[1] |
Seh, Z.W., Kibsgaard, J., Dickens, C.F., Chorkendorff, I.B., Nørskov, J.K. and Jaramillo, T.F. (2017) Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design. Science, 355, Article 4998. https://doi.org/10.1126/science.aad4998 |
[2] |
Ling, C., Cui, Y., Lu, S., Bai, X. and Wang, J. (2022) How Computations Accelerate Electrocatalyst Discovery. Chem, 8, 1575-1610. https://doi.org/10.1016/j.chempr.2022.03.015 |
[3] |
Xu, H., Ma, Y., Chen, J., Zhang, W.X. and Yang, J. (2022) Electrocatalytic Reduction of Nitrate—A Step towards a Sustainable Nitro-gen Cycle. Chemical Society Reviews, 51, 2710-2758. https://doi.org/10.1039/D1CS00857A |
[4] |
Zuo, S., Wu, Z.P., Zhang, H. and Lou, X.W. (2022) Operando Monitoring and Deciphering the Structural Evolution in Oxygen Evolution Electrocatalysis. Advanced Energy Materials, 12, Article ID: 2103383. https://doi.org/10.1002/aenm.202103383 |
[5] |
Cui, X., Tang, C. and Zhang, Q, (2018) A Review of Electrocatalytic Re-duction of Dinitrogen to Ammonia under Ambient Conditions. Advanced Energy Materials, 8, Article ID: 1800369. https://doi.org/10.1002/aenm.201800369 |
[6] |
Han, K., Luo, J., Feng, Y., Xu, L., Tang, W. and Wang, Z.L. (2020) Self-Powered Electrocatalytic Ammonia Synthesis Directly from Air as Driven by Dual Triboelectric Nanogenerators. Energy & Environmental Science, 13, 2450-2458. https://doi.org/10.1039/D0EE01102A |
[7] |
Wang, M., Wang, W., Qian, T., Liu, S., Li, Y., Hou, Z., Goodenough, J.B., Ajayan, P.M. and Yan, C. (2019) Oxidizing Vacancies in Nitrogen-Doped Carbon Enhance Air-Cathode Activity. Advanced Materials, 31, Article ID: 1803339. https://doi.org/10.1002/adma.201803339 |
[8] |
Liu, S., Wang, M., Sun, X., Xu, N., Liu, J., Wang, Y., Qian, T. and Yan, C. (2018) Facilitated Oxygen Chemisorption in Heteroatom-Doped Carbon for Improved Oxygen Reaction Activity in All-Solid-State Zinc-Air Batteries. Advanced Materials, 30, Article ID: 1704898. https://doi.org/10.1002/adma.201704898 |
[9] |
Zeng, F., Mebrahtu, C., Liao, L., Beine, A.K. and Palkovits, R. (2022) Sta-bility and Deactivation of OER Electrocatalysts: A Review. Journal of Energy Chemistry, 69, 301-329. https://doi.org/10.1016/j.jechem.2022.01.025 |
[10] |
Liu, T., Wang, Y. and Li, Y. (2022) Two-Dimensional Organometallic Frameworks with Pyridinic Single-Metal-Atom sites for Bifunctional ORR/OER. Advanced Energy Materials, 32, Article ID: 2207110. https://doi.org/10.1002/adfm.202207110 |
[11] |
Wu, Y.J., Yang, J., Tu, T.X., Li, W.Q., Zhang, P.F., Zhou, Y., Li, J.F., Li, J.T. and Sun, S.G. (2021) Evolution of Cationic Vacancy Defects: A Motif for Surface Restructuration of OER Precatalyst. An-gewandte Chemie, 60, 26829-26836. https://doi.org/10.1002/anie.202112447 |
[12] |
Da, P., Zheng, Y., Hu, Y., Wu, Z., Zhao, H., Wei, Y., Guo, L., Wang, J., Wei, Y., Xi, S., Yan, C.H. and Xi, P. (2023) Synthesis of Bandgap-Tunabletransition Metal Sulfides through Gas-Phase Cation Exchange-Induced Topological Transformation. Angewandte Chemie, 135, e202301802. https://doi.org/10.1002/ange.202301802 |
[13] |
Gao, Y., Xue, Y., Qi, L., Xing, C., Zheng, X., He, F. and Li, Y. (2022). Rhodium Nanocrystals on Porous Graphdiyne for Electrocatalytic Hydrogen Evolution from Saline Water. Nature Communica-tions, 13, Article No. 5227. https://doi.org/10.1038/s41467-022-32937-2 |
[14] |
Wang, T., Tao, L., Zhu, X., Chen, C., Chen, W., Du, S., Zhou, Y., Zhou, B., Wang, D., Xie, C., Long, P., Li, W., Wang, Y., Chen, R., Zou, Y., Fu, X.Z., Li, Y., Duan, X. and Wang, S. (2022) Combined Anodic and Cathodic Hydrogen Production from Aldehyde Oxidation and Hydrogen Evolution Reaction. Nature Catalysis, 5, 66-73. https://doi.org/10.1038/s41929-021-00721-y |
[15] |
Chen, Q., Liu, K., Zhou, Y., Wang, X., Wu, K., Li, H., Pensa, E., Fu, J., Miyauchi, M., Cortes, E. and Liu, M. (2022) Ordered Ag Nanoneedle Arrays with Enhanced Electrocatalytic CO2 Reduction via Structure-Induced Inhibition of Hydrogen Evolution. Nano Letters, 22, 6276-6284. https://doi.org/10.1021/acs.nanolett.2c01853 |
[16] |
Leverett, J., Tran‐Phu, T., Yuwono, J.A., Kumar, P., Kim, C., Zhai, Q., Han, C., Qu, J., Cairney, J., Simonov, A.N., Hocking, R.K., Dai, L., Daiyan, R. and Amal, R. (2022) Tuning the Coordination Structure of Cu-N-C Single Atom Catalysts for Simultaneous Electrochemical Reduction of CO2 and NO3– to Urea. Advanced Energy Materials, 12, Article ID: 2201500. https://doi.org/10.1002/aenm.202201500 |
[17] |
Zhang, Y., Jang, H., Ge, X., Zhang, W., Li, Z., Hou, L., Zhai, L., Wei, X., Wang, Z., Kim, M.G., Liu, S., Qin, Q., Liu, X. and Cho, J. (2022) Single-Atom Sn on Tensile-Strained ZnO Nanosheets for Highly Efficient Conversion of CO2 into Formate. Advanced Energy Materials, 12, Article ID: 2202695. https://doi.org/10.1002/aenm.202202695 |
[18] |
Liu, S., Qian, T., Wang, M., Ji, H., Shen, X., Wang, C. and Yan, C. (2021) Proton-Filtering Covalent Organic Frameworks with Superior Nitrogen Penetration Flux Promote Am-bient Ammonia Synthesis. Nature Catalysis, 4, 322-331. https://doi.org/10.1038/s41929-021-00599-w |
[19] |
Liu, S., Wang, M., Ji, H., Shen, X., Yan, C. and Qian, T. (2021) Al-tering the Rate-Determining Step over Cobalt Single Clusters Leading to Highly Efficient Ammonia Synthesis. National Science Review, 8, nwaa136. https://doi.org/10.1093/nsr/nwaa136 |
[20] |
Liu, S., Wang, M., Qian, T., Ji, H., Liu, J. and Yan, C. (2019) Facilitating Ni-trogen Accessibility to Boron-Rich Covalent Organic Frameworks via Electrochemical Excitation for Efficient Nitrogen Fixation. Nature Communications, 10, Article No. 3898. https://doi.org/10.1038/s41467-019-11846-x |
[21] |
苗壮, 王海曼. 电催化氨氧化电极活性组分的研究进展[J]. 辽宁化工, 2022, 51(1): 42-45. |
[22] |
刘晓红, 刘欣, 李志. 氨氧化催化系统的优化设计[J]. 贵金属, 2014, 35(2): 6-9. |
[23] |
郁明珠, 陈冲, 李林儒, 等. Pt催化剂在有机电解液中对氨氧化的电催化性能[C]//中国化学会, 国家自然科学基金委员会, 中国仪器仪表学会. 第十一届全国电分析化学会议论文摘要(1), 2011: 78-79. |
[24] |
Ye, T.N., Park, S.W., Lu, Y., Li, J., Sasase, M., Kitano, M. and Hosono, H. (2020) Contribution of Nitrogen Va-cancies to Ammonia Synthesis over Metal Nitride Catalysts. Journal of the American Chemical Society, 142, 14374-14383. https://doi.org/10.1021/jacs.0c06624 |
[25] |
Xu, W., Fan, G., Chen, J., Li, J., Zhang, L., Zhu, S., Su, X., Cheng, F. and Chen, J. (2020) Nanoporous Palladium Hydride for Electrocatalytic N2 Reduction under Ambient Conditions. Angewandte Chemie, 59, 3511-3516. https://doi.org/10.1002/anie.201914335 |
[26] |
Zhang, D., Zhao, H., Wu, X., Deng, Y., Wang, Z., Han, Y., Li, H., Shi and Wang, L. (2021) Multi-Site Electrocatalysts Boost pH-Universal Nitrogen Reduction by High-Entropy Alloys. Advanced Func-tional Materials, 31, Article ID: 2006939. https://doi.org/10.1002/adfm.202006939 |
[27] |
Liu, H. (2014) Ammonia Syn-thesis Catalyst 100 Years: Practice, Enlightenment and Challenge. Chinese Journal of Catalysis, 35, 1619-1640. https://doi.org/10.1016/S1872-2067(14)60118-2 |
[28] |
Tao, H., Choi, C., Ding, L.X., Jiang, Z., Han, Z., Jia, M., Fan, Q., Gao, Y., Wang, H., Robertson, A.W., Hong, S., Jung, Y., Liu, S. and Sun, Z. (2019) Nitrogen Fixation by Ru Single-Atom Electrocatalytic Reduction. Chem, 5, 204-214. https://doi.org/10.1016/j.chempr.2018.10.007 |
[29] |
Wu, T., Zhao, H., Zhu, X., Xing, Z., Liu, Q., Liu, T., Gao, S., Lu, S., Chen, G., Asiri, A.M., Zhang, Y. and Sun, X. (2020) Identifying the Origin of Ti3+ Activity toward Enhanced Electrocatalytic N2 Reduction over TiO2 Nanoparticles Modulated by Mixed-Valent Copper. Ad-vanced Materials, 32, Article ID: 2000299. https://doi.org/10.1002/adma.202000299 |
[30] |
Huang, Z., Rafiq, M., Woldu, A.R., Tong, Q.X., Astruc, D. and Hu, L. (2023) Recent Progress in Electrocatalytic Nitrogen Reduction to Ammonia (NRR). Coordination Chemistry Reviews, 478, Ar-ticle ID: 214981. https://doi.org/10.1016/j.ccr.2022.214981 |
[31] |
Wang, M., Liu, S., Ji, H., Liu, J., Yan, C. and Qian, T. (2020) Unveiling the Essential Nature of Lewis Basicity in Thermodynamically and Dynamically Promoted Nitrogen Fixation. Advanced Func-tional Materials, 30, Article ID: 2001244. https://doi.org/10.1002/adfm.202001244 |
[32] |
Wang, M., Liu, S., Ji, H., Yang, T., Qian, T. and Yan, C. (2021) Salting-Out Effect Promoting Highly Efficient Ambient Ammonia Synthesis. Nature Commu-nications, 12, Article No. 3198. https://doi.org/10.1038/s41467-021-23360-0 |
[33] |
Wang, M., Liu, S., Qian, T., Liu, J., Zhou, J., Ji, H., Xiong, J., Zhong, J. and Yan, C. (2019) Over 56.55% Faradaic Efficiency of Ambient Ammonia Synthesis Enabled by Positively Shifting the Reaction Potential. Nature Communications, 10, Article No. 341. https://doi.org/10.1038/s41467-018-08120-x |
[34] |
MacFarlane, D.R., Cherepanov, P.V., Choi, J., Suryanto, B.H., Hodgetts, R.Y., Bakker, J.M., Vallana, F.M.F. and Simonov, A.N. (2020) A Roadmap to the Ammonia Economy. Joule, 4, 1186-1205. https://doi.org/10.1016/j.joule.2020.04.004 |
[35] |
Mukherjee, S., Devaguptapu, S.V., Sviripa, A., Lund, C.R. and Wu, G. (2018) Low-Temperature Ammonia Decomposition Catalysts for Hydrogen Generation. Applied Catalysis B: Environmental, 226, 162-181. https://doi.org/10.1016/j.apcatb.2017.12.039 |
[36] |
Satyapal, S., Petrovic, J., Read, C., Thomas, G. and Ordaz, G. (2007) The U.S. Department of Energy’s National Hydrogen Storage Project: Progress towards Meeting Hydrogen-Powered Vehicle Requirements. Catalysis Today, 120, 246-256. https://doi.org/10.1016/j.cattod.2006.09.022 |
[37] |
Abbasi, R., Setzler, B.P., Wang, J., Zhao, Y., Wang, T., Gottesfeld, S. and Yan, Y. (2020) Low-Temperature Direct ammonia Fuel Cells: Recent Devel-opments and Remaining Challenges. Current Opinion in Electrochemistry, 21, 335-344. https://doi.org/10.1016/j.coelec.2020.03.021 |
[38] |
Almomani, F., Bhosale, R., Khraisheh, M., Kumar, A. and Tawalbeh, M. (2020) Electrochemical Oxidation of Ammonia on Nickel Oxide Nanoparticles. International Journal of Hydrogen Energy, 45, 10398-10408. https://doi.org/10.1016/j.ijhydene.2019.11.071 |
[39] |
Barbosa, J.R., Leon, M.N., Fernandes, C.M., Antoniassi, R.M., Alves, O.C., Ponzio, E.A. and Silva, J.C.M. (2020) PtSnO2/C and Pt/C with Preferential (100) Orientation: High Active Elec-trocatalysts for Ammonia Electro-Oxidation Reaction. Applied Catalysis B: Environmental, 264, 118458. https://doi.org/10.1016/j.apcatb.2019.118458 |
[40] |
Yang, Y., Zhang, L., Hu, Z., Zheng, Y., Tang, C., Chen, P., Wang, R., Qiu, K., Mao, J., Ling, T. and Qiao, S.Z. (2020) The Crucial Role of Charge Accumulation and Spin Polarization in Activating Carbon-Based Catalysts for Electrocatalytic Nitrogen Reduction. Angewandte Chemie International Edition, 59, 4525-4531. https://doi.org/10.1002/anie.201915001 |
[41] |
Hao, D., Liu, Y., Gao, S., Arandiyan, H., Bai, X., Kong, Q., Wei, W., Shen, P. and Ni, B.J. (2021) Emerging Artificial Nitrogen Cycle Processes through Novel Electrochemical and Photochemical Synthe-sis. Materials Today, 46, 212-233. https://doi.org/10.1016/j.mattod.2021.01.029 |
[42] |
Hattori, M., Iijima, S., Nakao, T., Hosono, H. and Hara, M. (2020) Solid Solution for Catalytic Ammonia Synthesis from Nitrogen and Hydrogen Gases at 50 ˚C. Nature Communications, 11, Ar-ticle No. 2001. https://doi.org/10.1038/s41467-020-15868-8 |
[43] |
Shipman, M. and Symes, M. (2017) Recent Progress towards the Elec-trosynthesis of Ammonia from Sustainable Resources. Catalysis Today, 286, 57-68. https://doi.org/10.1016/j.cattod.2016.05.008 |
[44] |
Anderson, J.S., Cutsail III, G.E., Rittle, J., Connor, B.A., Gunderson, W.A., Zhang, L., Hoffman, B.M. and Peters, J.C. (2015) Characterization of an Fe≡N-NH2 Intermediate Relevant to Catalytic N2 Reduction to NH3. Journal of the American Chemical Society, 137, 7803-7809. https://doi.org/10.1021/jacs.5b03432 |
[45] |
Skulason, E., Bligaard, T., Gudmundsdóttir, S., Studt, F., Rossmeisl, J., Abild-Pedersen, F., Vegge, T., Jonsson, H and Nørskov, J.K. (2012) A Theoretical Evaluation of Possible Transition Metal Electro-Catalysts for N2 Reduction. Physical Chemistry Chemical Physics, 14, 1235-1245. https://doi.org/10.1039/C1CP22271F |
[46] |
He, H., Zhu, Q.Q., Yan, Y., Zhang, H.W., Han, Z.Y., Sun, H., Chen, J., Li, C.P., Zhang, Z. and Du, M. (2022) Metal-Organic Framework Supported Au Nanoparticles with Organosilicone Coating for High-Efficiency Electrocatalytic N2 Reduction to NH3. Applied Catalysis B: Environmental, 302, Article ID: 120840. https://doi.org/10.1016/j.apcatb.2021.120840 |
[47] |
Wang, H., Mao, Q., Yu, H., Wang, S., Xu, Y., Li, X., Wang, Z. and Wang, L. (2021) Enhanced Electrocatalytic Performance of Mesoporous Au-Rh Bimetallic Films for Ammonia Synthesis. Chemical Engineering Journal, 418, Article ID: 129493. https://doi.org/10.1016/j.cej.2021.129493 |
[48] |
Zhang, Y., Zhang, Q., Liu, D.X., Wen, Z., Yao, J.X., Shi, M.M., Zhu, Y.F., Yan, J.M. and Jiang, Q. (2021) High Spin Polarization Ul-trafine Rh Nanoparticles on CNT for Efficient Electrochemical N2 Fixation to Ammonia. Applied Catalysis B: Environmental, 298, Article ID: 120592. https://doi.org/10.1016/j.apcatb.2021.120592 |
[49] |
Kong, Y., Li, Y., Sang, X., Yang, B., Li, Z., Zheng, S., Zhang, Q., Yao, S., Yang, X., Lei, L., Zhou, S., Wu, G. and Hou, Y. (2022) Atomically Dispersed Zinc(I) Active Sites to Accelerate Nitrogen Reduction Kinetics for Ammonia Electrosynthesis. Advanced Materials, 34, Article ID: 2103548. https://doi.org/10.1002/adma.202103548 |
[50] |
Qu, Y., Dai, T., Cui, Y., Zhang, Y., Wang, Z. and Jiang, Q. (2022) Tailor-ing Electronic Structure of Copper Nanosheets by Silver Doping toward Highly Efficient Electrochemical Reduction of Nitrogen to Ammonia. Chemical Engineering Journal, 43, Article ID: 133752. https://doi.org/10.1016/j.cej.2021.133752 |
[51] |
Wang, J., Huang, H., Wang, P., Wang, S. and Li, J. (2021) N, S Synergis-tic Effect in Hierarchical Porous Carbon for Enhanced NRR Performance. Carbon, 179, 358-364. https://doi.org/10.1016/j.carbon.2021.04.045 |
[52] |
Wan, X.K., Wu, H.B., Guan, B.Y., Luan, D. and Lou, X.W. (2020) Confining Sub-Nanometer Pt Clusters in Hollow Mesoporous Carbon Spheres for Boosting Hydrogen Evolution Activity. Ad-vanced Materials, 32, Article ID: 1901349. https://doi.org/10.1002/adma.201901349 |
[53] |
Miller, H.A., Lavacchi, A., Vizza, F., Marelli, M., Di Benedetto, F., D’Acapito, F., Paska, Y. and Dekel, D.R. (2016) A Pd/C‐CeO2 Anode Catalyst for High‐Performance Platinum‐Free Anion Exchange Membrane Fuel Cells. Angewandte Chemie International Edition, 55, 6004-6007. https://doi.org/10.1002/anie.201600647 |
[54] |
Fan, J., Wu, J., Cui, X., Gu, L., Zhang, Q., Meng, F., Lei, B., Singh, D. and Zheng, W. (2020) Hydrogen Stabilized RhPdH 2D Bimetallene Nanosheets for Efficient Alkaline Hydrogen Evolution. Journal of the American Chemical Society, 142, 3645-3651. https://doi.org/10.1021/jacs.0c00218 |
[55] |
Xiang, Z.P., Tan, A.D., Fu, Z.Y., Piao, J.H. and Liang, Z.X. (2020) Oxygen Reduction Reaction on Single Pt Nanoparticle. Journal of Energy Chemistry, 49, 323-326. https://doi.org/10.1016/j.jechem.2020.02.051 |
[56] |
Jiang, Y., Wang, M., Liu, S., Zhang, L., Qian, S., Cao, Y., Cheng, Y., Qian, T. and Yan, C. (2023) Eliminating Nitrogen Chemisorption Barrier with Single-Atom Supported Yttrium Cluster via Electronic Promoting Effect for Highly Efficient Ammonia Synthesis. Nano Research, 16, 2185-2191. https://doi.org/10.1007/s12274-022-4977-z |
[57] |
Jiang, Y., Wang, M., Zhang, L., Liu, S., Cao, Y., Qian, S., Cheng, Y., Xu, X., Yan, C. and Qian, T. (2022) Distorted spinel Ferrite Heterostructure Triggered by Alkaline Earth Metal Substitution Fa-cilitates Nitrogen Localization and Electrocatalytic Reduction to Ammonia. Chemical Engineering Journal, 450, 138226. https://doi.org/10.1016/j.cej.2022.138226 |
[58] |
Zou, Z., Wu, L., Yang, F., Cao, C., Meng, Q., Luo, J., Zhou, W., Tong, Z., Chen, J., Chen, S., Zhou, S., Wang, J. and Deng, S. (2022) Delicate Tuning of the Ni/Co Ratio in Bimetal Layered Double Hy-droxides for Efficient N2 Electroreduction. ChemSusChem, 15, e202200127. https://doi.org/10.1002/cssc.202200127 |
[59] |
Wolfram, P., Kyle, P., Zhang, X., Gkantonas, S. and Smith, S. (2022) Using Ammonia as a Shipping Fuel Could Disturb the Nitrogen Cycle. Nature Energy, 7, 1112-1114. https://doi.org/10.1038/s41560-022-01124-4 |
[60] |
Voiry, D., Shin, H.S., Loh, K.P. and Chhowalla, M. (2018) Low-Dimensional Catalysts for Hydrogen Evolution and CO2 Reduction. Nature Reviews Chemistry, 2, Article No. 0105. https://doi.org/10.1038/s41570-017-0105 |
[61] |
Siddharth, K., Chan, Y., Wang, L. and Shao, M. (2018) Ammonia Elec-tro-Oxidation Reaction: Recent Development in Mechanistic Understanding and Electrocatalyst Design. Current Opinion in Electrochemistry, 9, 151-157. https://doi.org/10.1016/j.coelec.2018.03.011 |
[62] |
Estejab, A. and Botte, G. (2016) DFT Calculations of Ammonia Oxida-tion Reactions on Bimetallic Clusters of Platinum and Iridium. Computational and Theoretical Chemistry, 1091, 31-40. https://doi.org/10.1016/j.comptc.2016.06.030 |
[63] |
Nagita, K., Yuhara, Y., Fujii, K., Katayama, Y. and Nakayama, M. (2021) Ni-and Cu-Co-Intercalated Layered Manganese Oxide for Highly Efficient Electro-Oxidation of Ammonia Selective to Nitrogen. ACS Applied Materials & Interfaces, 13, 28098-28107. https://doi.org/10.1021/acsami.1c04422 |
[64] |
Lan, R. and Tao, S. (2010) Direct Ammonia Alkaline Anion-Exchange Membrane Fuel Cells. Electrochem. Electrochemical and Sol-id-State Letters, 13, B83. https://doi.org/10.1149/1.3428469 |
[65] |
Xi, X., Fan, Y., Zhang, K., Liu, Y., Nie, F., Guan, H. and Wu, J. (2022) Carbon-Free Sustainable Energy Technology: Electrocatalytic Ammonia Oxidation Reaction. Chemical Engi-neering Journal, 435, Article ID: 134818. https://doi.org/10.1016/j.cej.2022.134818 |
[66] |
Gootzen, J.F.E., Wonders, A.H., Visscher, W., Van Santen, R.A. and Van Veen, J.A.R. (1998) A DEMS and Cyclic Voltammetry Study of NH3 Oxidation on Platinized Platinum. Electrochimica Acta, 43, 1851-1861. https://doi.org/10.1016/S0013-4686(97)00285-5 |
[67] |
De Vooys, A.C.A., Koper, M.T.M., Van Santen, R.A. and Van Veen, J.A.R. (2001) The Role of Adsorbates in the Electrochemical Oxidation of Ammonia on Noble and Transition Metal Electrodes. Journal of Electroanalytical Chemistry, 506, 127-137. https://doi.org/10.1016/S0022-0728(01)00491-0 |
[68] |
Wallace, S., McCrum, I. and Janik, M., (2021) Ammonia Elec-tro-Oxidation Mechanism on the Platinum (100) Surface. Catalysis Today, 371, 50-57. https://doi.org/10.1016/j.cattod.2020.09.024 |
[69] |
Jeerh, G., Zhang, M. and Tao, S. (2021) Recent Progress in Ammonia Fuel Cells and Their Potential Applications. Journal of Materials Chemistry A, 9, 727-752. https://doi.org/10.1039/D0TA08810B |
[70] |
Li, Y., Pillai, H.S., Wang, T., Hwang, S., Zhao, Y., Qiao, Z., Mu, Q., Kara-kalos, S., Chen, M., Yang, J., Su, D., Xin, H., Yan, Y. and Wu, G. (2021) High-Performance Ammonia Oxidation Catalysts for Anion-Exchange Membrane Direct Ammonia Fuel Cells. Energy & Environmental Science, 14, 1449-1460. https://doi.org/10.1039/D0EE03351K |
[71] |
Silva, J.C.M., da Silva, S.G., De Souza, R.F., Buzzo, G.S., Spinacé, E.V., Neto, A.O. and Assumpção, M.H. (2015) PtAu/C Electrocatalysts as Anodes for Direct Ammonia Fuel Cell. Applied Catalysis A: General, 490, 133-138. https://doi.org/10.1016/j.apcata.2014.11.015 |
[72] |
Schüth, F., Palkovits, R., Schlögl, R. and Su, D.S. (2012) Ammonia as a Possible Element in an Energy Infrastructure: Catalysts for Ammonia Decomposition. Energy & Environmental Science, 5, 6278-6289. https://doi.org/10.1039/C2EE02865D |
[73] |
Feng, Y.Y., Song, G.H., Zhang, Q., Hu, H.S., Feng, M.Y., Wang, J.Y. and Kong, D.S. (2017) Catalytic Performance of Non-Alloyed Bimetallic PtAu Electrocatalysts for Methanol Oxidation Reaction. International Journal of Hydrogen Energy, 42, 30109-30118. https://doi.org/10.1016/j.ijhydene.2017.10.102 |
[74] |
Esabattina, S., Posa, V.R., Zhanglian, H., kumar Godlaveeti, S., Red-dy, R.R.N. and Somala, A.R. (2018) Fabrication of Bimetallic PtPd Alloy Nanospheres Supported on rGO Sheets for Superior Methanol Electro-Oxidation. International Journal of Hydrogen Energy, 43, 4115-4124. https://doi.org/10.1016/j.ijhydene.2017.07.193 |
[75] |
陈永珍, 韩颖, 宋文吉, 等. 绿氨能源化及氨燃料电池研究进展[J]. 储能科学与技术, 2023, 12(1): 111-119. |