高效铁、镍基催化剂在电催化氮循环中的应用研究
Research on the Applications of High Efficiency Iron and Nickel-Based Catalysts in Electrocatalytic Nitrogen Cycle
摘要:氨具有较高能量密度和易液化的特点,是一种优良的储氢载体,而且储存与运输技术比较成熟,具有非常广阔的产业应用前景,同时氨作为农业与工业生产中的基础原料具有不可替代的作用。然而,目前大规模合成氨仍采用高温与高压的Haber-Bosch工艺,该工艺过程的能耗约占全球总能耗的1.4%,且排放的二氧化碳占据全球温室气体总排放量的1%左右。常温常压下电催化氮气与水合成氨是一种极具潜力的替代技术。但目前电催化氮还原合成氨与直接氨燃料电池技术面临着催化剂活性低、动力学速率缓慢以及法拉第效率低等关键问题。因此,探索高活性与高选择性的新型催化剂用于电催化氮还原与直接氨燃料电池中势在必行。铁基和镍基材料具有出色的本征活性与特有的表面电子结构,作为电催化剂已经引起了广泛的研究兴趣。本论文从Fe基与Ni基电催化剂的设计合成与改性出发,在电催化氮还原与直接氨燃料电池两个方面开展系列工作,利用密度泛函理论计算揭示了Fe基与Ni基催化剂带来的电催化优势。
Abstract:Ammonia is an excellent hydrogen storage carrier because of its unique characteristics, such as high energy density, easy liquefaction, and relatively mature technologies of storage and transpor-tation, which exhibits very broad industrial application prospects. At the same time, ammonia plays an irreplaceable role in agricultural and industrial production as the basic raw material. However, the Haber-Bosch process at high temperature and high pressure is still used for large-scale ammo-nia synthesis at present, which accounts for about 1.4% of the global total energy consumption and emits nearly 1% of the global total greenhouse gas emissions. Electrocatalytic nitrogen reduction reaction has been regarded as the most potential strategy to replace the Haber-Bosch process due to its green environmental protection, zero carbon emissions, and abundant raw materials. Never-theless, the technologies of electrocatalytic nitrogen reduction reaction and direct ammonia fuel cells face the key problems of low catalyst activity, slow kinetic rate, and poor Faradaic efficiency. Therefore, it is imperative to explore new catalysts with high activity and selectivity for electrocat-alytic nitrogen reduction and direct ammonia fuel cells. Iron and nickel based materials have at-tracted extensive interest as electrocatalysts due to their excellent intrinsic activities and unique surface electronic structures. This paper focuses on the design, synthesis, and modification of Fe-based and Ni-based electrocatalysts, and conducts a series of works in the fields of electrocata-lytic nitrogen reduction and direct ammonia fuel cells. Density functional theory calculations are utilized to reveal the electrocatalytic advantages brought by Fe-based and Ni-based catalysts.
文章引用:蒋玉卓, 钱涛, 樊冬娌. 高效铁、镍基催化剂在电催化氮循环中的应用研究[J]. 分析化学进展, 2023, 13(4): 500-512. https://doi.org/10.12677/AAC.2023.134053

1. 引言

随着全球人口的不断增长,化石燃料的需求日益增加,传统燃料能源的枯竭以及全球环境问题的恶化,我们迫切需要寻找可循环的、可再生的和绿色廉价的能源替代品,以确保我们的能源未来 [1] [2] [3] 。作为可持续能源系统的重要组成部分,电化学能量转换装置能够从地球上丰富的水、二氧化碳、氧气和氮气中生产出有高附加值的化学物质 [4] [5] [6] 。在这些能量转换装置中,电催化剂起着不可或缺的作用。近年来,多相电催化领域取得了巨大的进展,氧还原反应(ORR) [7] [8] 、析氧反应(OER) [9] [10] [11] 、析氢反应(HER) [12] [13] [14] 和二氧化碳还原反应(CO2RR) [15] [16] [17] 等各种电催化反应的研究得到广泛关注。然而,在室温和常压下将氮气电催化还原成氨 [18] [19] [20] 与将能NH3作为燃料进行直接氨燃料电池 [21] [22] [23] 的电催化工艺仍未得到充分的研究。

氨的应用极其广泛,包括化工原料和农业生产等,同时还可以作为绿色能源的载体 [24] [25] [26] 。目前,氨合成以Haber-Bosch工业法为主,占全球能源供应的1%以上,但每年会产生超过3亿公吨的二氧化碳等温室效应气体 [27] 。因此,开发有潜力克服Haber-Bosch工艺缺陷的替代工艺是很有必要的。然而,不论是生物固氮还是光催化固氮,都因其效率和产率双重低迷而难以实际应用。使用多相催化剂的电化学还原工艺受益于随处可得的原料资源,有望实现直接催化氮气和水生产NH3[28] [29] 。与传统的Haber-Bosch工艺相比,温和条件下的电化学还原工艺在降低能源投入、减少碳排放和简化反应器设计等方面具有可行性。然而,在实际应用中缺乏可以同时取得显著的产率和高法拉第效率的催化剂 [30] 。其中最大的挑战是在水存在的情况下,多相催化剂表面不仅对N2还原为NH3具有活性,而且对水分子还原为氢气也具有高度活性。系统中的大部分质子和电子都去竞争析氢反应而不是氮还原反应,导致了严重的选择性问题。针对这种挑战,前人对电化学还原N2制NH3进行了深入的研究且已取得了一定的成果,但在提高电催化活性和法拉第效率方面仍存在巨大的提升空间 [31] [32] [33] 。

另一方面,氨是一种非常优秀的储氢载体 [34] [35] [36] ,并且具有远大于甲醇等其他燃料的能量密度(3000 W·h·kg−1)。氨的储存和运输要比氢容易得多。由于氨的临界温度为132.4℃,在常温下将氨液化成液氨储存大约仅需要7~8个大气压。因此,用氨代替氢气成为新一代储氢能源,有效地解决了氢气储存和运输。然而,将氨作为氢储层,并在使用时转化为氢燃料,在科学上是可行的,但不可避免地会发生能量损失。相比之下,直接使用氨作为燃料电池的阳极效率会更高,不仅可以节省制氢过程中的能量消耗,还可以避免一些氢处理的问题。因此高效催化氨氧化的发展具有深远的影响 [37] [38] [39] 。但由于动力学的限制,氨氧化反应需要较大的起始电位,并且比活性和电池功率较低,导致电池放电过程中有相当大的效率损失。因此开发一种廉价、高效的直接氨燃料电池的催化剂是这项工作的关键环节。

2. 电催化氮还原制氨法

2.1. 电催化氮还原反应机理

由于NRR的质子–电子转移过程多,中间产物多,其反应机理尚未完全阐明 [40] 。如图1所示,NRR的反应机制可以分为两种类型:结合机制和解离机制 [41] 。在结合过程中,N2分子吸附在催化剂表面,进行加氢反应。加氢过程也包括两种途径:远端途径和交替途径。在远端反应途径中,加氢反应优先发生在远离催化剂表面的N原子上。当第一个NH3分子形成并释放时,结合在催化剂表面近的N原子开始加氢并产生第二个NH3分子;而在交替过程中,加氢过程是在两个N分子之间交替进行 [28] 。第一个NH3分子被释放后,第二个NH3分子紧接着被释放。解离途径常被应用于工业生产过程 [42] 。在解离机制中,N≡N三键先断裂,然后吸附在催化剂表面的两个N原子独立进行杂化过程。在末端配位中,N2以分子形式吸附在催化剂表面,两氮原子间保持化学键连接,加氢首先发生在离表面较远的氮原子上,完成加氢后N-N键断裂,外侧脱去一分子NH3,内侧N原子开始进行氢化,形成一分子NH3后从表面脱附 [43] 。因而相比于解离机制,结合机理能耗更低,更容易进行。催化剂种类、结构以及反应条件不同时,氮还原合成氨所经历的反应过程也不尽相同,应用机理时需要进行具体情况具体分析。

此外,酶途径主要出现在固氮酶的氮还原反应中 [44] ,N2仍然以分子的形式吸附,但两个N原子没有远近关系,并列吸附在表面,加氢过程与交替配位机理相同。

2.2. 电催化氮还原催化剂的研究进展

在电催化氮还原体系中,催化剂是体系关键的组成部分之一,其催化活性的好坏直接关系到氮还原体系性能的优劣。由于严重的副反应、极低的氮气溶解度和迟缓的反应动力学等因素,电催化的实际的工作电位很高,研究表明,不理想的氨产率和法拉第效率制约电催化氮还原的发展。对于电催化氮还原来说,如果仅仅为了获得一个高的氨产量是不可取的,高电位以及低效率导致电催化NRR体系的能量效率极低,这就要求用于电催化氮还原的体系必须同时具备高活性和高选择性的特性。一般来说,诸如调节电解液或隔膜等体系中影响反应的因素,或无法适应大电流获得高产率,或无法从根本上加速反应速率,不能满足电催化氮还原向工业化发展的需求。

为解决上述问题,达到工业要求,关于电催化氮还原的研究掀起浪潮,其中对构建高效稳定的催化剂成为热点。研究者针对催化剂进行掺杂取代等结构调控,制造氧空位等缺陷工程,和界面修饰工程等方法来优化催化剂结构,激活催化位点的催化活性。一般来说,诸如金属类催化剂等传统催化材料,易在催化剂表面吸附氮气和生成氨,由此将理论极限势与氮在不同金属表面上的吸附能联系起来的火山图得到Fe和Mo是氨形成最活跃的金属之一 [45] 。由于过渡金属具有优异的电荷转移能力,有助于加快电化学体系中的电子转移,因此过渡金属基催化剂已经广泛用于电催化氮还原领域。目前文献报道的过渡金属基NRR催化剂主要包括:(1) 贵金属基NRR催化剂 [46] [47] [48] ,(2) 非贵金属基NRR催化剂 [49] [50] [51] 。

Figure 1. Reaction mechanism of ammonia production by electrocatalytic nitrogen reduction [45]

图1. 电催化氮还原产氨的反应机理 [45]

(1) 贵金属基NRR催化剂:包括Pt、Pd、Au与Ru在内的各种贵金属催化剂,已经在各种电化学反应中表现出良好的电催化活性 [52] [53] [54] [55] 。在已报到的电催化NRR催化剂中,贵金属催化剂展现出较高的活性和稳定性而备受关注。目前合成的贵金属催化剂主要包括单原子材料、杂原子掺杂和纳米合金。其中,Ru原子具有较强的产氨能力;Au纳米合金结构的FE非常高;Pd基催化剂对NRR催化活性有很大提高,但Pd基催化剂的整体性能仍不能分层实际要求。与Ru基催化剂类似,单原子Pt催化剂也表现出较高的NRR性能,可以说是一个比较大的突破。然而,从之前报道的工作可以得出结论,贵金属基催化剂仍然存在许多问题,最严重的是几乎没有一种贵金属基催化剂可以同时达到高氨产率和FE,且高昂的成本让人望而却步。

(2) 非贵金属基NRR催化剂:最近,非贵金属尤其是过渡金属化合物因为其成本低、含量丰富以及催化性能易于调控而常被用作电催化反应电极材料 [56] [57] [58] 。尤其是铁系氧化物,因其具有特殊的表面结构以及对N2的快速吸附和NH3的快速解离性能,有望成为替代贵金属催化剂的热门选择。相对于过渡金属氧化物,氮化物具有更好的导电性。同时理论计算表明相对于HER,氮化物在NRR中具有更优异的催化性能。过渡金属单原子催化指的是金属以单原子形式均匀单一地负载到支撑基底上,如碳材料、硼氮化合物、磷烯和分子筛等,金属单原子作为催化活性中心进行催化反应。金属单原子催化剂不仅像均相催化剂一样,具有均匀单一的催化中心,同时也具有多相催化剂的特点,结构稳定易分离,与基底具有较强的相互作用。氮掺杂的碳材料被认为是稳定金属单原子催化剂最好的基底,形成的M-N-C组分不仅有利于提高催化剂稳定性,还能提高催化效率。Jiang等人开发了一种负载在Fe-N-C单原子上的团簇结构催化剂,可以提高电子传输,和加速加氢速率 [56] 。在单原子Fe-N-C催化剂表面,电子供给不足且析氢反应占主导地位。相反,当稀土元素钇(Y)以团簇形式负载在单原子Fe-N-C上时,多外层电子的团簇能够充分的提供电子,大大促进NRR的进程,并极力地抑制了HER竞争。同时,多电子结构有利于化学吸附氮气,成为自发放热反应,且释放的热量激发后续的氮气解离加氢,从而获得出色的氨产率与相对应的法拉第效率。因此,采用过渡金属基(Fe)催化剂是抑制HER和促进NRR的可行策略。

2.3. 电催化氮还原所面临的挑战与解决策略

尽管电催化氮气还原合成氨的路径绿色环保,但依旧存在着一些关键的因素阻碍电催化NRR向工业化的发展。其中,生成氨选择性、法拉第效率和反应速率是衡量电催化NRR体系的重要指标。由于电解液中质子耦合仅需要很小的过电势且与氮气还原反应的过电势极其接近,使得竞争反应HER十分严重。不仅如此,氮气在水溶液中的溶解度较低,N≡N的断键能垒极高和氮气较差的电子亲和力等限制因素,使得NRR的法拉第效率及氨产率远远达不到工业应用要求。因此,研究者纷纷致力于开发高选择性和高活性的催化剂。

为了加速电催化氮还原反应向工业化发展的步伐,合理设计和制备高效催化剂就显得极为重要。可以从电催化剂的组成、结构和本征活性等方面开发和设计,提高局域N2富集并促进化学吸附N2而非H+,如控制纳米颗粒和孔隙度等结构来实现活性位点的高暴露,以及调控晶相和导电性以提升电荷转移能力。如图2所示,科学调节催化材料活性位点数量和优化催化位点的活性有利于提高NRR电催化材料的整体活性。

Figure 2. A schematic of various catalyst development strategies aimed at increasing the number of active sites and/or increasing the intrinsic activity of each active site [1]

图2. 各种催化剂开发策略的示意图,旨在增加活性位点的数量和/或增加每个活性位点的内在活性 [1]

3. 直接氨燃料电池

化石能源为促进社会发展做出了巨大贡献,但同时也带来了严重的环境污染,特别是大气中碳的过度积累,导致了全球变暖。据估计,由于化石燃料和森林砍伐,每年约有0.4%的二氧化碳积累在大气中 [59] 。同时,化石能源是不可回收的。它支撑了人类几千年的发展,但正在逐渐枯竭。要解决这些问题,就必须寻求清洁、无碳、可持续的能源。氢作为一种很有前途的候选能源和最理想的燃料,由于其燃烧的产物是水,不会造成环境污染,而成为新能源领域的研究热点 [60] 。目前应用最广泛的氢气来源是蒸汽重整和热催化分解甲烷,但其存在碳排放高、能耗大的缺点。另外,无论氢气的来源是什么,氢气都存在着储存成本高和安全系数低等问题。因此,在众多可以储存甚至替代氢能的氢化物质中,氨尤为突出 [61] 。

氨是一种无碳储氢载体,且具有远远大于甲醇等其他材料的能量密度(3000 W·h·kg−1)。并且氨的储存和运输要比氢容易得多。由于氨的临界温度为132.4℃,在低于该温度的适当压力下,氨就可以被可以液化,因此在常温下将氨液化成液氨储存大约需要7~8个大气压。因此,氨可以作为一种优良的储氢材料,可以有效解决储氢问题,降低成本 [35] 。世界上氨的生产、运输、储存都建立了完整的工业体系,并有成熟、安全的管理经验。如果开发出高效的转化方法和反应器,就可以轻松接入氢能系统。

低温DAFCs,将NH3直接作为阳极反应的燃料,比直接氢燃料电池处于更早的发展阶段。DAFCs的阳极/阴极过程如下 [62] :

阳极: 2 N H 3 + 6 O H N 2 + 6 H 2 O + 6 e (1)

阴极: O 2 + 2 H 2 O + 4 e 4 O H (2)

从另一个角度看,可以将电解液替换为氨污染废水,在废水处理过程中获得绿色清洁的氢能,可以一举两得,有效解决环境污染问题 [63] 。将氨作为氢储层,并在使用时转化为氢燃料,在科学上是可行的,但不可避免地会发生能量损失。相比之下,直接使用氨作为燃料电池的阳极效率会更高,不仅可以节省制氢过程中的能量消耗,还可以避免一些氢处理的问题 [64] 。无论如何,高效催化AOR应用于直接氨燃料电池的发展具有深远的影响。

3.1. 阳极氨氧化机理

由于动力学的限制,氨氧化反应需要较大的过电位,导致电极中有相当大的效率损失。为了解决这些问题,科学家们在催化剂设计上做出了很大的努力,将理论计算与实验相结合来提高AOR的效率。其中主要限制动力学速率的是复杂的阳极氨氧化反应途径。如图3所示,为了确保寻找到最优的催化剂,我们必须深入了解AOR的内部反应机理。AOR反应大致遵循两种相对公认的反应途径:

(1) 氨连续脱氢生成N,和N-N键结合生成N2

(2) 氨部分脱氢生成脱氢中间体*NHx(x = 1, 2),随后二聚生成肼物种*N2Hx(x = 2, 3, 4),然后脱氢生成氮。

许多理论计算或实验研究倾向于支持G-M机制,因为其起始电位较低。特别是Gootzen等在1998年的研究中,利用差示电化学质谱研究氨氧化机理,发现电极表面被*NHx*N组成的吸附剂高度覆盖 [66] 。这一发现首次证实了G-M机制,*NHx是反应中间体,而*N是抑制剂。Vooys等观察到各金属对*N的吸附强度变化趋势为:Ru > Rh > Pd > lr > Pt > Au, Ag, Cu [67] 。其中铂是该反应的最佳催化剂。与铑和钯相比,Pt表面的*NH是相当稳定的。与金、银和铜相比,Pt表面更易形成NHad或Nads

Figure 3. New AOR reaction mechanism diagram summarized from existing studies [65]

图3. 现有研究总结的新AOR反应机理图 [65]

3.2. 贵金属催化剂研究进展

研究发现,氨氧化产生的中间产物之一*N容易吸附在使氨解离的催化剂活性表面,占据氨解离吸附的活性位置,从而阻止氨进一步的氧化,即发生催化剂中毒。氨的电催化氧化是一个复杂的反应,由于存在着多种吸附的中间体和反应产物,可能也会使电催化剂中毒。因此,更好地了解氨在某一电极上的氧化机理,必将促进氨电催化氧化的高活性、高选择性电催化剂的研究发展。如图4所示,目前高活性Pt和Pt基催化剂已被公认为是AOR的有效阳极催化剂 [68] ,多个研究小组相继发表了以氨为燃料的新型燃料电池的开发成果 [69] [70] [71] 。

Figure 4. Rate constant of ammonia decomposition on metals as a function of ΔH [72]

图4. 氨在金属上分解的速率常数与ΔH的函数 [72]

铂基合金催化剂:迄今为止,铂(Pt)金属是电催化AOR最有效的催化剂,人们开发了各种策略来提高铂基催化剂的性能,但仍有Pt成本高和稳定性差等缺点 [73] 。一方面,通过调整形态、调节催化剂组成,控制Pt基纳米颗粒的结构,达到减少Pt用量、提高催化性能的目的。另一方面,通过改性催化剂载体,可以有效改善Pt基催化剂的结块或脱离问题,从而抑制上述问题导致的催化剂性能下降和稳定性恶化 [74] 。然而,几乎所有的优化都不能绕过Pt (100)面,这是迄今为止AOR最活跃的反应面。过度依赖Pt (100)晶面导致严重的中毒和糟糕的稳定性,限制了AOR的产业化。然而,仅通过增加Pt (100)晶面比例来提高Pt基催化剂的电催化性能远远不能满足应用需求。考虑在AOR反应中仅激活其他晶面来取代Pt (100)也是不合理的,因为它仍然会导致过度依赖。

过渡金属掺杂多元铂基合金催化剂:虽然铂基二元合金催化剂的AOR催化性能及稳定性有一定提升,但部分铂基二元合金催化剂的性能与商业应用之间仍存在一段距离。有研究表明,在铂基二元合金催化剂中引入其它过渡金属元素(如Ni)形成铂基三元合金催化剂,不仅能降低铂负载量、降低催化剂成本,还能提高催化剂的AOR质量活性和稳定性。并且随着全球经济,通货膨胀严重,Pt基贵金属的价格上涨很快,地表丰度低,会导致直接氨燃料电池行业的使用成本升高。因此,铂基材料中掺杂较便宜的过渡金属元素,可以有效地降低Pt含量,降低成本,为直接氨燃料电池可持续发展找到突破口。

4. 电催化氮循环发展前景

近年来,这种以环境中大量存在的氮气为负极电化学反应活性物质来合成具有高附加值氨的新型能源体系,被认为是今后替代工业H-B法的首选技术之一。由于较简单的设备要求,温和的工作环境(常温、常压)和绿色环保的工艺路线,电催化氮还原具有很高的社会和经济效益。水系电催化氮还原,更是以低电位和低能耗高效转换和储存氨的电化学工艺,无论作为产氨的工业工艺,还是用于新能源储氢,都具有十分广阔的发展前景。

图5所示,如果电催化AOR得到充分开发,未来将形成以AOR为核心的无碳可持续能源网络,氨通过氨氧化反应和析氢反应组成电解池进行反应,阳极产生N2可重新制备氨,用于农业、工业等;阴极反应产生H2可用于氨的制备或与氧还原反应结合形成氢燃料电池,也可储存和转移到其他用途,如汽车、住宅生产等。通过AOR与ORR耦合形成DAFCs可直接应用于各种电力场所。阳极产生N2可直接回收,省去氢处理步骤,降低能耗。

Figure 5. Diverse sources and applications of green ammonia [75]

图5. 绿氨多样性来源及应用图示 [75]

由于严重的副反应和低效的产氨效率,尽管在开发高效催化剂提升电催化氮还原性能方面的研究取得了一定的进展,但目前所开发的电催化剂的产氨性能仍然远不能满足工业应用的要求。材料的催化性能不仅依赖于元素组成,还与其微观形貌和表面结构密切相关。储量丰富,价格低廉的过渡金属元素由于具有空的d轨道而表现出吸附和活化氮气分子的潜力。纳米结构催化剂具有的高比表面积与合金/团簇的高活性,有利于电子在催化剂表面的转移从而促进电催化过程。另一方面,过渡金属修饰的PtM催化剂不仅获得了更活跃的Pt晶面,加速电子转移,有利于*OH吸附,而且优化了Pt-d带中心,稳定了中间体的吸附,大大降低了反应势垒,并且在超高比活性下能有效维持初始活性。此种催化剂在反应过程中不会因*N或*NOx组分的中毒而降低Pt位点的密度,推动低温DAFCs技术应用于实际的储存和运输技术。

5. 总结与展望

本综述以电催化氮循环为背景线,深入研究了Fe、Ni基催化剂对电催化氮还原性能和直接氨燃料电池性能的影响。理想的催化剂应具有良好的可调节性、抑制副反应能力和加速中间产物的反应速率。虽然Fe、Ni基催化剂在电催化氮还原和直接氨燃料电池研究上取得了一定的进展,但研究成果所展现出的性能仍与目前实际工业合成的需求相距很大,因此,实现大规模电催化氮循环依旧任重而道远。未来的探究工作可以从下面多个角度为出发点,最大程度优化电催化氮循环的体系:

(1) 进一步调控Fe、Ni基催化剂原子比例,最优化此类催化剂的活性,最大程度的激活位点的催化活性,并提升对反应物的吸附能力和对产物的脱附能力,达到抑制催化剂中毒的目的;

(2) 构建多种的原位表征技术,详尽地解释反应机理,实时监测催化剂结构的演变以及反应物分子在活性物质表面吸附与解离时生成的中间体,进一步解释催化剂的活性中心与电催化物种之间的联系,为未来针对特定中间产物来优化催化剂做铺垫;

(3) 探索深入的理论研究方法,使其更精确和更有效率地模拟电催化氮还原和直接氨燃料电池的机理,并利用机器学习开发理论方法,促进理论计算和模拟在更复杂的情况中应用,为催化剂材料筛选及结构设计提供合理的指导依据;

(4) 选择性放大试验,将工作的研究重点放在工业化上。根据选择性和稳定性确定催化剂的装填数量和放大比例,推动此类电催化剂在电催化氮还原和直接氨燃料电池领域的应用。

NOTES

*通讯作者。

参考文献

[1] Seh, Z.W., Kibsgaard, J., Dickens, C.F., Chorkendorff, I.B., Nørskov, J.K. and Jaramillo, T.F. (2017) Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design. Science, 355, Article 4998.
https://doi.org/10.1126/science.aad4998
[2] Ling, C., Cui, Y., Lu, S., Bai, X. and Wang, J. (2022) How Computations Accelerate Electrocatalyst Discovery. Chem, 8, 1575-1610.
https://doi.org/10.1016/j.chempr.2022.03.015
[3] Xu, H., Ma, Y., Chen, J., Zhang, W.X. and Yang, J. (2022) Electrocatalytic Reduction of Nitrate—A Step towards a Sustainable Nitro-gen Cycle. Chemical Society Reviews, 51, 2710-2758.
https://doi.org/10.1039/D1CS00857A
[4] Zuo, S., Wu, Z.P., Zhang, H. and Lou, X.W. (2022) Operando Monitoring and Deciphering the Structural Evolution in Oxygen Evolution Electrocatalysis. Advanced Energy Materials, 12, Article ID: 2103383.
https://doi.org/10.1002/aenm.202103383
[5] Cui, X., Tang, C. and Zhang, Q, (2018) A Review of Electrocatalytic Re-duction of Dinitrogen to Ammonia under Ambient Conditions. Advanced Energy Materials, 8, Article ID: 1800369.
https://doi.org/10.1002/aenm.201800369
[6] Han, K., Luo, J., Feng, Y., Xu, L., Tang, W. and Wang, Z.L. (2020) Self-Powered Electrocatalytic Ammonia Synthesis Directly from Air as Driven by Dual Triboelectric Nanogenerators. Energy & Environmental Science, 13, 2450-2458.
https://doi.org/10.1039/D0EE01102A
[7] Wang, M., Wang, W., Qian, T., Liu, S., Li, Y., Hou, Z., Goodenough, J.B., Ajayan, P.M. and Yan, C. (2019) Oxidizing Vacancies in Nitrogen-Doped Carbon Enhance Air-Cathode Activity. Advanced Materials, 31, Article ID: 1803339.
https://doi.org/10.1002/adma.201803339
[8] Liu, S., Wang, M., Sun, X., Xu, N., Liu, J., Wang, Y., Qian, T. and Yan, C. (2018) Facilitated Oxygen Chemisorption in Heteroatom-Doped Carbon for Improved Oxygen Reaction Activity in All-Solid-State Zinc-Air Batteries. Advanced Materials, 30, Article ID: 1704898.
https://doi.org/10.1002/adma.201704898
[9] Zeng, F., Mebrahtu, C., Liao, L., Beine, A.K. and Palkovits, R. (2022) Sta-bility and Deactivation of OER Electrocatalysts: A Review. Journal of Energy Chemistry, 69, 301-329.
https://doi.org/10.1016/j.jechem.2022.01.025
[10] Liu, T., Wang, Y. and Li, Y. (2022) Two-Dimensional Organometallic Frameworks with Pyridinic Single-Metal-Atom sites for Bifunctional ORR/OER. Advanced Energy Materials, 32, Article ID: 2207110.
https://doi.org/10.1002/adfm.202207110
[11] Wu, Y.J., Yang, J., Tu, T.X., Li, W.Q., Zhang, P.F., Zhou, Y., Li, J.F., Li, J.T. and Sun, S.G. (2021) Evolution of Cationic Vacancy Defects: A Motif for Surface Restructuration of OER Precatalyst. An-gewandte Chemie, 60, 26829-26836.
https://doi.org/10.1002/anie.202112447
[12] Da, P., Zheng, Y., Hu, Y., Wu, Z., Zhao, H., Wei, Y., Guo, L., Wang, J., Wei, Y., Xi, S., Yan, C.H. and Xi, P. (2023) Synthesis of Bandgap-Tunabletransition Metal Sulfides through Gas-Phase Cation Exchange-Induced Topological Transformation. Angewandte Chemie, 135, e202301802.
https://doi.org/10.1002/ange.202301802
[13] Gao, Y., Xue, Y., Qi, L., Xing, C., Zheng, X., He, F. and Li, Y. (2022). Rhodium Nanocrystals on Porous Graphdiyne for Electrocatalytic Hydrogen Evolution from Saline Water. Nature Communica-tions, 13, Article No. 5227.
https://doi.org/10.1038/s41467-022-32937-2
[14] Wang, T., Tao, L., Zhu, X., Chen, C., Chen, W., Du, S., Zhou, Y., Zhou, B., Wang, D., Xie, C., Long, P., Li, W., Wang, Y., Chen, R., Zou, Y., Fu, X.Z., Li, Y., Duan, X. and Wang, S. (2022) Combined Anodic and Cathodic Hydrogen Production from Aldehyde Oxidation and Hydrogen Evolution Reaction. Nature Catalysis, 5, 66-73.
https://doi.org/10.1038/s41929-021-00721-y
[15] Chen, Q., Liu, K., Zhou, Y., Wang, X., Wu, K., Li, H., Pensa, E., Fu, J., Miyauchi, M., Cortes, E. and Liu, M. (2022) Ordered Ag Nanoneedle Arrays with Enhanced Electrocatalytic CO2 Reduction via Structure-Induced Inhibition of Hydrogen Evolution. Nano Letters, 22, 6276-6284.
https://doi.org/10.1021/acs.nanolett.2c01853
[16] Leverett, J., Tran‐Phu, T., Yuwono, J.A., Kumar, P., Kim, C., Zhai, Q., Han, C., Qu, J., Cairney, J., Simonov, A.N., Hocking, R.K., Dai, L., Daiyan, R. and Amal, R. (2022) Tuning the Coordination Structure of Cu-N-C Single Atom Catalysts for Simultaneous Electrochemical Reduction of CO2 and NO3– to Urea. Advanced Energy Materials, 12, Article ID: 2201500.
https://doi.org/10.1002/aenm.202201500
[17] Zhang, Y., Jang, H., Ge, X., Zhang, W., Li, Z., Hou, L., Zhai, L., Wei, X., Wang, Z., Kim, M.G., Liu, S., Qin, Q., Liu, X. and Cho, J. (2022) Single-Atom Sn on Tensile-Strained ZnO Nanosheets for Highly Efficient Conversion of CO2 into Formate. Advanced Energy Materials, 12, Article ID: 2202695.
https://doi.org/10.1002/aenm.202202695
[18] Liu, S., Qian, T., Wang, M., Ji, H., Shen, X., Wang, C. and Yan, C. (2021) Proton-Filtering Covalent Organic Frameworks with Superior Nitrogen Penetration Flux Promote Am-bient Ammonia Synthesis. Nature Catalysis, 4, 322-331.
https://doi.org/10.1038/s41929-021-00599-w
[19] Liu, S., Wang, M., Ji, H., Shen, X., Yan, C. and Qian, T. (2021) Al-tering the Rate-Determining Step over Cobalt Single Clusters Leading to Highly Efficient Ammonia Synthesis. National Science Review, 8, nwaa136.
https://doi.org/10.1093/nsr/nwaa136
[20] Liu, S., Wang, M., Qian, T., Ji, H., Liu, J. and Yan, C. (2019) Facilitating Ni-trogen Accessibility to Boron-Rich Covalent Organic Frameworks via Electrochemical Excitation for Efficient Nitrogen Fixation. Nature Communications, 10, Article No. 3898.
https://doi.org/10.1038/s41467-019-11846-x
[21] 苗壮, 王海曼. 电催化氨氧化电极活性组分的研究进展[J]. 辽宁化工, 2022, 51(1): 42-45.
[22] 刘晓红, 刘欣, 李志. 氨氧化催化系统的优化设计[J]. 贵金属, 2014, 35(2): 6-9.
[23] 郁明珠, 陈冲, 李林儒, 等. Pt催化剂在有机电解液中对氨氧化的电催化性能[C]//中国化学会, 国家自然科学基金委员会, 中国仪器仪表学会. 第十一届全国电分析化学会议论文摘要(1), 2011: 78-79.
[24] Ye, T.N., Park, S.W., Lu, Y., Li, J., Sasase, M., Kitano, M. and Hosono, H. (2020) Contribution of Nitrogen Va-cancies to Ammonia Synthesis over Metal Nitride Catalysts. Journal of the American Chemical Society, 142, 14374-14383.
https://doi.org/10.1021/jacs.0c06624
[25] Xu, W., Fan, G., Chen, J., Li, J., Zhang, L., Zhu, S., Su, X., Cheng, F. and Chen, J. (2020) Nanoporous Palladium Hydride for Electrocatalytic N2 Reduction under Ambient Conditions. Angewandte Chemie, 59, 3511-3516.
https://doi.org/10.1002/anie.201914335
[26] Zhang, D., Zhao, H., Wu, X., Deng, Y., Wang, Z., Han, Y., Li, H., Shi and Wang, L. (2021) Multi-Site Electrocatalysts Boost pH-Universal Nitrogen Reduction by High-Entropy Alloys. Advanced Func-tional Materials, 31, Article ID: 2006939.
https://doi.org/10.1002/adfm.202006939
[27] Liu, H. (2014) Ammonia Syn-thesis Catalyst 100 Years: Practice, Enlightenment and Challenge. Chinese Journal of Catalysis, 35, 1619-1640.
https://doi.org/10.1016/S1872-2067(14)60118-2
[28] Tao, H., Choi, C., Ding, L.X., Jiang, Z., Han, Z., Jia, M., Fan, Q., Gao, Y., Wang, H., Robertson, A.W., Hong, S., Jung, Y., Liu, S. and Sun, Z. (2019) Nitrogen Fixation by Ru Single-Atom Electrocatalytic Reduction. Chem, 5, 204-214.
https://doi.org/10.1016/j.chempr.2018.10.007
[29] Wu, T., Zhao, H., Zhu, X., Xing, Z., Liu, Q., Liu, T., Gao, S., Lu, S., Chen, G., Asiri, A.M., Zhang, Y. and Sun, X. (2020) Identifying the Origin of Ti3+ Activity toward Enhanced Electrocatalytic N2 Reduction over TiO2 Nanoparticles Modulated by Mixed-Valent Copper. Ad-vanced Materials, 32, Article ID: 2000299.
https://doi.org/10.1002/adma.202000299
[30] Huang, Z., Rafiq, M., Woldu, A.R., Tong, Q.X., Astruc, D. and Hu, L. (2023) Recent Progress in Electrocatalytic Nitrogen Reduction to Ammonia (NRR). Coordination Chemistry Reviews, 478, Ar-ticle ID: 214981.
https://doi.org/10.1016/j.ccr.2022.214981
[31] Wang, M., Liu, S., Ji, H., Liu, J., Yan, C. and Qian, T. (2020) Unveiling the Essential Nature of Lewis Basicity in Thermodynamically and Dynamically Promoted Nitrogen Fixation. Advanced Func-tional Materials, 30, Article ID: 2001244.
https://doi.org/10.1002/adfm.202001244
[32] Wang, M., Liu, S., Ji, H., Yang, T., Qian, T. and Yan, C. (2021) Salting-Out Effect Promoting Highly Efficient Ambient Ammonia Synthesis. Nature Commu-nications, 12, Article No. 3198.
https://doi.org/10.1038/s41467-021-23360-0
[33] Wang, M., Liu, S., Qian, T., Liu, J., Zhou, J., Ji, H., Xiong, J., Zhong, J. and Yan, C. (2019) Over 56.55% Faradaic Efficiency of Ambient Ammonia Synthesis Enabled by Positively Shifting the Reaction Potential. Nature Communications, 10, Article No. 341.
https://doi.org/10.1038/s41467-018-08120-x
[34] MacFarlane, D.R., Cherepanov, P.V., Choi, J., Suryanto, B.H., Hodgetts, R.Y., Bakker, J.M., Vallana, F.M.F. and Simonov, A.N. (2020) A Roadmap to the Ammonia Economy. Joule, 4, 1186-1205.
https://doi.org/10.1016/j.joule.2020.04.004
[35] Mukherjee, S., Devaguptapu, S.V., Sviripa, A., Lund, C.R. and Wu, G. (2018) Low-Temperature Ammonia Decomposition Catalysts for Hydrogen Generation. Applied Catalysis B: Environmental, 226, 162-181.
https://doi.org/10.1016/j.apcatb.2017.12.039
[36] Satyapal, S., Petrovic, J., Read, C., Thomas, G. and Ordaz, G. (2007) The U.S. Department of Energy’s National Hydrogen Storage Project: Progress towards Meeting Hydrogen-Powered Vehicle Requirements. Catalysis Today, 120, 246-256.
https://doi.org/10.1016/j.cattod.2006.09.022
[37] Abbasi, R., Setzler, B.P., Wang, J., Zhao, Y., Wang, T., Gottesfeld, S. and Yan, Y. (2020) Low-Temperature Direct ammonia Fuel Cells: Recent Devel-opments and Remaining Challenges. Current Opinion in Electrochemistry, 21, 335-344.
https://doi.org/10.1016/j.coelec.2020.03.021
[38] Almomani, F., Bhosale, R., Khraisheh, M., Kumar, A. and Tawalbeh, M. (2020) Electrochemical Oxidation of Ammonia on Nickel Oxide Nanoparticles. International Journal of Hydrogen Energy, 45, 10398-10408.
https://doi.org/10.1016/j.ijhydene.2019.11.071
[39] Barbosa, J.R., Leon, M.N., Fernandes, C.M., Antoniassi, R.M., Alves, O.C., Ponzio, E.A. and Silva, J.C.M. (2020) PtSnO2/C and Pt/C with Preferential (100) Orientation: High Active Elec-trocatalysts for Ammonia Electro-Oxidation Reaction. Applied Catalysis B: Environmental, 264, 118458.
https://doi.org/10.1016/j.apcatb.2019.118458
[40] Yang, Y., Zhang, L., Hu, Z., Zheng, Y., Tang, C., Chen, P., Wang, R., Qiu, K., Mao, J., Ling, T. and Qiao, S.Z. (2020) The Crucial Role of Charge Accumulation and Spin Polarization in Activating Carbon-Based Catalysts for Electrocatalytic Nitrogen Reduction. Angewandte Chemie International Edition, 59, 4525-4531.
https://doi.org/10.1002/anie.201915001
[41] Hao, D., Liu, Y., Gao, S., Arandiyan, H., Bai, X., Kong, Q., Wei, W., Shen, P. and Ni, B.J. (2021) Emerging Artificial Nitrogen Cycle Processes through Novel Electrochemical and Photochemical Synthe-sis. Materials Today, 46, 212-233.
https://doi.org/10.1016/j.mattod.2021.01.029
[42] Hattori, M., Iijima, S., Nakao, T., Hosono, H. and Hara, M. (2020) Solid Solution for Catalytic Ammonia Synthesis from Nitrogen and Hydrogen Gases at 50 ˚C. Nature Communications, 11, Ar-ticle No. 2001.
https://doi.org/10.1038/s41467-020-15868-8
[43] Shipman, M. and Symes, M. (2017) Recent Progress towards the Elec-trosynthesis of Ammonia from Sustainable Resources. Catalysis Today, 286, 57-68.
https://doi.org/10.1016/j.cattod.2016.05.008
[44] Anderson, J.S., Cutsail III, G.E., Rittle, J., Connor, B.A., Gunderson, W.A., Zhang, L., Hoffman, B.M. and Peters, J.C. (2015) Characterization of an Fe≡N-NH2 Intermediate Relevant to Catalytic N2 Reduction to NH3. Journal of the American Chemical Society, 137, 7803-7809.
https://doi.org/10.1021/jacs.5b03432
[45] Skulason, E., Bligaard, T., Gudmundsdóttir, S., Studt, F., Rossmeisl, J., Abild-Pedersen, F., Vegge, T., Jonsson, H and Nørskov, J.K. (2012) A Theoretical Evaluation of Possible Transition Metal Electro-Catalysts for N2 Reduction. Physical Chemistry Chemical Physics, 14, 1235-1245.
https://doi.org/10.1039/C1CP22271F
[46] He, H., Zhu, Q.Q., Yan, Y., Zhang, H.W., Han, Z.Y., Sun, H., Chen, J., Li, C.P., Zhang, Z. and Du, M. (2022) Metal-Organic Framework Supported Au Nanoparticles with Organosilicone Coating for High-Efficiency Electrocatalytic N2 Reduction to NH3. Applied Catalysis B: Environmental, 302, Article ID: 120840.
https://doi.org/10.1016/j.apcatb.2021.120840
[47] Wang, H., Mao, Q., Yu, H., Wang, S., Xu, Y., Li, X., Wang, Z. and Wang, L. (2021) Enhanced Electrocatalytic Performance of Mesoporous Au-Rh Bimetallic Films for Ammonia Synthesis. Chemical Engineering Journal, 418, Article ID: 129493.
https://doi.org/10.1016/j.cej.2021.129493
[48] Zhang, Y., Zhang, Q., Liu, D.X., Wen, Z., Yao, J.X., Shi, M.M., Zhu, Y.F., Yan, J.M. and Jiang, Q. (2021) High Spin Polarization Ul-trafine Rh Nanoparticles on CNT for Efficient Electrochemical N2 Fixation to Ammonia. Applied Catalysis B: Environmental, 298, Article ID: 120592.
https://doi.org/10.1016/j.apcatb.2021.120592
[49] Kong, Y., Li, Y., Sang, X., Yang, B., Li, Z., Zheng, S., Zhang, Q., Yao, S., Yang, X., Lei, L., Zhou, S., Wu, G. and Hou, Y. (2022) Atomically Dispersed Zinc(I) Active Sites to Accelerate Nitrogen Reduction Kinetics for Ammonia Electrosynthesis. Advanced Materials, 34, Article ID: 2103548.
https://doi.org/10.1002/adma.202103548
[50] Qu, Y., Dai, T., Cui, Y., Zhang, Y., Wang, Z. and Jiang, Q. (2022) Tailor-ing Electronic Structure of Copper Nanosheets by Silver Doping toward Highly Efficient Electrochemical Reduction of Nitrogen to Ammonia. Chemical Engineering Journal, 43, Article ID: 133752.
https://doi.org/10.1016/j.cej.2021.133752
[51] Wang, J., Huang, H., Wang, P., Wang, S. and Li, J. (2021) N, S Synergis-tic Effect in Hierarchical Porous Carbon for Enhanced NRR Performance. Carbon, 179, 358-364.
https://doi.org/10.1016/j.carbon.2021.04.045
[52] Wan, X.K., Wu, H.B., Guan, B.Y., Luan, D. and Lou, X.W. (2020) Confining Sub-Nanometer Pt Clusters in Hollow Mesoporous Carbon Spheres for Boosting Hydrogen Evolution Activity. Ad-vanced Materials, 32, Article ID: 1901349.
https://doi.org/10.1002/adma.201901349
[53] Miller, H.A., Lavacchi, A., Vizza, F., Marelli, M., Di Benedetto, F., D’Acapito, F., Paska, Y. and Dekel, D.R. (2016) A Pd/C‐CeO2 Anode Catalyst for High‐Performance Platinum‐Free Anion Exchange Membrane Fuel Cells. Angewandte Chemie International Edition, 55, 6004-6007.
https://doi.org/10.1002/anie.201600647
[54] Fan, J., Wu, J., Cui, X., Gu, L., Zhang, Q., Meng, F., Lei, B., Singh, D. and Zheng, W. (2020) Hydrogen Stabilized RhPdH 2D Bimetallene Nanosheets for Efficient Alkaline Hydrogen Evolution. Journal of the American Chemical Society, 142, 3645-3651.
https://doi.org/10.1021/jacs.0c00218
[55] Xiang, Z.P., Tan, A.D., Fu, Z.Y., Piao, J.H. and Liang, Z.X. (2020) Oxygen Reduction Reaction on Single Pt Nanoparticle. Journal of Energy Chemistry, 49, 323-326.
https://doi.org/10.1016/j.jechem.2020.02.051
[56] Jiang, Y., Wang, M., Liu, S., Zhang, L., Qian, S., Cao, Y., Cheng, Y., Qian, T. and Yan, C. (2023) Eliminating Nitrogen Chemisorption Barrier with Single-Atom Supported Yttrium Cluster via Electronic Promoting Effect for Highly Efficient Ammonia Synthesis. Nano Research, 16, 2185-2191.
https://doi.org/10.1007/s12274-022-4977-z
[57] Jiang, Y., Wang, M., Zhang, L., Liu, S., Cao, Y., Qian, S., Cheng, Y., Xu, X., Yan, C. and Qian, T. (2022) Distorted spinel Ferrite Heterostructure Triggered by Alkaline Earth Metal Substitution Fa-cilitates Nitrogen Localization and Electrocatalytic Reduction to Ammonia. Chemical Engineering Journal, 450, 138226.
https://doi.org/10.1016/j.cej.2022.138226
[58] Zou, Z., Wu, L., Yang, F., Cao, C., Meng, Q., Luo, J., Zhou, W., Tong, Z., Chen, J., Chen, S., Zhou, S., Wang, J. and Deng, S. (2022) Delicate Tuning of the Ni/Co Ratio in Bimetal Layered Double Hy-droxides for Efficient N2 Electroreduction. ChemSusChem, 15, e202200127.
https://doi.org/10.1002/cssc.202200127
[59] Wolfram, P., Kyle, P., Zhang, X., Gkantonas, S. and Smith, S. (2022) Using Ammonia as a Shipping Fuel Could Disturb the Nitrogen Cycle. Nature Energy, 7, 1112-1114.
https://doi.org/10.1038/s41560-022-01124-4
[60] Voiry, D., Shin, H.S., Loh, K.P. and Chhowalla, M. (2018) Low-Dimensional Catalysts for Hydrogen Evolution and CO2 Reduction. Nature Reviews Chemistry, 2, Article No. 0105.
https://doi.org/10.1038/s41570-017-0105
[61] Siddharth, K., Chan, Y., Wang, L. and Shao, M. (2018) Ammonia Elec-tro-Oxidation Reaction: Recent Development in Mechanistic Understanding and Electrocatalyst Design. Current Opinion in Electrochemistry, 9, 151-157.
https://doi.org/10.1016/j.coelec.2018.03.011
[62] Estejab, A. and Botte, G. (2016) DFT Calculations of Ammonia Oxida-tion Reactions on Bimetallic Clusters of Platinum and Iridium. Computational and Theoretical Chemistry, 1091, 31-40.
https://doi.org/10.1016/j.comptc.2016.06.030
[63] Nagita, K., Yuhara, Y., Fujii, K., Katayama, Y. and Nakayama, M. (2021) Ni-and Cu-Co-Intercalated Layered Manganese Oxide for Highly Efficient Electro-Oxidation of Ammonia Selective to Nitrogen. ACS Applied Materials & Interfaces, 13, 28098-28107.
https://doi.org/10.1021/acsami.1c04422
[64] Lan, R. and Tao, S. (2010) Direct Ammonia Alkaline Anion-Exchange Membrane Fuel Cells. Electrochem. Electrochemical and Sol-id-State Letters, 13, B83.
https://doi.org/10.1149/1.3428469
[65] Xi, X., Fan, Y., Zhang, K., Liu, Y., Nie, F., Guan, H. and Wu, J. (2022) Carbon-Free Sustainable Energy Technology: Electrocatalytic Ammonia Oxidation Reaction. Chemical Engi-neering Journal, 435, Article ID: 134818.
https://doi.org/10.1016/j.cej.2022.134818
[66] Gootzen, J.F.E., Wonders, A.H., Visscher, W., Van Santen, R.A. and Van Veen, J.A.R. (1998) A DEMS and Cyclic Voltammetry Study of NH3 Oxidation on Platinized Platinum. Electrochimica Acta, 43, 1851-1861.
https://doi.org/10.1016/S0013-4686(97)00285-5
[67] De Vooys, A.C.A., Koper, M.T.M., Van Santen, R.A. and Van Veen, J.A.R. (2001) The Role of Adsorbates in the Electrochemical Oxidation of Ammonia on Noble and Transition Metal Electrodes. Journal of Electroanalytical Chemistry, 506, 127-137.
https://doi.org/10.1016/S0022-0728(01)00491-0
[68] Wallace, S., McCrum, I. and Janik, M., (2021) Ammonia Elec-tro-Oxidation Mechanism on the Platinum (100) Surface. Catalysis Today, 371, 50-57.
https://doi.org/10.1016/j.cattod.2020.09.024
[69] Jeerh, G., Zhang, M. and Tao, S. (2021) Recent Progress in Ammonia Fuel Cells and Their Potential Applications. Journal of Materials Chemistry A, 9, 727-752.
https://doi.org/10.1039/D0TA08810B
[70] Li, Y., Pillai, H.S., Wang, T., Hwang, S., Zhao, Y., Qiao, Z., Mu, Q., Kara-kalos, S., Chen, M., Yang, J., Su, D., Xin, H., Yan, Y. and Wu, G. (2021) High-Performance Ammonia Oxidation Catalysts for Anion-Exchange Membrane Direct Ammonia Fuel Cells. Energy & Environmental Science, 14, 1449-1460.
https://doi.org/10.1039/D0EE03351K
[71] Silva, J.C.M., da Silva, S.G., De Souza, R.F., Buzzo, G.S., Spinacé, E.V., Neto, A.O. and Assumpção, M.H. (2015) PtAu/C Electrocatalysts as Anodes for Direct Ammonia Fuel Cell. Applied Catalysis A: General, 490, 133-138.
https://doi.org/10.1016/j.apcata.2014.11.015
[72] Schüth, F., Palkovits, R., Schlögl, R. and Su, D.S. (2012) Ammonia as a Possible Element in an Energy Infrastructure: Catalysts for Ammonia Decomposition. Energy & Environmental Science, 5, 6278-6289.
https://doi.org/10.1039/C2EE02865D
[73] Feng, Y.Y., Song, G.H., Zhang, Q., Hu, H.S., Feng, M.Y., Wang, J.Y. and Kong, D.S. (2017) Catalytic Performance of Non-Alloyed Bimetallic PtAu Electrocatalysts for Methanol Oxidation Reaction. International Journal of Hydrogen Energy, 42, 30109-30118.
https://doi.org/10.1016/j.ijhydene.2017.10.102
[74] Esabattina, S., Posa, V.R., Zhanglian, H., kumar Godlaveeti, S., Red-dy, R.R.N. and Somala, A.R. (2018) Fabrication of Bimetallic PtPd Alloy Nanospheres Supported on rGO Sheets for Superior Methanol Electro-Oxidation. International Journal of Hydrogen Energy, 43, 4115-4124.
https://doi.org/10.1016/j.ijhydene.2017.07.193
[75] 陈永珍, 韩颖, 宋文吉, 等. 绿氨能源化及氨燃料电池研究进展[J]. 储能科学与技术, 2023, 12(1): 111-119.

为你推荐




Baidu
map