饰 [35] [36] 。同样,ALKBH5可以去除ssRNA和ssDNA上的m6A修饰 [37] ,但优先与编码序列的5’端相互作用 [38] ,特别优先与一致序列Pu[G > A]m6AC[A/C/U] (Pu是任何嘌呤碱基)相互作用 [6] 。

正常情况下,ALKBH5在睾丸和肺中表达较高,其次是脾脏、肾脏和肝脏,心脏和大脑的表达量较低 [37] 。ALKBH5不仅参与精子发生 [37] 、心肌再生 [39] [40] 、大脑发育 [41] 、缺血后血管生成 [42] ,还在不同免疫环境中具有调节作用 [43] [44] [45] [46] 。ALKBH5异常表达与人体生理病理密切相关。研究发现ALKBH5参与免疫细胞发育成熟及细胞因子释放 [44] [46] [47] 、肿瘤抑制性免疫微环境调节 [44] [48] [49] 和自身免疫性疾病发生 [45] [50] [51] 。此外,ALKBH5在免疫相关疾病中的研究逐渐拓展,本文综述了最近报道的关于ALKBH5在不同免疫环境中对生理病理的调节作用以及将ALKBH5作为药物靶标开发抗肿瘤、抗自身免疫性疾病相关免疫治疗剂的潜在策略。

2. ALKBH5与正常免疫环境

近年来,RNA转录后修饰研究成果日益丰富,作为研究最多的m6A修饰被发现在免疫系统中具有广泛调节作用 [52] 。ALKBH5作为RNA m6A去甲基化酶之一,在正常免疫力水平下应对细菌和病毒感染时,调控免疫细胞发育及细胞因子释放。

2.1. ALKBH5在细菌感染中的免疫调控作用

研究表明,αβ T和γδ T细胞起源于共同的胸腺祖细胞,即CD4/CD8双阴性(DN)淋巴细胞 [53] 。并在DN阶段,承诺前选择和信号强度模型决定αβ/γδ谱系承诺 [54] 。接受强烈Notch1信号的胸腺细胞祖细胞优先进入αβ T细胞系,而牺牲γδ T细胞 [55] 。敲除ALKBH5的鼠γδ T前体细胞,其Notch信号组件Jagged1和Notch2等靶基因的表达水平均显著下调。Jagged1/Notch2信号通路受到抑制,而大部分上调基因参与细胞周期调控,从而增加了γδ T前体细胞数量并促进其分化,而不影响αβ T细胞。ALKBH5缺失在胚胎时期即开始对γδ T前体细胞进行扩增,既不会改变细胞因子的特征,也不会改变成熟γδ T细胞的增殖或凋亡。由于γδ T细胞扩增,ALKBH5敲除使鼠对结肠伤寒沙门杆菌感染表现出更强的保护作用 [47] 。

而与γδ T细胞不同的是,ALKBH5缺陷小鼠在脓毒症期间,其腹腔液中的中性粒细胞显著减少及增加重度败血症的死亡率 [43] 。研究表明趋化因子配体CXCL2与受体CXCR2之间相互作用是早期急性炎症期间促进中性粒细胞动员的重要环节,可以促进中性粒细胞在循环内和循环间迁移并被招募到有感染或炎症的组织中 [56] [57] 。然而在细菌感染期间ALKBH5在小鼠和人类中性粒细胞中均下调。在脓毒症期间,ALKBH5缺失显著下调了促迁移分子蛋白表达,增加了抑制迁移分子蛋白表达。由于趋化因子受体蛋白2 (CXCR2) 在中性粒细胞表达降低,在Transwell试验中ALKBH5缺陷的小鼠骨髓中性粒细胞向趋化因子CXCL2迁移存在显著缺陷 [43] 。由此可见,ALKBH5在转录后修饰水平促进中性粒细胞迁移到感染部位发挥抗菌先天免疫防御。

肾脏是脓毒症最易损伤的器官之一。在研究脓毒症肾损伤机制中,Zhu等 [58] 发现敲低ALKBH5或右美托咪定处理可抑制LPS处理的人肾近曲小管上皮细胞HK-2的活性,诱导细胞凋亡,减少炎症细胞因子的产生。从机制上来说,ALKBH5可以通过去甲基化上调转移相关肺腺癌转录本1 (MALAT1),而右美托咪定可以抑制经LPS处理的HK-2细胞中ALKBH5的表达,从而下调MALAT1表达,降低炎症因子(TNF-α, IL-1β, IL-6)的释放 [58] 。抑制ALKBH5或许是预防和治疗败血症引起的肾损伤的潜在策略。

2.2. ALKBH5在病毒感染中的免疫调节作用

病毒的DNA或RNA复制需要依赖宿主细胞。Liu等的研究发现ALKBH5-OGDH-衣康酸轴以非IFN依赖的方式通过细胞代谢重编程促进病毒复制 [59] 。ALKBH5缺陷小鼠体内α-酮戊二酸脱氢酶(OGDH)和衣康酸生成减少,对病毒攻击表现出先天免疫反应非依赖性抵抗。甚至过表达ALKBH5增加了病毒感染时IFN-β的表达 [59] ,表明ALKBH5促进病毒复制不是通过抑制先天免疫信号通路,抑制ALKBH5或可阻断依赖衣康酸的病毒复制。

在轮状病毒(RV)感染小鼠小肠上皮细胞(IECs)模型中,Wang等发现轮状病毒可能通过NSP1抑制ALKBH5表达逃避抗病毒免疫防御 [60] 。RV感染显著下调回肠中去甲基化酶ALKBH5的蛋白水平,而小鼠(Mettl3ΔIEC)对RV感染具有抵抗性,并表现出干扰素(IFNs)和IFN刺激基因(ISGs)表达增加 [60] 。研究表明非结构蛋白1 (NSP1)是RV编码的天然免疫拮抗剂,可降解IRF3和β-Trcp [61] [62] 。RV降低ALKBH5蛋白水平依赖于NSP1 [60] 。表明ALKBH5本身可能有控制轮状病毒复制作用,抑制METTL3或可增强抗病毒作用,但具体作用机制尚不明确。

在Rubio等的研究中,ALKBH5可以降低人巨细胞病毒(HCMV)复制并刺激IFNB1 mRNA上调 [63] 。HCMV是一种dsDNA病毒,进一步发现仅其dsDNA就足以触发IFNβ的分泌。ALKBH5缺失降低了新生IFNB1 mRNA的产生,但对IFNB1 mRNA的衰减没有明显影响 [63] 。

乙型肝炎病毒(HBV)是较为常见的DNA病毒,它能特异性地在人类和猩猩的肝脏中复制,造成急性肝炎、慢性肝炎、肝纤维化 [64] 甚至诱发肝癌 [65] 。Zhao等发现HBV诱导的慢性乙型肝炎纤维化患者免疫细胞浸润水平与肝纤维化进展呈正相关。另外,关键基因与细胞的交叉分析显示ALKBH5与巨噬细胞以及WTAP与NK T细胞存在相互作用,而这两者的互作关系可能是肝纤维化进展的潜在因素 [64] 。

目前较难治疗的HIV病毒,又称人类获得性免疫缺陷病毒,在已分化或原代髓系巨噬细胞中经HIV-1 病毒感染或m6A修饰的HIV-1 RNA片段刺激可以引起IFN-γ表达降低,然而过表达FTO或ALKBH5可以减少HIV-1 RNA的m6A修饰从而增加IFN-I表达。机制上,m6A修饰可能掩盖了HIV病毒RNA及转录本,从而逃避视黄酸诱导的基因I (RIG-I)介导的RNA传感和驱动IFN-I基因表达的转录因子IRF3和IRF7的激活 [66] 。

3. ALKBH5与肿瘤免疫微环境

已有大量研究表明ALKBH5以m6A去甲基化修饰的方式在转录后修饰水平调控基因表达。在肿瘤的发生发展的抑制性免疫微环境塑造中也起着重要的调节作用。

3.1. 胶质瘤——促癌

泛癌分析显示,ALKBH5在多种实体瘤中表达上调。ALKBH5表达与细胞周期、DNA损伤修复、代谢、免疫、肿瘤患者预后不良显著相关 [48] 。在癌症基因组数据库中,ALKBH5高表达的胶质瘤患者,其淋巴细胞特异性激酶(LCK)、主要组织相容性复合体I (MHC-I)、主要组织相容性复合体II (MHC-II)信号转导和转录激活因子1 (STAT1)的metagenes富集得分较高。这表明在胶质瘤中ALKBH5表达调节干扰素信号、淋巴细胞活化和抗原提呈细胞的活化 [48] 。同时,U87和U251细胞体内外试验表明ALKBH5促进胶质瘤细胞的增殖、迁移和侵袭,并招募M2型巨噬细胞到胶质瘤细胞 [48] 。

在多形性胶质母细胞瘤GBM细胞中,ALKBH5耗竭或失活显著抑制了肿瘤中缺氧诱导的肿瘤相关巨噬细胞(TAM)募集、免疫抑制及CXCL8/IL8的表达和分泌 [49] 。此外,GBM细胞系中ALKBH5与ZDHHC3 mRNA的结合,对其去甲基化修饰减少以YTHDF2依赖的方式降解 [67] 。上调的ZDHHC3棕榈酰亚胺化PD-L1,降低PD-L1的泛素化通路降解。抑制ALKBH5能延长GBM异种移植小鼠生存期,并增强抗PD-1免疫治疗 [67] 。在胶质母细胞瘤中,ALKBH5可以通过ALKBH5/ZDHHC3/PD-L1轴间接上调PD-L1的方式维持肿瘤免疫抑制微环境。

3.2. 小细胞肺癌——促癌但低表达

据临床肿瘤数据建立的m6A评分模型显示,小细胞肺癌(SCLC) m6A低评分患者肿瘤组织有更多的CD8+ T细胞浸润,抗PD-1免疫治疗疗效更好 [68] 。并且其总生存期(OS)和无复发生存期(RFS)显著延长。小细胞肺癌临床样本数据分析得出m6A调节因子如RBM15、RBM15B、ALKBH5、IGF2BP3和PRRC2A为致癌因子,而METTL5、YTHDC2和G3BP1为抑癌因子。有趣的是,几乎所有的甲基转移酶和结合蛋白在局限期小细胞肺癌(LS-SCLC)中都上调。然而,FTO和ALKBH5这两种去甲基化酶在LS-SCLC中的表达往往低于正常对照 [68] 。这些结果表明小细胞肺癌肿瘤组织存在高度异质性。其中m6A修饰基因的表达紊乱很可能是导致患者对化疗和抗PD-1免疫治疗耐药的潜在因素。目前m6A修饰基因表达与小细胞肺癌免疫微环境调控研究较少。解决化疗和抗PD-1免疫治疗耐药的小细胞肺癌患者临床用药问题亟需更确切地了解关键的m6A修饰酶及其耐药机制。

3.3. 宫颈癌——促癌

Ji等对TCGA宫颈癌患者数据集分析m6A调节子对免疫调控作用的研究中发现包括ALKBH5在内的14个m6A修饰酶在宫颈癌患者组织中高表达,在宫颈癌样本中,PD-L1的表达远高于癌旁正常组织。然而,ALKBH5、FTO、METTL3、RBM15B、YTHDF1、YTHDF3、ZC3H13均与PD-L1表达呈反比 [69] 。这些结果说明宫颈癌中m6A调节子和免疫检查点表达失调与免疫抑制性细胞浸润紊乱可能直接影响抗PD-1/PD-L1肿瘤免疫疗效。另外,也有研究表明ALKBH5介导的m6A修饰circCCDC134可以通过增强HIF1A转录促进宫颈癌转移 [12] 。这些说明ALKBH5在宫颈癌中作为促癌因子,并且可能联合其他m6A调节子一同介导抗PD-L1免疫疗法耐药。

3.4. 胰腺癌——可能抑癌

在TCGA数据库中,包括ALKBH5在内的13个m6A调控因子在胰腺癌(PAAD)样本中高表达。低表达METTL3/METTL16与患者不良预后显著相关,而ALKBH5与其没有相关性。然而ALKBH5、IGF2BP2、METTL16、RBM15异常表达与PAAD临床晚期显著相关 [70] 。此外,TIMER数据库显示ALKBH5表达水平与B细胞、CD8+T细胞、髓样树突状细胞和M2型巨噬细胞在PAAD中免疫细胞浸润水平相关 [70] 。这些表明ALKBH5对胰腺癌的免疫细胞浸润具有一定的调节作用。但ALKBH5对肿瘤患者生存期的调控以及其是否通过免疫浸润促进肿瘤进展仍需要进一步研究。此前,已有研究报道ALKBH5在胰腺癌中可能起到肿瘤抑制因子作用。具体而言,ALKBH5以m6A-YTHDF2依赖性方式通过m6A去甲基化在转录后激活PER1。PER1上调导致ATM-CHK2-P53/CDC25C信号重新激活,从而抑制胰腺癌细胞生长 [71] 。然而数据库分析结果表明ALKBH5与胰腺癌患者临床晚期具有相关性。ALKBH5在胰腺癌中表达上调,其对肿瘤的促进/抑制作用是否与肿瘤分期有关及其对免疫微环境调节作用有待进一步研究。

3.5. 结肠腺癌——抑癌

Yan等分析TCGA数据库中结肠腺癌(COAD)患者的ALKBH5和YTHDF1表达水平与肿瘤负荷、免疫检查点分子表达水平、肿瘤免疫细胞浸润水平之间的关系。结果表明高表达ALKBH5和低表达YTHDF1的结肠腺癌患者肿瘤分级较低,同时具有更多活化免疫细胞浸润和更高的免疫检查点分子表达水平,并且对免疫检查点阻断疗法更加敏感 [72] 。然而RT-qPCR显示癌旁组织与肿瘤组织ALKBH5表达水平是相反的。同时,结肠腺癌高低表达ALKBH5两者间基因差异表达富集分析中发现了许多与免疫显著相关的信号通路,包括适应性免疫应答、细胞杀伤、体液免疫应答、细胞因子产生的正调控、T细胞活化、T细胞增殖 [72] 。因此,在COAD患者中高表达ALKBH5和低表达YTHDF1可以通过上调免疫相关信号通路,促进活化的免疫细胞浸润肿瘤组织,抑制肿瘤细胞生长进展。已有研究报道癌旁组织中肿瘤相关成纤维细胞对肿瘤生长具有促进耐药作用 [73] 。与肿瘤组织的ALKBH5表达水平相反的结肠腺癌旁组织,对肿瘤低表达ALKBH5的COAD是否有相似的调控作用将是需要关注的研究问题。

3.6. 胃癌——促/抑癌

TCGA胃癌患者数据库显示ALKBH5是唯一一个比正常组织表达更低的m6A修饰酶,单因素和多因素回归模型均显示ALKBH5是胃癌中的抑癌因子 [74] 。高表达ALKBH5的亚组浸润了更多的幼稚B细胞、中性粒细胞、浆细胞和滤泡辅助性T细胞。另外,高危亚组有更多的幼稚B细胞和静息CD4+ T细胞浸润,但低危亚组有更多活化的记忆性CD4+ T细胞、CD8+ T细胞、M1型巨噬细胞和滤泡辅助性T细胞浸润。高表达ALKBH5与高危亚组均有更多的幼稚B细胞浸润,并且高表达ALKBH5患者5年生存率较高,而患者5~10年生存率则获益相反 [74] 。虽然该据数据库分析显示ALKBH5可能是胃癌抑癌因子,然而其他研究报道ALKBH5同时有促进和抑制胃癌生长作用。例如去甲基化酶ALKBH5通过PKMYT1 m6A修饰抑制胃癌的侵袭 [75] 、ALKBH5通过降低lncRNA NEAT1的甲基化程度来促进胃癌的侵袭和转移 [76] 、lncRNA NRON通过上调胃癌中的ALKBH5表达稳定Nanog mRNA 促进肿瘤增殖 [77] 。由此可见,ALKBH5在胃癌中可能同时存在促进和抑制作用,并且肿瘤恶性程度与其表达量高低未必相关。在胃癌中ALKBH5表达与肿瘤免疫之间的联系研究较少,仍有待进一步研究免疫检查点阻断剂是否适用于胃癌患者,并且未来也应谨慎应用ALKBH5的抑制剂用于抗胃癌进展。

3.7. 食管癌——促/抑癌

Zhao等发现TCGA数据库中m6A调节子在食管癌中存在差异表达并与食管癌的免疫反应相关。包括ALKBH5在内的17个m6A调节子在食管癌组织中表达上调,然而METTL3和YTHDC2在肿瘤样本中表达被抑制,说明后两者在EC中属于肿瘤抑制因子。进一步分析发现ALKBH5与EC肿瘤组织免疫浸润水平无显著相关 [78] 。虽然数据库分析结果表明ALKBH5在肿瘤组织中表达上调,但并未直接表明ALKBH5在食管癌肿瘤免疫中的促进或抑制肿瘤作用。另有研究表明ALKBH5和miR-193a-3p之间的正反馈回路促进食管鳞状细胞癌的生长和转移 [79] 。也有研究发现ALKBH5在食管癌中同时起着促癌因子 [80] 和抑癌因子 [81] 功能。然而需要更多体内外试验探究ALKBH5在食管癌免疫微环境中的调节作用,以进一步说明肿瘤免疫治疗剂是否适用于食管癌患者。

3.8. 肝癌——促/抑癌

基于ICGC和TCGA数据库分析,体内外多个肝癌细胞系试验发现ALKBH5促进肝癌细胞增殖、转移和PD-L1 + 巨噬细胞募集 [44] 。进一步研究结果表明,ALKBH5以m6A依赖的方式调节MAP3K8的表达,介导肝癌细胞的增殖和转移。具体来说,ALKBH5上调MAP3K8促进JNK和ERK通路的激活,从而调节IL-8的表达,促进巨噬细胞募集 [44] 。此外,Jiang等对肝癌免疫浸润和m6A调节子表达谱研究显示,包括ALKBH5和FTO在内的11个m6A调节子在HCC患者中显著高表达。然而ALKBH5不是患者总生存期(OS)和无病生存期(DFS)的独立预后因素 [82] 。巨噬细胞M0细胞在TCGA和ICGC肝癌队列高危组中均显著升高,除此以外,在TCGA肝癌队列高危组中,记忆B细胞、滤泡辅助性T细胞和中性粒细胞的浸润水平显著升高。在ICGC HCC队列中,巨噬细胞M0细胞和Treg细胞的比例在高危险评分的HCC患者中显著升高 [82] 。这表明m6A调节子表达谱对肝癌组织的免疫细胞浸润具有一定的调节作用,然而ALKBH5在肝癌中的调节作用存在争议和矛盾的结果。研究报道ALKBH5同时存在抑制和促进肝癌生长转移作用,例如骨损伤衍生的细胞外囊泡通过转移靶向ALKBH5的miR-3190-5p促进肝细胞癌转移前级联反应 [83] 、ALKBH5可介导LYPD1和PAQR4转录后修饰抑制肝癌进展 [84] [85] 。因此,ALKBH5在肝癌肿瘤免疫微环境中的复杂调节作用仍需进一步研究。

4. ALKBH5与自身免疫环境

研究发现ALKBH5可以控制CD4+ T细胞的致病性,ALKBH5在T细胞活化时特异性上调,而在体内稳态下不影响T细胞的发育和功能 [50] 。特异性敲除ALKBH5的CD4+ T细胞对过继性转移结肠炎和实验性自身免疫性脑脊髓炎(EAE)小鼠具有保护作用,而Tregs中ALKBH5的缺失不影响EAE的发展。机制上,ALKBH5降低CXCL2和IFN-γ mRNA上的m6A修饰,增加转录本稳定性和蛋白表达,导致CD4+ T细胞的反应增强。从而增加CD4+ T细胞在受体结肠中的浸润,在神经炎症期间中性粒细胞更多地浸润到中枢神经系统(CNS) [50] 。这些说明ALKBH5可以通过m6A去甲基化修饰控制CD4+ T细胞中CXCL2和IFN-γ表达增强IL-17信号通路。

在2017年,Li等基于m6A修饰在基因表达调控和免疫应答中的作用,推测m6A修饰可能与系统性红斑狼疮SLE的发病机制相关,并参与SLE的发生和发展 [86] 。直至2019年,Luo等采用qRT-PCR检测人外周血m6A“Writer”(METTL3、MTEEL14和WTAP)、“eraser”(FTO和ALKBH5)和“Reader”(YTHDF2)的mRNA水平。结果显示,SLE患者外周血中ALKBH5、FTO、METTL3、WTAP和YTHDF2的mRNA水平显著降低。SLE患者ALKBH5 mRNA水平与抗dsDNA、抗核小体、皮疹、溃疡相关,并且多因素logistic回归分析显示,外周血ALKBH5 mRNA水平低是SLE的危险因素 [45] 。这是为数不多的关于m6A调节子与系统性红斑狼疮自身免疫性疾病的研究。同时也直接证明了ALKBH5的确参与了免疫调控并且与自身免疫性疾病相关。当然,需要进一步研究ALKBH5的蛋白质水平对免疫细胞和细胞因子水平调控,最终确定ALKBH5是否可以作为缓解SLE病况的药物靶点。

然而截至目前为止,仍然没有研究关注ALKBH5对自身免疫性甲状腺疾病在转录后修饰水平的调控。Song等研究了中国汉族自身免疫性甲状腺疾病患者的ALKBH5基因单核苷酸多态性(SNPs)与自身免疫性甲状腺疾病(AITD)发生发展的潜在关系。结果显示即使调整年龄和性别后ALKBH5基因SNPs与AITD易感性仍然存在显著关联 [51] 。究其原因,一方面,ALKBH5基因单核苷酸多态性可能直接影响ALKBH5蛋白质结构和功能;另一方面,也可能因为ALKBH5基因序列微小改变导致整体基因表达改变。需要进一步研究ALKBH5与自身免疫性甲状腺疾病易感性的调控机制。

原发性干燥综合征(pSS)是一种全身性自身免疫性疾病,由于免疫细胞浸润唾液腺和泪腺导致口腔和眼睛干燥 [87] 。临床数据显示,pSS患者ALKBH5和FTO的mRNA表达明显高于健康对照(HCs)。与非干燥综合征患者(non-SS)相比,pSS患者PBMC的ALKBH5和FTO趋于降低,但无显著性差异 [88] 。虽然二元Logistic分析显示患者外周血单核细胞中ALKBH5的mRNA水平升高是原发性干燥综合征的危险因素,然而未显示ALKBH5与免疫细胞浸润或细胞因子表达水平相关。相反,其他m6A调节子如METTLE3、FTO、YTHDF1等与C反应蛋白(CRP)、免疫球蛋白A (IgA)、白血病和中性粒细胞等具有相关性 [88] 。基于临床患者数据分析结果,仍然需要进一步实验探究ALKHB5对自身免疫性干燥综合征患者细胞因子表达及免疫细胞浸润的调控作用。

5. ALKBH5与妊娠免疫微环境

最近部分研究表明ALKBH5的表达失调与母体–胚胎界面免疫耐受有关。m6A修饰的异常与多种生理疾病相关,包括女性生育力、卵泡发育、卵母细胞成熟 [89] 和复发性自然流产(RSA) [46] 。最近的研究发现,m6A修饰的异常模式抑制了滋养细胞的侵袭,并损害了母胎界面的免疫耐受和免疫细胞浸润。在原代人子宫内膜基质细胞中的过表达ALKBH5,并将其与THP-1细胞共培养。观察到THP-1向M2型分化减少以及基质细胞中VEGF的分泌降低。然而VEGF的异常表达可能损害巨噬细胞募集和M2分化,这可能是破坏母体对胚胎免疫耐受,导致复发性自然流产的潜在原因 [46] 。此外,也有研究分析不孕和反复妊娠丢失妇女的子宫内膜组织的m6A调节子表达,发现m6A调节因子在不育妇女中的表达明显失调。其中ALKBH5 mRNA水平在不育者中较高,m6A“reader”IGF2BP2、m6A“writer”METTL16和WTAP在不育组中较低 [90] 。这些表明子宫内膜基质细胞ALKBH5高表达可能破坏母体胚胎界面的抑制性免疫,是导致妇女免疫耐受失调、反复流产甚至不孕的一个重要因素。然而,目前ALKBH5在妊娠免疫方面研究仍然较少。需要进一步研究在母体对胚胎建立免疫耐受过程中,ALKBH5对免疫细胞浸润和细胞因子释放的调控作用,为患者提供潜在治疗方法。

6. 总结与展望

作为RNA m6A去甲基化酶之一,ALKBH5维持着RNA甲基化与去甲基化之间的平衡。ALKBH5通过对RNA m6A去甲基化修饰对正常生理和病理过程发挥重要调控作用。近年来,关于ALKBH5对多种肿瘤的发生发展机制研究不断涌现,同时也报道了其与正常免疫、抑制性免疫、自身免疫调控相关。基于ALKBH5在转录后修饰水平调控多种基因的表达,越来越多研究表明其不仅在肿瘤中起肿瘤促进因子 [91] [92] [93] 或抑癌因子功能 [85] [94] [95] ,还能维持肿瘤抑制性免疫微环境促进肿瘤转移侵袭 [44] [67] [96] 。同时,在母体胚胎界面高表达ALKBH5可能是不孕的重要因素。由于抑制性免疫耐受难以在母胎界面局部形成导致女性反复流产 [46] [90] 。此外,在正常免疫环境下对细菌或病毒感染的免疫响应时,ALKBH5以m6A去甲基化酶调控免疫细胞分化、成熟、细胞因子释放 [43] [47] [63] ,也以依赖或不依赖先天免疫的方式抗病毒 [59] [63] 。自身免疫性疾病,如系统性红斑狼疮(SLE) [45] 和干燥综合征 [88] ,已被初步发现与ALKBH5表达失调相关。而自身免疫性甲状腺病易感性 [51] 与ALKBH5基因的单核苷酸多态性相关。另有研究表明ALKBH5可通过增强CD4+ T细胞响应性促进自身免疫病发展 [50] 。由此可见,ALKBH5在免疫系统中具有广泛的调控作用。

然而,仍然有许多问题和挑战亟待解决。首先,除上述提及的肿瘤类型中免疫微环境受到ALKBH5调控外,仍然有很大一部分肿瘤类型,其免疫浸润特征未与ALKBH5的表观转录水平调控联系起来。此外,临床数据库的分析结果仍需要进一步研究阐明其确切机制。其次,在ALKBH5的调控作用具有争议的肿瘤类型中,例如肝癌、胃癌、食管癌、小细胞肺癌等,有待全面研究用以指示ALKBH5是否适合为其潜在药物靶标。当然,在一些研究成熟且机制确切的肿瘤类型中运用ALKBH5抑制剂或联合免疫检查点阻断剂或许是未来可行的治疗策略。然而,ALKBH5抑制剂的研究仍然处于不成熟的阶段。目前为止,研究报道的选择性和抑制活性均较好的分子为20 m [97] ,其他先前报道的一些抑制剂活性欠佳或选择性较差 [97] [98] 。令人遗憾的是ALKBH5抑制剂在细胞、动物水平的研究均较少。总的来说,需要对ALKBH5小分子抑制剂的结构进一步优化为靶向ALKBH5开发抗肿瘤和免疫治疗药物提供可能性。在低表达ALKBH5且充当保护角色的肿瘤类型和自身免疫病中,或许可以通过ALKBH5激动剂增强治疗效果。

另有研究表明肝癌放射治疗可以释放dsDNA和ssDNA等,ALKBH5通过去甲基化修饰TMGB1-STING激活先天免疫反应,上调IFN-I诱导肝脏炎症、肝衰竭 [99] 。同时,ALKBH5可以加剧缺血/再灌注诱导的心脑组织损伤 [39] [40] [100] ,并参与血管再生 [42] 。总而言之,将ALKBH5作为药物靶标很可能是治疗心脑缺血损伤、抗肿瘤、缓解自身免疫疾病和重度炎症的潜在方案。

NOTES

*通讯作者。

参考文献

[1] Chen, X.Y., Zhang, J. and Zhu, J.S. (2019) The Role of m6A RNA Methylation in Human Cancer. Molecular Cancer, 18, Article No. 103.
https://doi.org/10.1186/s12943-019-1033-z
[2] Qu, J., Yan, H., Hou, Y., Cao, W., Liu, Y., Zhang, E., et al. (2022) RNA Demethylase ALKBH5 in Cancer: From Mechanisms to Therapeutic Potential. Journal of Hematology & Oncology, 15, Article No. 8.
https://doi.org/10.1186/s13045-022-01224-4
[3] Desrosiers, R., Friderici, K. and Rottman, F. (1974) Identifica-tion of Methylated Nucleosides in Messenger RNA from Novikoff Hepatoma Cells. Proceedings of the National Acade-my of Sciences of the United States of America, 71, 3971-3975.
https://doi.org/10.1073/pnas.71.10.3971
[4] Perry, R.P. and Kelley, D.E. (1974) Existence of Methylated Messenger RNA in Mouse L Cells. Cell, 1, 37-42.
https://doi.org/10.1016/0092-8674(74)90153-6
[5] Liu, H., Lyu, H., Jiang, G., Chen, D., Ruan, S., Liu, S., et al. (2022) ALKBH5-Mediated m6A Demethylation of GLUT4 mRNA Promotes Glycolysis and Resistance to HER2-Targeted Therapy in Breast Cancer. Cancer Research, 82, 3974-3986.
https://doi.org/10.1158/0008-5472.CAN-22-0800
[6] Meyer, K.D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C.E. and Jaffrey, S.R. (2012) Comprehensive Analysis of mRNA Methylation Reveals Enrichment in 3’UTRs and Near Stop Codons. Cell, 149, 1635-1646.
https://doi.org/10.1016/j.cell.2012.05.003
[7] Peng, H., Chen, B., Wei, W., Guo, S., Han, H., Yang, C., et al. (2022) N6-Methyladenosine (m6A) in 18S rRNA Promotes Fatty Acid Metabolism and Oncogenic Transformation. Na-ture Metabolism, 4, 1041-1054.
https://doi.org/10.1038/s42255-022-00622-9
[8] Correia De Sousa, M., Gjorgjieva, M., Dolicka, D., Sobolewski, C. and Foti, M. (2019) Deciphering miRNAs’ Action through miRNA Editing. International Journal of Molecular Sci-ences, 20, Article 6249.
https://doi.org/10.3390/ijms20246249
[9] Li, Y., Yan, B., Wang, X., Li, Q., Kan, X., Wang, J., et al. (2021) ALKBH5-Mediated m6A Modification of LncRNA KCNQ1OT1 Triggers the Development of LSCC via Upregulation of HOXA9.
https://doi.org/10.21203/rs.3.rs-637073/v1
[10] Yu, H. and Zhang, Z. (2021) ALKBH5-Mediated m6A Demethyl-ation of lncRNA RMRP Plays an Oncogenic Role in Lung Adenocarcinoma. Mammalian Genome, 32, 195-203.
https://doi.org/10.1007/s00335-021-09872-6
[11] Chen, S., Zhou, L. and Wang, Y. (2020) ALKBH5-Mediated m6A Demethylation of lncRNA PVT1 Plays an Oncogenic Role in Osteosarcoma. Cancer Cell International, 20, Article No. 34.
https://doi.org/10.1186/s12935-020-1105-6
[12] Liang, L., Zhu, Y., Li, J., Zeng, J. and Wu, L. (2022) ALKBH5-Mediated m6A Modification of circCCDC134 Facilitates Cervical Cancer Metastasis by Enhancing HIF1A Transcription. Journal of Experimental & Clinical Cancer Research, 41, Article No. 261.
https://doi.org/10.1186/s13046-022-02462-7
[13] Zhang, L., Hou, C., Chen, C., Guo, Y., Yuan, W., Yin, D., et al. (2020) The Role of N6-Methyladenosine (m6A) Modification in the Regulation of circRNAs. Molecular Cancer, 19, Ar-ticle No. 105.
https://doi.org/10.1186/s12943-020-01224-3
[14] Pendleton, K.E., Chen, B., Liu, K., Hunter, O.V., Xie, Y., Tu, B.P., et al. (2017) The U6 snRNA m6A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention. Cell, 169, 824-835.E14.
https://doi.org/10.1016/j.cell.2017.05.003
[15] Han, J., Wang, J., Yang, X., Yu, H., Zhou, R., Lu, H.C., et al. (2019) METTL3 Promote Tumor Proliferation of Bladder Cancer by Accelerating pri-miR221/222 Maturation in m6A-Dependent Manner. Molecular Cancer, 18, Article No. 110.
https://doi.org/10.1186/s12943-019-1036-9
[16] Li, T., Hu, P.S., Zuo, Z., Lin, J.F., Li, X., Wu, Q.N., et al. (2019) METTL3 Facilitates Tumor Progression via an m6A-IGF2BP2-Dependent Mechanism in Colorectal Carcinoma. Molec-ular Cancer, 18, Article No. 112.
https://doi.org/10.1186/s12943-019-1038-7
[17] Liu, J., Yue, Y., Han, D., Wang, X., Fu, Y., Zhang, L., et al. (2014) A METTL3-METTL14 Complex Mediates Mammalian Nuclear RNA N6-Adenosine Methylation. Nature Chemical Biology, 10, 93-95.
https://doi.org/10.1038/nchembio.1432
[18] Wan, W., Ao, X., Chen, Q., Yu, Y., Ao, L., Xing, W., et al. (2022) METTL3/IGF2BP3 Axis Inhibits Tumor Immune Surveillance by Upregulating N6-Methyladenosine Modification of PD-L1 mRNA in Breast Cancer. Molecular Cancer, 21, Article No. 60.
https://doi.org/10.1186/s12943-021-01447-y
[19] Zeng, C., Huang, W., Li, Y. and Weng, H. (2020) Roles of METTL3 in Cancer: Mechanisms and Therapeutic Targeting. Journal of Hematology & Oncology, 13, Article No. 117.
https://doi.org/10.1186/s13045-020-00951-w
[20] Zhou, H., Yin, K., Zhang, Y., Tian, J. and Wang, S. (2021) The RNA m6A Writer METTL14 in Cancers: Roles, Structures, and Applications. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1876, Article ID: 188609.
https://doi.org/10.1016/j.bbcan.2021.188609
[21] Ping, X.L., Sun, B.F., Wang, L., Xiao, W., Yang, X., Wang, W.J., et al. (2014) Mammalian WTAP Is a Regulatory Subunit of the RNA N6-Methyladenosine Methyltransferase. Cell Research, 24, 177-189.
https://doi.org/10.1038/cr.2014.3
[22] Han, Z., Niu, T., Chang, J., Lei, X., Zhao, M., Wang, Q., et al. (2010) Crys-tal Structure of the FTO Protein Reveals Basis for Its Substrate Specificity. Nature, 464, 1205-1209.
https://doi.org/10.1038/nature08921
[23] Xu, C., Liu, K., Tempel, W., Demetriades, M., Aik, W., Schofield, C.J., et al. (2014) Structures of Human ALKBH5 Demethylase Reveal a Unique Binding Mode for Specific Single-Stranded N6-Methyladenosine RNA Demethylation. Journal of Biological Chemistry, 289, 17299-17311.
https://doi.org/10.1074/jbc.M114.550350
[24] Maimaiti, A., Tuersunniyazi, A., Meng, X., Pei, Y., Ji, W., Feng, Z., et al. (2022) N6-Methyladenosine RNA Methylation Regulator-Related Alternative Splicing Gene Signature as Prognos-tic Predictor and in Immune Microenvironment Characterization of Patients with Low-Grade Glioma. Frontiers in Genet-ics, 13, Article 872186.
https://doi.org/10.3389/fgene.2022.872186
[25] Tang, C., Klukovich, R., Peng, H., Wang, Z., Yu, T., Zhang, Y., et al. (2018) ALKBH5-Dependent m6A Demethylation Controls Splicing and Stability of Long 3’-UTR mRNAs in Male Germ Cells. Proceedings of the National Academy of Sciences of the United States of America, 115, E325-E333.
https://doi.org/10.1073/pnas.1717794115
[26] Roundtree, I.A., Luo, G.Z., Zhang, Z., Wang, X., Zhou, T., Cui, Y., et al. (2017) YTHDC1 Mediates Nuclear Export of N6-Methyladenosine Methylated mRNAs. eLife, 6, e31311.
https://doi.org/10.7554/eLife.31311
[27] Chen, R.X., Chen, X., Xia, L.P., Zhang, J.X., Pan, Z.Z., Ma, X.D., et al. (2019) N6-Methyladenosine Modification of circNSUN2 Facilitates Cytoplasmic Export and Stabilizes HMGA2 to Pro-mote Colorectal Liver Metastasis. Nature Communications, 10, Article No. 4695.
https://doi.org/10.1038/s41467-019-12651-2
[28] Li, H.B., Tong, J., Zhu, S., Batista, P.J., Duffy, E.E., Zhao, J., et al. (2017) m6A mRNA Methylation Controls T Cell Homeostasis by Targeting the IL-7/STAT5/SOCS Pathways. Na-ture, 548, 338-342.
https://doi.org/10.1038/nature23450
[29] Liu, T., Wei, Q., Jin, J., Luo, Q., Liu, Y., Yang, Y., et al. (2020) The m6A Reader YTHDF1 Promotes Ovarian Cancer Progression via Augmenting EIF3C Translation. Nucleic Acids Re-search, 48, 3816-3831.
https://doi.org/10.1093/nar/gkaa048
[30] Wang, X., Zhao, B.S., Roundtree, I.A., Lu, Z., Han, D., Ma, H., et al. (2015) N6-Methyladenosine Modulates Messenger RNA Translation Efficiency. Cell, 161, 1388-1399.
https://doi.org/10.1016/j.cell.2015.05.014
[31] Yu, B., Edstrom, W.C., Benach, J., Hamuro, Y., Weber, P.C., Gib-ney, B.R., et al. (2006) Crystal Structures of Catalytic Complexes of the Oxidative DNA/RNA Repair Enzyme AlkB. Nature, 439, 879-884.
https://doi.org/10.1038/nature04561
[32] Feng, C., Liu, Y., Wang, G., Deng, Z., Zhang, Q., Wu, W., et al. (2014) Crystal Structures of the Human RNA Demethylase Alkbh5 Reveal Basis for Substrate Recognition. Journal of Biologi-cal Chemistry, 289, 11571-11583.
https://doi.org/10.1074/jbc.M113.546168
[33] Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., Yang, Y., et al. (2011) N6-Methyladenosine in Nuclear RNA Is a Major Substrate of the Obesity-Associated FTO. Nature Chemical Biology, 7, 885-887.
https://doi.org/10.1038/nchembio.687
[34] Zhang, X., Wei, L.H., Wang, Y., Xiao, Y., Liu, J., Zhang, W., et al. (2019) Structural Insights into FTO’s Catalytic Mechanism for the Demethylation of Multiple RNA Substrates. Proceedings of the National Academy of Sciences of the United States of America, 116, 2919-2924.
https://doi.org/10.1073/pnas.1820574116
[35] Gerken, T., Girard, C.A., Tung, Y.C.L., Webby, C.J., Saudek, V., Hewitson, K.S., et al. (2007) The Obesity-Associated FTO Gene Encodes a 2-Oxoglutarate-Dependent Nucleic Acid Demethylase. Science, 318, 1469-1472.
https://doi.org/10.1126/science.1151710
[36] Jia, G., Yang, C.G., Yang, S., Jian, X., Yi, C., Zhou, Z., et al. (2008) Oxidative Demethylation of 3-Methylthymine and 3-Methyluracil in Single-Stranded DNA and RNA by Mouse and Human FTO. FEBS Letters, 582, 3313-3319.
https://doi.org/10.1016/j.febslet.2008.08.019
[37] Zheng, G., Dahl, J.A., Niu, Y., Fedorcsak, P., Huang, C.M., Li, C.J., et al. (2013) ALKBH5 Is a Mammalian RNA Demethylase That Impacts RNA Metabolism and Mouse Fertility. Molecular Cell, 49, 18-29.
https://doi.org/10.1016/j.molcel.2012.10.015
[38] Baltz, A.G., Munschauer, M., Schwanhäusser, B., Vasile, A., Murakawa, Y., Schueler, M., et al. (2012) The mRNA-Bound Proteome and Its Global Occupancy Profile on Pro-tein-Coding Transcripts. Molecular Cell, 46, 674-690.
https://doi.org/10.1016/j.molcel.2012.05.021
[39] Han, Z., Wang, X., Xu, Z., Cao, Y., Gong, R., Yu, Y., et al. (2021) ALKBH5 Regulates Cardiomyocyte Proliferation and Heart Regeneration by Demethylating the mRNA of YTHDF1. Theranostics, 11, 3000-3016.
https://doi.org/10.7150/thno.47354
[40] Cheng, P., Han, H., Chen, F., Cheng, L., Ma, C., Huang, H., et al. (2022) Amelioration of Acute Myocardial Infarction Injury through Targeted Ferritin Nanocages Loaded with an ALKBH5 In-hibitor. Acta Biomaterialia, 140, 481-491.
https://doi.org/10.1016/j.actbio.2021.11.041
[41] Du, T., Li, G., Yang, J. and Ma, K. (2020) RNA Demethylase Alkbh5 Is Widely Expressed in Neurons and Decreased during Brain Development. Brain Research Bulletin, 163, 150-159.
https://doi.org/10.1016/j.brainresbull.2020.07.018
[42] Kumari, R., Dutta, R., Ranjan, P., Suleiman, Z.G., Goswami, S.K., Li, J., et al. (2022) ALKBH5 Regulates SPHK1-Dependent Endothelial Cell Angiogenesis Following Ischemic Stress. Frontiers in Cardiovascular Medicine, 8, Article 817304.
https://doi.org/10.3389/fcvm.2021.817304
[43] Liu, Y., Song, R., Zhao, L., Lu, Z., Li, Y., Zhan, X., et al. (2022) m6A Demethylase ALKBH5 Is Required for Antibacterial Innate Defense by Intrinsic Motivation of Neutrophil Migra-tion. Signal Transduction and Targeted Therapy, 7, Article No. 194.
https://doi.org/10.1038/s41392-022-01020-z
[44] You, Y., Wen, D., Zeng, L., Lu, J., Xiao, X., Chen, Y., et al. (2022) ALKBH5/MAP3K8 Axis Regulates PD-L1+ Macrophage Infiltration and Promotes Hepatocellular Carcinoma Progression. International Journal of Biological Sciences, 18, 5001-5018.
https://doi.org/10.7150/ijbs.70149
[45] Luo, Q., Fu, B., Zhang, L., Guo, Y., Huang, Z. and Li, J. (2020) Decreased Peripheral Blood ALKBH5 Correlates with Markers of Autoimmune Response in Systemic Lupus Erythematosus. Dis-ease Markers, 2020, Article ID: 8193895.
https://doi.org/10.1155/2020/8193895
[46] Zhao, Y., Sun, J. and Jin, L. (2022) The N6-Methyladenosine Regula-tor ALKBH5 Mediated Stromal Cell-Macrophage Interaction via VEGF Signaling to Promote Recurrent Spontaneous Abortion: A Bioinformatic and in Vitro Study. International Journal of Molecular Sciences, 23, Article 15819.
https://doi.org/10.3390/ijms232415819
[47] Ding, C., Xu, H., Yu, Z., Roulis, M., Qu, R., Zhou, J., et al. (2022) RNA m6A Demethylase ALKBH5 Regulates the Development of γδ T Cells. Proceedings of the National Academy of Sciences of the United States of America, 119, e2203318119.
https://doi.org/10.1073/pnas.2203318119
[48] Wei, C., Wang, B., Peng, D., Zhang, X., Li, Z., Luo, L., et al. (2022) Pan-Cancer Analysis Shows That ALKBH5 Is a Poten-tial Prognostic and Immunotherapeutic Biomarker for Multiple Cancer Types Including Gliomas. Frontiers in Immunol-ogy, 13, Article 849592.
https://doi.org/10.3389/fimmu.2022.849592
[49] Dong, F., Qin, X., Wang, B., Li, Q., Hu, J., Cheng, X., et al. (2021) ALKBH5 Facilitates Hypoxia-Induced Paraspeckle Assembly and IL8 Secretion to Generate an Immunosuppressive Tumor Microenvironment. Cancer Research, 81, 5876-5888.
https://doi.org/10.1158/0008-5472.CAN-21-1456
[50] Zhou, J., Zhang, X., Hu, J., Qu, R., Yu, Z., Xu, H., et al. (2021) m6A Demethylase ALKBH5 Controls CD4+ T Cell Pathogenicity and Promotes Autoimmunity. Science Advanc-es, 7, eabg0470.
https://doi.org/10.1126/sciadv.abg0470
[51] Song, R., Zhao, J., Gao, C., Qin, Q. and Zhang, J. (2021) Inclusion of ALKBH5 as a Candidate Gene for the Susceptibility of Autoimmune Thyroid Disease. Advances in Medical Sciences, 66, 351-358.
https://doi.org/10.1016/j.advms.2021.07.006
[52] Shulman, Z. and Stern-Ginossar, N. (2020) The RNA Modifica-tion N6-Methyladenosine as a Novel Regulator of the Immune System. Nature Immunology, 21, 501-512.
https://doi.org/10.1038/s41590-020-0650-4
[53] Kreslavsky, T., Gleimer, M. and von Boehmer, H. (2010) αβ ver-sus γδ Lineage Choice at the First TCR-Controlled Checkpoint. Current Opinion in Immunology, 22, 185-192.
https://doi.org/10.1016/j.coi.2009.12.006
[54] Pennington, D.J., Silva-Santos, B. and Hayday, A.C. (2005) γδ T Cell Development—Having the Strength to Get There. Current Opinion in Immunology, 17, 108-115.
https://doi.org/10.1016/j.coi.2005.01.009
[55] Washburn, T., Schweighoffer, E., Gridley, T., Chang, D., Fowlkes, B.J., Cado, D., et al. (1997) Notch Activity Influences the αβ versus γδ T Cell Lineage Decision. Cell, 88, 833-843.
https://doi.org/10.1016/S0092-8674(00)81929-7
[56] Bajrami, B., Zhu, H., Kwak, H.J., Mondal, S., Hou, Q., Geng, G., et al. (2016) G-CSF Maintains Controlled Neutrophil Mobilization during Acute Inflammation by Negatively Regulating CXCR2 Signaling. Journal of Experimental Medicine, 213, 1999-2018.
https://doi.org/10.1084/jem.20160393
[57] Olson, T.S. and Ley, K. (2002) Chemokines and Chemokine Receptors in Leukocyte Trafficking. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 283, R7-R28.
https://doi.org/10.1152/ajpregu.00738.2001
[58] Zhu, S. and Lu, Y. (2020) Dexmedetomidine Suppressed the Bi-ological Behavior of HK-2 Cells Treated with LPS by Down-Regulating ALKBH5. Inflammation, 43, 2256-2263.
https://doi.org/10.1007/s10753-020-01293-y
[59] Liu, Y., You, Y., Lu, Z., Yang, J., Li, P., Liu, L., et al. (2019) N6-Methyladenosine RNA Modification-Mediated Cellular Metabolism Rewiring Inhibits Viral Replication. Science, 365, 1171-1176.
https://doi.org/10.1126/science.aax4468
[60] Wang, A., Tao, W., Tong, J., Gao, J., Wang, J., Qian, C., et al. (2022) m6A Modifications Regulate Intestinal Immunity and Rotavirus Infection. eLife, 11, e73628.
[61] Barro, M. and Patton, J.T. (2005) Rotavirus Nonstructural Protein 1 Subverts Innate Immune Response by Inducing Degradation of IFN Reg-ulatory Factor 3. Proceedings of the National Academy of Sciences of the United States of America, 102, 4114-4119.
https://doi.org/10.1073/pnas.0408376102
[62] Ding, S., Mooney, N., Li, B., Kelly, M.R., Feng, N., Loktev, A.V., et al. (2016) Comparative Proteomics Reveals Strain-Specific β-TrCP Degradation via Rotavirus NSP1 Hijacking a Host Cullin-3-Rbx1 Complex. PLOS Pathogens, 12, e1005929.
https://doi.org/10.1371/journal.ppat.1005929
[63] Rubio, R.M., Depledge, D.P., Bianco, C., Thompson, L. and Mohr, I. (2018) RNA m6A Modification Enzymes Shape Innate Responses to DNA by Regulating Interferon β. Genes & Development, 32, 1472-1484.
[64] Zhao, T., Qi, J., Liu, T., Wu, H. and Zhu, Q. (2022) N6-Methyladenosine Modification Participates in the Progression of Hepatitis B Vi-rus-Related Liver Fibrosis by Regulating Immune Cell Infiltration. Frontiers in Medicine, 9, Article 821710.
https://doi.org/10.3389/fmed.2022.821710
[65] Kaneko, S., Kurosaki, M., Inada, K., Kirino, S., Hayakawa, Y., Yamashita, K., et al. (2021) Hepatitis B Core-Related Antigen Predicts Disease Progression and Hepatocellular Carcino-ma in Hepatitis B e Antigen-Negative Chronic Hepatitis B Patients. Journal of Gastroenterology and Hepatology, 36, 2943-2951.
https://doi.org/10.1111/jgh.15563
[66] Chen, S., Kumar, S., Espada, C.E., Tirumuru, N., Cahill, M.P., Hu, L., et al. (2021) N6-Methyladenosine Modification of HIV-1 RNA Suppresses Type-I Interferon Induction in Dif-ferentiated Monocytic Cells and Primary Macrophages. PLOS Pathogens, 17, e1009421.
https://doi.org/10.1371/journal.ppat.1009421
[67] Tang, W., Xu, N., Zhou, J., He, Z., Lenahan, C., Wang, C., et al. (2022) ALKBH5 Promotes PD-L1-Mediated Immune Escape through m6A Modification of ZDHHC3 in Glioma. Cell Death Discovery, 8, Article No. 497.
https://doi.org/10.1038/s41420-022-01286-w
[68] Zhang, Z., Zhang, C., Luo, Y., Wu, P., Zhang, G., Zeng, Q., et al. (2021) m6A Regulator Expression Profile Predicts the Prognosis, Benefit of Adjuvant Chemotherapy, and Response to Anti-PD-1 Immunotherapy in Patients with Small- Cell Lung Cancer. BMC Medicine, 19, Article No. 284.
https://doi.org/10.1186/s12916-021-02148-5
[69] Ji, H., Zhang, J., Liu, H., Li, K., Wang, Z. and Zhu, X. (2022) Comprehensive Characterization of Tumor Microenvironment and m6A RNA Methylation Regulators and Its Effects on PD-L1 and Immune Infiltrates in Cervical Cancer. Frontiers in Immunology, 13, Article 976107.
https://doi.org/10.3389/fimmu.2022.976107
[70] Zhang, T., Sheng, P. and Jiang, Y. (2022) m6A Regulators Are Differently Expressed and Correlated with Immune Response of Pancreatic Adenocarcinoma. Journal of Cancer Re-search and Clinical Oncology, 149, 2805-2822.
https://doi.org/10.1007/s00432-022-04150-7
[71] Guo, X., Li, K., Jiang, W., Hu, Y., Xiao, W., Huang, Y., et al. (2020) RNA Demethylase ALKBH5 Prevents Pancreatic Cancer Progression by Posttranscriptional Activation of PER1 in an m6A-YTHDF2-Dependent Manner. Molecular Cancer, 19, Article No. 91.
https://doi.org/10.1186/s12943-020-01158-w
[72] Yan, G., An, Y., Xu, B., Wang, N., Sun, X. and Sun, M. (2021) Potential Impact of ALKBH5 and YTHDF1 on Tumor Immunity in Colon Adenocarcinoma. Frontiers in Oncology, 11, Article 670490.
https://doi.org/10.3389/fonc.2021.670490
[73] Sharpe, B.P., Hayden, A., Manousopoulou, A., Cowie, A., Walker, R.C., Harrington, J., et al. (2022) Phosphodiesterase Type 5 Inhibitors Enhance Chemotherapy in Preclinical Models of Esophageal Adenocarcinoma by Targeting Cancer-Associated Fibroblasts. Cell Reports Medicine, 3, Article ID: 100541.
https://doi.org/10.1016/j.xcrm.2022.100541
[74] Ji, T., Gao, X., Li, D., Huai, S., Chi, Y., An, X., et al. (2023) Identification and Validation of Signature for Prognosis and Immune Microenvironment in Gastric Cancer Based on m6A Demethylase ALKBH5. Frontiers in Oncology, 12, Article 1079402.
https://doi.org/10.3389/fonc.2022.1079402
[75] Hu, Y., Gong, C., Li, Z., Liu, J., Chen, Y., Huang, Y., et al. (2022) Demethylase ALKBH5 Suppresses Invasion of Gastric Cancer via PKMYT1 m6A Modification. Molecular Cancer, 21, Article No. 34.
https://doi.org/10.1186/s12943-022-01522-y
[76] Zhang, J., Guo, S., Piao, H., Wang, Y., Wu, Y., Meng, X., et al. (2019) ALKBH5 Promotes Invasion and Metastasis of Gastric Cancer by Decreasing Methylation of the lncRNA NEAT1. Journal of Physiology and Biochemistry, 75, 379-389.
https://doi.org/10.1007/s13105-019-00690-8
[77] Wang, S., Wang, Y., Zhang, Z., Zhu, C., Wang, C., Yu, F., et al. (2021) Long Non-Coding RNA NRON Promotes Tumor Proliferation by Regulating ALKBH5 and Nanog in Gastric Cancer. Journal of Cancer, 12, 6861-6872.
https://doi.org/10.7150/jca.60737
[78] Zhao, H., Xu, Y., Xie, Y., Zhang, L., Gao, M., Li, S., et al. (2021) m6A Regulators Is Differently Expressed and Correlated with Immune Response of Esophageal Cancer. Frontiers in Cell and Developmental Biology, 9, Article 650023.
https://doi.org/10.3389/fcell.2021.650023
[79] Xue, J., Xiao, P., Yu, X. and Zhang, X. (2021) A Positive Feed-back Loop between AlkB Homolog 5 and miR-193a-3p Promotes Growth and Metastasis in Esophageal Squamous Cell Carcinoma. Human Cell, 34, 502-514.
https://doi.org/10.1007/s13577-020-00458-z
[80] Nagaki, Y., Motoyama, S., Yamaguchi, T., Hoshizaki, M., Sato, Y., Sato, T., et al. (2020) m6A demethylase ALKBH5 Promotes Proliferation of Esophageal Squamous Cell Carcinoma Associated with Poor Prognosis. Genes Cells, 25, 547-561.
https://doi.org/10.1111/gtc.12792
[81] Xiao, D., Fang, T.X., Lei, Y., Xiao, S.J., Xia, J.W., Lin, T.Y., et al. (2021) m6A Demethylase ALKBH5 Suppression Contributes to Esophageal Squamous Cell Carcinoma Progression. Aging, 13, 21497-21512.
https://doi.org/10.18632/aging.203490
[82] Jiang, H., Ning, G., Wang, Y. and Lv, W. (2021) Identification of an m6A-Related Signature as Biomarker for Hepatocellular Carcinoma Prognosis and Correlates with Sorafenib and An-ti-PD-1 Immunotherapy Treatment Response. Disease Markers, 2021, Article ID: 5576683.
https://doi.org/10.1155/2021/5576683
[83] Han, S., Xue, L., Wei, Y., Yong, T., Jia, W., Qi, Y., et al. (2023) Bone Lesion-Derived Extracellular Vesicles Fuel Prometastatic Cascades in Hepatocellular Carcinoma by Transferring ALKBH5-Targeting miR-3190-5p. Advanced Science, 10, Article ID: 2207080.
https://doi.org/10.1002/advs.202207080
[84] Chen, Y., Zhao, Y., Chen, J., Peng, C., Zhang, Y., Tong, R., et al. (2020) ALKBH5 Suppresses Malignancy of Hepatocellular Carcinoma via m6A-Guided Epigenetic Inhibition of LYPD1. Molecular Cancer, 19, Article No. 123.
https://doi.org/10.1186/s12943-020-01239-w
[85] Wang, W., Huang, Q., Liao, Z., Zhang, H., Liu, Y., Liu, F., et al. (2023) ALKBH5 Prevents Hepatocellular Carcinoma Progression by Post-Transcriptional Inhibition of PAQR4 in an m6A Dependent Manner. Experimental Hematology & Oncology, 12, Article No. 1.
https://doi.org/10.1186/s40164-022-00370-2
[86] Li, L.J., Fan, Y.G., Leng, R.X., Pan, H.F. and Ye, D.Q. (2018) Potential Link between m6A Modification and Systemic Lupus Erythematosus. Molecular Immunology, 93, 55-63.
https://doi.org/10.1016/j.molimm.2017.11.009
[87] Brito-Zerón, P., et al. (2016) Sjögren Syndrome. Nature Re-views Disease Primers, 2, Article No. 16047.
https://doi.org/10.1038/nrdp.2016.47
[88] Xiao, Q., Wu, X., Deng, C., Zhao, L., Peng, L., Zhou, J., et al. (2022) The Potential Role of RNA N6-Methyladenosine in Primary Sjögren’s Syndrome. Frontiers in Medicine, 9, Article 959388.
https://doi.org/10.3389/fmed.2022.959388
[89] Sun, X., Lu, J., Li, H. and Huang, B. (2022) The Role of m6A on Female Reproduction and Fertility: From Gonad Development to Ovarian Aging. Frontiers in Cell and Devel-opmental Biology, 10, Article 884295.
https://doi.org/10.3389/fcell.2022.884295
[90] Zhao, S., Lu, J., Chen, Y., Wang, Z., Cao, J. and Dong, Y. (2021) Exploration of the Potential Roles of m6A Regulators in the Uterus in Pregnancy and Infertility. Journal of Reproductive Immunology, 146, Article ID: 103341.
https://doi.org/10.1016/j.jri.2021.103341
[91] Jiang, Y., Wan, Y., Gong, M., Zhou, S., Qiu, J. and Cheng, W. (2020) RNA Demethylase ALKBH5 Promotes Ovarian Carcinogenesis in a Simulated Tumour Microenvironment through Stimulating NF-κB Pathway. Journal of Cellular and Molecular Medicine, 24, 6137-6148.
[92] Qu, S., Jin, L., Huang, H., Lin, J., Gao, W. and Zeng, Z. (2021) A Positive-Feedback Loop between HBx and ALKBH5 Promotes Hepatocellular Carcinogenesis. BMC Cancer, 21, Article No. 686.
https://doi.org/10.1186/s12885-021-08449-5
[93] Zhu, Z., Qian, Q., Zhao, X., Ma, L. and Chen, P. (2020) N6-Methyladenosine ALKBH5 Promotes Non-Small Cell Lung Cancer Progress by Regulating TIMP3 Stability. Gene, 731, Article ID: 144348.
https://doi.org/10.1016/j.gene.2020.144348
[94] Yu, H., Yang, X., Tang, J., Si, S., Zhou, Z., Lu, J., et al. (2021) ALKBH5 Inhibited Cell Proliferation and Sensitized Bladder Cancer Cells to Cisplatin by m6A-CK2α-Mediated Glycol-ysis. Molecular Therapy: Nucleic Acids, 23, 27-41.
https://doi.org/10.1016/j.omtn.2020.10.031
[95] Yuan, Y., Yan, G., He, M., Lei, H., Li, L., Wang, Y., et al. (2021) ALKBH5 Suppresses Tumor Progression via an m6A-Dependent Epigenetic Silencing of pre-miR-181b-1/YAP Signal-ing Axis in Osteosarcoma. Cell Death & Disease, 12, Article No. 60.
https://doi.org/10.1038/s41419-020-03315-x
[96] Qiu, X., Yang, S., Wang, S., Wu, J., Zheng, B., Wang, K., et al. (2021) M6A Demethylase ALKBH5 Regulates PD-L1 Expression and Tumor Immunoenvironment in Intrahepatic Cholangiocarcinoma. Cancer Research, 81, 4778-4793.
https://doi.org/10.1158/0008-5472.CAN-21-0468
[97] Fang, Z., Mu, B., Liu, Y., Guo, N., Xiong, L., Guo, Y., et al. (2022) Discovery of a Potent, Selective and Cell Active Inhibitor of m6A Demethylase ALKBH5. European Journal of Medicinal Chemistry, 238, Article ID: 114446.
https://doi.org/10.1016/j.ejmech.2022.114446
[98] Perry, G.S., Das, M. and Woon, E.C.Y. (2021) Inhibition of AlkB Nucleic Acid Demethylases: Promising New Epigenetic Targets. Journal of Medicinal Chemistry, 64, 16974-17003.
https://doi.org/10.1021/acs.jmedchem.1c01694
[99] Chen, G., Zhao, Q., Yuan, B., Wang, B., Zhang, Y., Li, Z., et al. (2021) ALKBH5-Modified HMGB1-STING Activation Contributes to Radiation Induced Liver Disease via Innate Immune Response. International Journal of Radiation Oncology∙Biology∙Physics, 111, 491-501.
https://doi.org/10.1016/j.ijrobp.2021.05.115
[100] Li, Y., Lu, R., Niu, Z., Wang, D. and Wang, X.L. (2023) Suxiao Jiuxin Pill Alleviates Myocardial Ischemia—Reperfusion Injury through the ALKBH5/GSK3β/mTOR Pathway. Chinese Medicine, 18, Article No. 31.
https://doi.org/10.1186/s13020-023-00736-6

Baidu
map