[1] |
Cao, X., Tan, C., Sindoro, M. and Zhang, H. (2017) Hybrid Micro-/Nano-Structures Derived from Metal-Organic Frameworks: Preparation and Applications in Energy Storage and Conversion. Chemical Society Reviews, 46, 2660-2677. https://doi.org/10.1039/C6CS00426A |
[2] |
Zhu, Q.L. and Xu, Q. (2014) Metal-Organic Framework Composites. Chemical Society Reviews, 43, 5468-5512. https://doi.org/10.1039/C3CS60472A |
[3] |
Xu, G., Nie, P., Dou, H., Ding, B., Li, L. and Zhang, X. (2017) Ex-ploring Metal-Organic Frameworks for Energy Storage in Batteries and Supercapacitors. Materials Today, 20, 191-209. https://doi.org/10.1016/j.mattod.2016.10.003 |
[4] |
Wang, H., Zhu, Q.L., Zou, R. and Xu, Q. (2017) Metal-Organic Frameworks for Energy Applications. Chem, 2, 52-80. https://doi.org/10.1016/j.chempr.2016.12.002 |
[5] |
Hu, B., De Bruler, C., Rhodes, Z. and Liu, T.L. (2017) Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) towards Sustainable and Safe Energy Storage. Journal of the American Chemical Society, 139, 1207-1214. https://doi.org/10.1021/jacs.6b10984 |
[6] |
Yuan, S., Zhu, Y.H., Li, W., Wang, S., Xu, D., Li, L., et al. (2017) Sur-factant-Free Aqueous Synthesis of Pure Single-Crystalline SnSe Nanosheet Clusters as Anode for High Energy-and Power-Density Sodium-Ion Batteries. Advanced Materials, 29, Article ID: 1602469. https://doi.org/10.1002/adma.201602469 |
[7] |
Wang, S., Sun, T., Yuan, S., Zhu, Y., Zhang, X., Yan, J., et al. (2017) P3-Type K0.33Co0.53Mn4O2∙0.39H2O: A Novel Bifunctional Electrode for Na-Ion Batteries. Materials Horizons, 4, 1122-1127. https://doi.org/10.1039/C7MH00512A |
[8] |
Wang, X., Fan, L., Gong, D., Zhu, J., Zhang, Q. and Lu, B. (2016) Core-Shell Ge@graphene@TiO2 Nanofibers as a High-Capacity and Cycle-Stable Anode for Lithium and So-dium Ion Battery. Advanced Functional Materials, 26, 1104-1111. https://doi.org/10.1002/adfm.201504589 |
[9] |
Zhao, Y., Ding, Y., Li, Y., Peng, L., Byon, H.R., Goodenough, J.B., et al. (2015) A Chemistry and Material Perspective on Lithium Redox Flow Batteries toward High-Density Electrical En-ergy Storage. Chemical Society Reviews, 44, 7968-7996. https://doi.org/10.1039/C5CS00289C |
[10] |
Cho, J., Jeong, S. and Kim, Y. (2015) Commercial and Research Battery Technologies for Electrical Energy Storage Applications. Pro-gress in Energy and Combustion Science, 48, 84-101. https://doi.org/10.1016/j.pecs.2015.01.002 |
[11] |
Peng, L., Zhu, Y., Li, H. and Yu, G. (2016) Chemically Integrated Inorganic-Graphene Two-Dimensional Hybrid Materials for Flexible Energy Storage Devices. Small, 12, 6183-6199. https://doi.org/10.1002/smll.201602109 |
[12] |
Jiao, Y., Pei, J., Yan, C., Chen, D., Hu, Y. and Chen, G. (2016) Layered Nickel Metal-Organic Framework for High-Performance Alkaline Battery-Supercapacitor Hybrid Devices. Journal of Materials Chemistry A, 4, 13344-13351. https://doi.org/10.1039/C6TA05384J |
[13] |
Manthiram, A., Fu, Y., Chung, S.H., Zu, C. and Su, Y.S. (2014) Re-chargeable Lithium-Sulfur Batteries. Chemical Reviews, 114, 11751-11787. https://doi.org/10.1021/cr500062v |
[14] |
Fang, R., Zhao, S., Sun, Z., Wang, D.W., Cheng, H.M. and Li, F. (2017) More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects. Advanced Materials, 29, Article ID: 1606823. https://doi.org/10.1002/adma.201606823 |
[15] |
Wei, T., Zhang, M., Wu, P., Tang, Y.J., Li, S.L., Shen, F.C., et al. (2017) POM-Based Metal-Organic Framework/Reduced Graphene Oxide Nanocomposites with Hybrid Behavior of Battery-Supercapacitor for Superior Lithium Storage. Nano Energy, 34, 205-214. https://doi.org/10.1016/j.nanoen.2017.02.028 |
[16] |
Crabtree, G., Kocs, E. and Trahey, L. (2015) The Ener-gy-Storage Frontier: Lithium-Ion Batteries and beyond. MRS Bulletin, 40, 1067-1078. https://doi.org/10.1557/mrs.2015.259 |
[17] |
Li, Y., Xu, Y., Yang, W., Shen, W., Xue, H. and Pang, H. (2018) MOF-Derived Metal Oxide Composites for Advanced Electrochemical Energy Storage. Small, 14, Article ID: 1704435. https://doi.org/10.1002/smll.201704435 |
[18] |
Zhang, X., Chen, A., Zhong, M., Zhang, Z., Zhang, X., Zhou, Z., et al. (2019) Metal-Organic Frameworks (MOFs) and MOF-Derived Materials for Energy Storage and Conversion. Electro-chemical Energy Reviews, 2, 29-104. https://doi.org/10.1007/s41918-018-0024-x |
[19] |
Xie, X.C., Huang, K.J. and Wu, X. (2018) Metal-Organic Framework-Derived Hollow Materials for Electrochemical Energy Storage. Journal of Materials Chemistry A, 6, 6754-6771. https://doi.org/10.1039/C8TA00612A |
[20] |
Ran, F., Yang, X., Xu, X., et al. (2021) Green Activation of Sustainable Resources to Synthesize Nitrogen-Doped Oxygen-Riched Porous Carbon Nanosheets towards High-Performance Supercapacitor. Chemical Engineering Journal, 412, Article ID: 128673. https://doi.org/10.1016/j.cej.2021.128673 |
[21] |
Shao, Y., El-Kady, M.F., Sun, J., et al. (2018) Design and Mecha-nisms of Asymmetric Supercapacitors. Chemical Reviews, 118, 9233-9280. https://doi.org/10.1021/acs.chemrev.8b00252 |
[22] |
Liu, S., Zhou, J., Cai, Z., Fang, G., Cai, Y., Pan, A., et al. (2016) Nb2O5 Quantum Dots Embedded in MOF-Derived Nitrogen-Doped Porous Carbon for Advanced Hybrid Supercapaci-tor Applications. Journal of Materials Chemistry A, 4, 17838-17847. https://doi.org/10.1039/C6TA07856G |
[23] |
Zhao, X., Sanchez, B.M., Dobson, P.J. and Grant, P.S. (2011) The Role of Nanomaterials in Redox-Based Supercapacitors for Next-Generation Energy Storage Devices. Nanoscale, 3, 839-855. https://doi.org/10.1039/c0nr00594k |
[24] |
Peng, L., Fang, Z., Zhu, Y., Yan, C. and Yu, G. (2018) Holey 2D Nanomaterials for Electrochemical Energy Storage. Advanced Energy Materials, 8, Article ID: 1702179. https://doi.org/10.1002/aenm.201702179 |
[25] |
Yang, J., Xiong, P., Zheng, C., Qiu, H. and Wei, M. (2014) Met-al-Organic Frameworks: A New Promising Class of Materials for a High-Performance Supercapacitor Electrode. Journal of Materials Chemistry A, 2, 16640-16644. https://doi.org/10.1039/C4TA04140B |
[26] |
Zeng, G., Chen, Y., Chen, L., Xiong, P. and Wei, M. (2016) Hierar-chical Cerium Oxide Derived from Metal-Organic Frameworks for High-Performance Supercapacitor Electrodes. Elec-trochimica Acta, 222, 773-780. https://doi.org/10.1016/j.electacta.2016.11.035 |
[27] |
Xu, W., Li, T.T. and Zheng, Y.Q. (2016) Porous Co3O4 Na-noparticles Derived from a Co (ii)-Cyclohexanehexacarboxylate Metal-Organic Framework and Used in a Supercapacitor with Good Cycling Stability. RSC Advances, 6, 86447-86454. https://doi.org/10.1039/C6RA17471J |
[28] |
Gao, W., Chen, D., Quan, H., Zou, R., Wang, W., Luo, X., et al. (2017) Fabrication of Hierarchical Porous Metal-Organic Framework Electrode for Aqueous Asymmetric Supercapacitor. ACS Sustainable Chemistry & Engineering, 5, 871-878. https://doi.org/10.1021/acssuschemeng.7b00112 |
[29] |
Jiang, H.L. and Xu, Q. (2011) Porous Metal-Organic Frameworks as Platforms for Functional Applications. Chemical Com-munications, 47, 3351-3370. https://doi.org/10.1039/c0cc05419d |
[30] |
Ye, M., Li, C., Zhao, Y. and Qu, L. (2016) Graphene Decorated with Bimodal Size of Carbon Polyhedrons for Enhanced Lithium Storage. Carbon, 106, 9-19. https://doi.org/10.1016/j.carbon.2016.05.013 |
[31] |
Sculley, J., Yuan, D. and Zhou, H.C. (2011) The Current Status of Hydrogen Storage in Metal-Organic Frameworks—Updated. Energy & Environmental Science, 4, 2721-2735. https://doi.org/10.1039/c1ee01240a |
[32] |
Sun, L., Campbell, M.G. and Dinca, M. (2016) Electrically Conductive Porous Metal-Organic Frameworks. Angewandte Chemie International Edition Review, 55, 3566-3579. https://doi.org/10.1002/anie.201506219 |
[33] |
Yin, X., Song, Y., Wang, Y., Zhang, L. and Li, Q. (2014) Synthesis, Structure, and Luminescence Properties of Metal-Organic Frameworks Based on Benzo-Bis(Imidazole). Science China Chemistry, 57, 135-140. https://doi.org/10.1007/s11426-013-4985-7 |
[34] |
Lin, T., Chen, I.W., Liu, F., Yang, C., Bi, H., Xu, F., et al. (2015) Nitrogen-Doped Mesoporous Carbon of Extraordinary Capacitance for Electrochemical Energy Storage. Science, 350, 1508-1513. https://doi.org/10.1126/science.aab3798 |
[35] |
Li, S., Jin, B., Li, H., Dong, C., Zhang, B., Xu, J., et al. (2017) Syn-ergistic Effect of Tubular Amorphous Carbon and Polypyrrole on Polysulfides in Li-S Batteries. Journal of Electroana-lytical Chemistry, 806, 41-49. https://doi.org/10.1016/j.jelechem.2017.10.034 |
[36] |
Li, S.L. and Xu, Q. (2013) Metal-Organic Frameworks as Platforms for Clean Energy. Energy & Environmental Science, 6, 1656-1683. https://doi.org/10.1039/c3ee40507a |
[37] |
Xia, W., Mahmood, A., Zou, R. and Xu, Q. (2015) Metal-Organic Frameworks and Their Derived Nanostructures for Electrochemical Energy Storage and Conversion. Energy & Environ-mental Science, 8, 1837-1866. https://doi.org/10.1039/C5EE00762C |
[38] |
Schoedel, A., Ji, Z. and Yaghi, O.M. (2016) The Role of Metal-Organic Frameworks in a Carbon-Neutral Energy Cycle. Nature Energy, 1, Article No. 16034. https://doi.org/10.1038/nenergy.2016.34 |
[39] |
Ren, Y., Chia, G.H. and Gao, Z. (2013) Metal-Organic Frameworks in Fuel Cell Technologies. Nano Today, 8, 577-597. https://doi.org/10.1016/j.nantod.2013.11.004 |
[40] |
Zhang, H., Osgood, H., Xie, X., Shao, Y. and Wu, G. (2017) Engineering Nanostructures of PGM-Free Oxygen-Reduction Catalysts Using Metal-Organic Frameworks. Nano Energy, 31, 331-350. https://doi.org/10.1016/j.nanoen.2016.11.033 |
[41] |
Liu, T., He, F., Su, Y., et al. (2011) Co3O4 Nanowire@MnO2 Ultrathin Nanosheet Core/Shell Arrays: A New Class of High-Performance Pseudocapacitive Materials. Advanced Mate-rials, 23, 2076-2081. https://doi.org/10.1002/adma.201100058 |
[42] |
Qu, C., Jiao, Y., Zhao, B., Chen, D., Zou, R., Walton, K.S., et al. (2016) Nickel-Based Pillared MOFs for High-Performance Supercapacitors: Design, Synthesis, and Stability Study. Nano Energy, 26, 66-73. https://doi.org/10.1016/j.nanoen.2016.04.003 |
[43] |
Xia, W., Qu, C., Liang, Z., Zhao, B., Dai, S., Qiu, B., et al. (2017) High-Performance Energy Storage and Conversion Materials Derived from a Single Metal-Organic Frame-work/Graphene Aerogel Composite. Nano Letters, 17, 2788-2795. https://doi.org/10.1021/acs.nanolett.6b05004 |
[44] |
Liang, Z., Xia, W., Qu, C., Qiu, B., Tabassum, H., Gao, S., et al. (2017) Edge-Abundant Porous Fe3O4 Nanoparticles Docking in Nitrogen-Rich Graphene Aerogel as Efficient and Dura-ble Electrocatalyst for Oxygen Reduction. ChemElectroChem, 4, 2442-2247. https://doi.org/10.1002/celc.201700627 |
[45] |
Liu, D.X., Zou, D.T., Zhu, H.L., et al. (2018) Mesoporous Met-al-Organic Frameworks: Synthetic Strategies and Emerging Applications. Small, 14, 1801454-1801485. https://doi.org/10.1002/smll.201801454 |
[46] |
Ding, B., Wang, J., Chang, Z., et al. (2016) Self-Sacrificial Tem-plate-Directed Synthesis of Metal-Organic Framework-Derived Porous Carbon for Energy Storage Devices. ChemElec-troChem, 3, 668-674. https://doi.org/10.1002/celc.201500536 |
[47] |
Reddy, R., Lin, J., Chen, Y.Y., et al. (2020) Progress of Nanostruc-tured Metal Oxides Derived from Metal-Organic Frameworks as Anode Materials for Lithium-Ion Batteries. Coordina-tion Chemistry Reviews, 420, Article ID: 213434. https://doi.org/10.1016/j.ccr.2020.213434 |
[48] |
Bi, W.T., Zhou, M., Ma, Z.Y., et al. (2012) CuInSe2 Ultrathin Na-noplatelets: Novel Self-Sacrificial Template-Directed Synthesis and Application for Flexible Photodetectors. Chemical Communications, 48, 9162-9164. https://doi.org/10.1039/c2cc34727j |
[49] |
Koo, J., Hwang, I., Yu, X.J., et al. (2017) Hollowing out MOFs: Hierar-chical Micro- and Mesoporous MOFs with Tailorable Porosity via Selective Acid Etching. Chemical Science, 8, 6799-6803. https://doi.org/10.1039/C7SC02886E |
[50] |
Zhang, Z.C., Chen, Y.F., He, S., et al. (2014) Hierarchical Zn/Ni-MOF-2 Nanosheet Assembled Hollow Nanocubes for Multicomponent Catalytic Reactions. Angewandte Chemie International Edition, 53, 12517-12521. https://doi.org/10.1002/anie.201406484 |
[51] |
Liu, W., Yin, R., Xu, X., et al. (2019) Structural Engineering of Low-Dimensional Metal-Organic Frameworks: Synthesis, Properties, and Applications. Advanced Science, 6, Article ID: 1802373. https://doi.org/10.1002/advs.201802373 |
[52] |
何淑花. MOFs基复合材料及其衍生物的制备及电化学性能研究[D]: [硕士学位论文]. 合肥: 中国科学技术大学, 2017. |
[53] |
He, S., Li, Z. and Wang, J. (2022) Bimetallic MOFs with Tunable Morphology: Synthesis and Enhanced Lithium Storage Properties. Journal of Solid State Chemistry, 307, Article ID: 122726. https://doi.org/10.1016/j.jssc.2021.122726 |
[54] |
Hu, M.L., Masoomi, M.Y. and Morsali, A. (2019) Template Strategies with MOFs. Coordination Chemistry Reviews, 387, 415-435. https://doi.org/10.1016/j.ccr.2019.02.021 |
[55] |
宋良浩. 界面反应参与MOFs衍生双金属氧化物的合成及其形成机理、催化性能的研究[D] : [硕士学位论文]. 济南: 济南大学, 2020. |
[56] |
Park, J.W., Zheng, H.M., Jun, Y.W. and Alivisatos, A.P. (2009) Hetero-Epitaxial Anion Exchange Yields Single-Crystalline Hollow Nanoparticles. Journal of the American Chemical Society, 131, 13943-13945. https://doi.org/10.1021/ja905732q |
[57] |
Wu, L.L., Wang, Z., Long, Y., et al. (2017) Multishelled NixCo3-xO4 Hol-low Microspheres Derived from Bimetal Organic Frameworks as Anode Materials for High Performance Lithium Ion Batteries. Small, 13, Article ID: 1604270. https://doi.org/10.1002/smll.201604270 |
[58] |
He, S., Li, Z., Ma, L., et al. (2017) Graphene Oxide-Templated Growth of MOFs with Enhanced Lithium-Storage Properties. New Journal of Chemistry, 41, 14209-14216. https://doi.org/10.1039/C7NJ02846F |
[59] |
Chen, L.Y., Luque, R. and Li, Y.W. (2017) Controllable Design of Tunable Nanostructures inside Metal-Organic Frameworks. Chemical Society Reviews, 46, 4614-4630. https://doi.org/10.1039/C6CS00537C |
[60] |
Kim, D. and Coskun, A. (2017) Template-Directed Approach toward the Realization of Ordered Heterogeneity in Bimetallic Metal-Organic Frameworks. Angewandte Chemie International Edition, 56, 5071-5076. https://doi.org/10.1002/anie.201702501 |
[61] |
Zhang, J., Shao, J., Zhang, X., et al. (2023) Facile Synthesis of Cu-BTC@Biochar with Controlled Morphology for Effective Toluene Adsorption at Medium-High Temperature. Chem-ical Engineering Journal, 452, Article ID: 139003. https://doi.org/10.1016/j.cej.2022.139003 |
[62] |
Kirchon, A., Feng, L., Drake, H.F., et al. (2018) From Fundamen-tals to Applications: A Toolbox for Robust and Multifunctional MOF Materials. Chemical Society Reviews, 47, 8611-8638. https://doi.org/10.1039/C8CS00688A |
[63] |
Karagiaridi, O., Lalonde, M.B., Bury, W., et al. (2012) Opening ZIF-8: A Catalytically Active Zeolitic Imidazolate Framework of Sodalite Topology with Unsubstituted Linkers. Journal of the American Chemical Society, 134, 18790-18796. https://doi.org/10.1021/ja308786r |
[64] |
Feng, L., Yuan, S., Zhang, L.L., et al. (2018) Creating Hierarchical Pores by Controlled Linker Thermolysis in Multivariate Met-al-Organic Frameworks. Journal of the American Chemical Society, 140, 2363-2372. https://doi.org/10.1021/jacs.7b12916 |
[65] |
Wang, W., Chai, M., Zulkifli, M.Y.B., et al. (2023) Metal-Organic Framework Composites from Mechanochemical Process. Molecular Systems Design & Engineering, 8, 560-579. https://doi.org/10.1039/D2ME00211F |
[66] |
Xiao, W., Cheng, M., Liu, Y., et al. (2023) Functional Metal/Carbon Composites Derived from Metal-Organic Frameworks: Insight into Structures, Properties, Performances, and Mecha-nisms. ACS Catalysis, 13, 1759-1790. https://doi.org/10.1021/acscatal.2c04807 |
[67] |
Li, G.H., Yang, H., Li, F.C., et al. (2016) Facile Formation of a Nanostructured NiP2@C Material for Advanced Lithium-Ion Battery Anode Using Adsorption Property of Met-al-Organic Framework. Journal of Materials Chemistry, 4, 9593-9599. https://doi.org/10.1039/C6TA02059C |
[68] |
Qu, C., Zhao, B., Jiao, Y., Chen, D., Dai, S., Deglee, B.M., et al. (2017) Functionalized Bimetallic Hydroxides Derived from Metal-Organic Frameworks for High-Performance Hybrid Superca-pacitor with Exceptional Cycling Stability. ACS Energy Letters, 2, 1263-1269. https://doi.org/10.1021/acsenergylett.7b00265 |
[69] |
戴良鸿, 刘劲远, 彭红建, 等. MOFs及其衍生材料在锂离子电池负极中的研究进展[J]. 复合材料学报, 2023, 40(4): 1924-1936. |
[70] |
Ke, F.S., Mishra, K., Jamison, L., Peng, X.X., Ma, S.G., Huang, L., Sun, S.G. and Zhou, X.D. (2014) Tailoring Nanostructures in Micrometer Size Germanium Particles to Improve Their Performance as an Anode for Lithium Ion Batteries. Chemical Communications, 50, 3713-3715. https://doi.org/10.1039/c4cc00051j |
[71] |
Li, X., Cheng, F., Zhang, S. and Chen, J. (2006) Shape-Controlled Synthesis and Lithium-Storage Study of Metal-Organic Frameworks Zn4O(1,3,5-Benzenetribenzoate)2. Journal of Power Sources, 160, 542-547. https://doi.org/10.1016/j.jpowsour.2006.01.015 |
[72] |
李震东, 王振华, 张仕龙, 等. MOFs及其衍生物作为锂离子电池电极的研究进展[J]. 储能科学与技术, 2020, 9(1): 18-24. |
[73] |
Ferey, G., Mellotdraznieks, C., Serre, C., et al. (2005) A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309, 2040-2042. https://doi.org/10.1126/science.1116275 |
[74] |
Ferey, G., Latroche, M., Serre, C., et al. (2003) Hydro-gen Adsorption in the Nanoporous Metal-Benzenedicarboxylate M(OH)(O2C-C6H4-CO2) (M=Al3+, Cr3+), MIL-53. Chemical Communications, 24, 2976-2977. https://doi.org/10.1039/B308903G |
[75] |
Li, M.C., Wang, W.X., Yang, M.Y., et al. (2015) Large-Scale Fabrication of Porous Carbon-Decorated Iron Oxide Microcuboids from Fe-MOF as High-Performance Anode Materials for Lithi-um-Ion Batteries. RSC Advances, 5, 7356-7362. https://doi.org/10.1039/C4RA11900B |
[76] |
Huang, G., Zhang, F.F., Zhang, L.L., et al. (2014) Hierarchical NiFe2O4/Fe2O3 Nanotubes Derived from Metal Organic Frameworks for Superior Lithium Ion Battery Anodes. Journal of Materials Chemistry, 2, 8048-8053. https://doi.org/10.1039/C4TA00200H |
[77] |
Luo, Y.M., Sun, L.X., Xu, F., et al. (2017) Porous Carbon Derived from Metalorganic Framework as an Anode for Lithium-Ion Batteries with Improved Performance. Key Engineering Materials, 727, 705-711. https://doi.org/10.4028/www.scientific.net/KEM.727.705 |
[78] |
Li, C., Chen, T.Q., Xu, W.J., et al. (2015) Mesopo-rous Nanostructured Co3O4 Derived from MOF Template: A High-Performance Anode Material for Lithium-Ion Batter-ies. Journal of Materials Chemistry, 3, 5585-5591. https://doi.org/10.1039/C4TA06914E |
[79] |
Bai, Z.C., Zhang, Y.H., Zhang, Y.W., et al. (2015) MOFs-Derived Po-rous Mn2O3 as High-Performance Anode Material for Li-Ion Battery. Journal of Materials Chemistry, 3, 5266-5269. https://doi.org/10.1039/C4TA06292B |
[80] |
Qiu, Y.C., Xu, G.L., Yan, K.Y., et al. (2011) Morphology-Conserved Transformation: Synthesis of Hierarchical Mesoporous Nanostructures of Mn2O3 and the Nanostructural Effects on Li-Ion Insertion/Deinsertion Properties. Journal of Materials Chemistry, 21, 6346-6353. https://doi.org/10.1039/c1jm00011j |
[81] |
Zhang, X., Qian, Y.T., Zhu, Y.C. and Tang, K.B. (2014) Synthesis of Mn2O3 Nanomaterials with Controllable Porosity and Thickness for Enhanced Lithium-Ion Batteries Performance. Na-noscale, 6, 1725-1731. https://doi.org/10.1039/C3NR05551E |
[82] |
Deng, Y.F., Li, Z., Shi, Z.N., et al. (2012) Porous Mn2O3 Microsphere as a Superior Anode Material for Lithium Ion Batteries. RSC Advances, 2, 4645-4647. https://doi.org/10.1039/c2ra20062g |
[83] |
彭盼盼, 来雪琦, 韩啸, 等. 锂离子电池负极材料的研究进展[J]. 有色金属工程, 2021, 11(11): 80-91. |
[84] |
Qu, Q.T., Gao, T., Zheng, H.Y., et al. (2015) Graphene Oxides-Guided Growth of Ultrafine Co3O4 Nanocrystallites from MOFs as High-Performance Anode of Li-Ion Batteries. Carbon, 92, 119-125. https://doi.org/10.1016/j.carbon.2015.03.061 |
[85] |
Yang, D.H., Zhou, X.L., Zhong, M., et al. (2017) A Robust Hybrid of SnO2 Nanoparticles Sheathed by N-Doped Carbon Derived from ZIF-8 as Anodes for Li Ion Batteries. ChemNanoMat, 3, 252-258. https://doi.org/10.1002/cnma.201600371 |
[86] |
Zhang, L., Wu, H.B., Madhavi, S., et al. (2012) Formation of Fe2O3 Microboxes with Hierarchical Shell Structures from Metal-Organic Frameworks and Their Lithium Storage Properties. Journal of the American Chemical Society, 134, 17388-17391. https://doi.org/10.1021/ja307475c |
[87] |
李欢, 何妍妍, 周国伟. 普鲁士蓝及普鲁士蓝类化合物材料在钠离子电池中的研究进展[J]. 材料导报, 2021, 35(23): 23050-23056. |
[88] |
揭广岸, 朱百慧, 职晓焱, 等. MOF/COF复合材料合成与应用研究进展[J]. 材料科学, 2023, 13(3): 103-110. |
[89] |
Hameed, A.S., Reddy, M.V., Chowdari, B.V.R. and Vittal, J.J. (2014) Carbon Coated Li3V2(PO4)3 from the Single-Source Precursor, Li2(VO)2(HPO4)2(C2O4)∙6H2O as Cathode and Anode Materials for Lithium Ion Batteries. Electrochimica Acta, 128, 184-191. https://doi.org/10.1016/j.electacta.2013.10.189 |
[90] |
Zhang, Z.Y., Yoshikawa, H. and Awaga, K. (2014) Monitoring the Solid-State Electrochemistry of Cu (2, 7-AQDC) (AQDC = Anthraquinone Dicarboxylate) in a Lithium Battery: Co-existence of Metal and Ligand Redox Activities in a Metal-Organic Framework. Journal of the American Chemical Soci-ety, 136, 16112-16115. https://doi.org/10.1021/ja508197w |
[91] |
Shin, J., Kim, M., Cirera, J., et al. (2015) MIL-101(Fe) as a Lithium-Ion Battery Electrode Material: A Relaxation and Intercalation Mechanism during Lithium Insertion. Journal of Materials Chemistry, 3, 4738-4744. https://doi.org/10.1039/C4TA06694D |
[92] |
Shen, L., Wang, Z.X. and Chen, L.Q. (2014) Prussian Blues as a Cathode Material for Lithium Ion Batteries. Chemistry, 20, 12559-12562. |