[1] |
Juliano, R.L. and Ling, V. (1976) A Surface Glycoprotein Modulating Drug Permeability in Chinese Hamster Ovary Cell Mutants. Biochimica et Biophysica Acta, 455, 152-162. https://doi.org/10.1016/0005-2736(76)90160-7 |
[2] |
Dietrich, C.G., Geier, A. and Oude Elferink, R.P. (2003) ABC of Oral Bioavailability: Transporters as Gatekeepers in the Gut. Gut, 52, 1788-1795. https://doi.org/10.1136/gut.52.12.1788 |
[3] |
Balça-Silva, J., Matias, D., Carmo, A.D., et al. (2019) Cellular and Molecular Mechanisms of Glioblastoma Malignancy: Implications in Resistance and Therapeutic Strategies. Seminars in Cancer Biology, 58, 130-141. https://doi.org/10.1016/j.semcancer.2018.09.007 |
[4] |
Karthika, C., Sureshkumar, R., Zehravi, M., et al. (2022) Multidrug Resistance of Cancer Cells and the Vital Role of P-Glycoprotein. Life (Basel), 12, Article No. 897. https://doi.org/10.3390/life12060897 |
[5] |
杨晓波, 刘克辛. P-糖蛋白分子结构及转运机制[J]. 药物评价研究, 2018, 41(1): 1-4. |
[6] |
张海威, 张力. 血脑脊液屏障上P-糖蛋白的研究进展[J]. 神经药理学报, 2016, 6(2): 53-64. |
[7] |
Klimecki, W.T., Futscher, B.W., Grogan, T.M., et al. (1994) P-Glycoprotein Expression and Function in Circulating Blood Cells from Normal Volunteers. Blood, 83, 2451-2458. https://doi.org/10.1182/blood.V83.9.2451.2451 |
[8] |
Kim, Y. and Chen, J. (2018) Molecular Structure of Human P-Glycoprotein in the ATP-Bound, Outward-Facing Conformation. Science, 359, 915-919. https://doi.org/10.1126/science.aar7389 |
[9] |
Robinson, K. and Tiriveedhi, V. (2020) Perplexing Role of P-Glycoprotein in Tumor Microenvironment. Frontiers in Oncology, 10, Article No. 265. https://doi.org/10.3389/fonc.2020.00265 |
[10] |
王慧. P-糖蛋白在神经细胞内的降解机制及其临床意义[D]: [硕士学位论文]. 泰安: 泰山医学院, 2014. |
[11] |
Begicevic, R.R. and Falasca, M. (2017) ABC Transporters in Cancer Stem Cells: Beyond Chemoresistance. International Journal of Molecular Sciences, 18, Article No. 2362. https://doi.org/10.3390/ijms18112362 |
[12] |
Andersen, V., Vogel, U., Godiksen, S., et al. (2013) Low ABCB1 Gene Expression Is an Early Event in Colorectal Carcinogenesis. PLOS ONE, 8, e0072119. https://doi.org/10.1371/journal.pone.0072119 |
[13] |
Ahrweiler-Sawaryn, M.C., Biswas, A., Frias, C., et al. (2023) Novel Gold (I) Complexes Induce Apoptosis in Leukemia Cells via the ROS-Induced Mitochondrial Pathway with an Upregulation of Harakiri and Overcome Multi-Drug Resistances in Leukemia and Lymphoma Cells and Sensitize Drug Resistant Tumor Cells to Apoptosis in Vitro. Biomedicine & Pharmacotherapy, 161, Article ID: 114507. https://doi.org/10.1016/j.biopha.2023.114507 |
[14] |
Xavier, A.C., Suzuki, R. and Attarbaschi, A. (2023) Diagnosis and Management of Rare Paediatric Non-Hodgkin Lymphoma. Best Practice & Research Clinical Haematology, 12, Article ID: 101440. https://doi.org/10.1016/j.beha.2023.101440 |
[15] |
Henrique, R., Oliveira, A.I., Costa, V.L., Baptista, T., et al. (2013) Epigenetic Regulation of MDR1 Gene through Post-Translational Histone Modifications in Prostate Cancer. BMC Genomics, 14, Article No. 898. https://doi.org/10.1186/1471-2164-14-898 |
[16] |
Demidenko, R., Razanauskas, D., Daniunaite, K., Lazutka, J.R., et al. (2015) Frequent Down-Regulation of ABC Transporter Genes in Prostate Cancer. BMC Cancer, 15, Article No. 683. https://doi.org/10.1186/s12885-015-1689-8 |
[17] |
Chatterjee, S., Deshpande, A.A. and Shen, H. (2023) Recent Advances in the in Vitro and in Vivo Methods to Assess Impact of P-Glycoprotein and Breast Cancer Resistance Protein Transporters in Central Nervous System Drug Disposition. Biopharmaceutics & Drug Disposition, 44, 7-25. https://doi.org/10.1002/bdd.2345 |
[18] |
Gan, H.K., Day, B.W., Harrup, R., et al. (2023) Clinical Trials in the Brain Tumour Population: Challenges and Strategies for the Future. Current Oncology Reports, 25, 589-598. https://doi.org/10.1007/s11912-023-01394-5 |
[19] |
Heming, C.P., Muriithi, W., Macharia, L.W., et al. (2022) P-Glycoprotein and Cancer: What Do We Currently Know? Heliyon, 8, e11171. https://doi.org/10.1016/j.heliyon.2022.e11171 |
[20] |
Abd El-Fattah, E.E. (2023) Tumor Lysis Syndrome Promotes Cancer Chemoresistance and Relapse through AMPK Inhibition. International Immunopharmacology, 114, Article ID: 109568. https://doi.org/10.1016/j.intimp.2022.109568 |
[21] |
Miletti-González, K.E., Chen, S., Muthukumaran, N., et al. (2005) The CD44 Receptor Interacts with P-Glycoprotein to Promote Cell Migration and Invasion in Cancer. Cancer Research, 65, 6660-6667. https://doi.org/10.1158/0008-5472.CAN-04-3478 |
[22] |
Zhang, F., Zhang, L., Zhang, B., et al. (2009) Anxa2 Plays a Critical Role in Enhanced Invasiveness of the Multidrug Resistant Human Breast Cancer Cells. Journal of Proteome Research, 8, 5041-5047. https://doi.org/10.1021/pr900461c |
[23] |
Zhang, H.C., Zhang, F., Wu, B., et al. (2012) Identification of the Interaction between P-Glycoprotein and Anxa2 in Multidrug-Resistant Human Breast Cancer Cells. Cancer Biology & Medicine, 9, 99-104. |
[24] |
Lokman, N.A., Ween, M.P., Oehler, M.K., et al. (2011) The Role of Annexin A2 in Tumorigenesis and Cancer Progression. Tumor Microenvironment, 4, 199-208. https://doi.org/10.1007/s12307-011-0064-9 |
[25] |
Wang, T., Wang, Z., Niu, R., et al. (2019) Crucial Role of Anxa2 in Cancer Progression: Highlights on Its Novel Regulatory Mechanism. Cancer Biology & Medicine, 16, 671-687. https://doi.org/10.20892/j.issn.2095-3941.2019.0228 |
[26] |
Zhang, F., Zhang, H., Wang, Z., et al. (2014) P-Glycoprotein Associates with Anxa2 and Promotes Invasion in Multidrug Resistant Breast Cancer Cells. Biochemical Pharmacology, 87, 292-302. https://doi.org/10.1016/j.bcp.2013.11.003 |
[27] |
Goebel, J., Chmielewski, J. and Hrycyna, C.A. (2021) The Roles of the Human ATP-Binding Cassette Transporters P-Glycoprotein and ABCG2 in Multidrug Resistance in Cancer and at Endogenous Sites: Future Opportunities for Structure-Based Drug Design of Inhibitors. Cancer Drug Resistance, 4, 784-804. https://doi.org/10.20517/cdr.2021.19 |
[28] |
George, R., Hehlgans, S., Fleischmann, M., et al. (2022) Advances in Nanotechnology-Based Platforms for Survivin-Targeted Drug Discovery. Expert Opinion on Drug Discovery, 17, 733-754. https://doi.org/10.1080/17460441.2022.2077329 |
[29] |
Liu, F., Liu, S., He, S., et al. (2010) Survivin Transcription Is Associated with P-Glycoprotein/MDR1 Overexpression in the Multidrug Resistance of MCF-7 Breast Cancer Cells. Oncology Reports, 23, 1469-1475. https://doi.org/10.3892/or_00000786 |
[30] |
Coley, H.M. (2010) Overcoming Multidrug Resistance in Cancer: Clinical Studies of p-Glycoprotein Inhibitors. Methods in Molecular Biology, 596, 341-358. https://doi.org/10.1007/978-1-60761-416-6_15 |
[31] |
Ranasinghe, R., Mathai, M. and Zulli, A. (2022) Revisiting the Therapeutic Potential of Tocotrienol. BioFactors, 48, 813-856. https://doi.org/10.1002/biof.1873 |
[32] |
Fang, Y., Ji, W. and Yan, C. (2022) Research Progress of PI3K/PTEN/AKT Signaling Pathway Associated with Renal Cell Carcinoma. Disease Markers, 2022, Article ID: 1195875. https://doi.org/10.1155/2022/1195875 |
[33] |
Katayama, K., Noguchi, K. and Sugimoto, Y. (2013) FBXO15 Regulates P-Glycoprotein/ABCB1 Expression through the Ubiquitin-Proteasome Pathway in Cancer Cells. Cancer Science, 104, 694-702. https://doi.org/10.1111/cas.12145 |
[34] |
Huang, B., Fu, S.J., Fan, W.Z., et al. (2016) PKCε Inhibits Isolation and Stemness of Side Population Cells via the Suppression of ABCB1 Transporter and PI3K/Akt, MAPK/ERK Signaling in Renal Cell Carcinoma Cell Line 769P. Cancer Letters, 376, 148-154. https://doi.org/10.1016/j.canlet.2016.03.041 |
[35] |
Chen, Y., Zhang, K., Li, Y., et al. (2019) Oestrogen-Related Receptor Alpha Mediates Chemotherapy Resistance of Osteosarcoma Cells via Regulation of ABCB1. Journal of Cellular and Molecular Medicine, 23, 2115-2124. https://doi.org/10.1111/jcmm.14123 |
[36] |
Zhao, X., Yang, L., Hu, J. and Ruan, J. (2010) miR-138 Might Reverse Multidrug Resistance of Leukemia Cells. Leukemia Research, 34, 1078-1082. https://doi.org/10.1016/j.leukres.2009.10.002 |
[37] |
Verscheijden, L.F.M., van Hattem, A.C., Pertijs, J.C.L.M., et al. (2020) Developmental Patterns in Human Blood-Brain Barrier and Blood-Cerebrospinal Fluid Barrier ABC Drug Transporter Expression. Histochemistry and Cell Biology, 154, 265-273. https://doi.org/10.1007/s00418-020-01884-8 |
[38] |
徐敏, 刘春风, 吴小伟, 等. 慢性癫痫SD大鼠模型海马P-糖蛋白表达的研究[J]. 苏州大学学报, 2007, 4(2): 193-195. |
[39] |
Lazarowski, A. and Czornyj, L. (2011) Potential Role of Multidrug Resistant Proteins in Refractory Epilepsy and Antiepileptic Drugs Interactions. Drug Metabolism and Drug Interactions, 26, 21-26. https://doi.org/10.1515/dmdi.2011.006 |
[40] |
Wang, C., Hong, Z. and Chen, Y. (2015) Involvement of p38 MAPK in the Drug Resistance of Refractory Epilepsy through the Regulation Multidrug Resistance-Associated Protein 1. Neurochemical Research, 40, 1546-1553. https://doi.org/10.1007/s11064-015-1617-y |
[41] |
郑玲艳, 韩瑞兰, 曹俊彦. β-淀粉样蛋白在阿尔茨海默病中的作用[J]. 内蒙古医科大学学报, 2016, 38(2): 147-150. |
[42] |
郑伟. hSIR2/SIRT1降低蒽环类抗肿瘤药多柔比星的心脏毒性[D]: [博士学位论文]. 北京: 中国协和医科大学, 2009: 45-59. |
[43] |
杨兴艳, 薛月珍. 紫杉醇心脏毒性研究进展[J]. 医药导报, 2009, 28(8): 1064-1067. |
[44] |
Nath, A., Kumar Rai, M., Hashim, Z., et al. (2020) Prevalence of p-Glycoprotein (PGP) Expression, Function and Its Effect on Efficacy of Rifampicin in Patients with Lymph Node Tuberculosis. Indian Journal of Tuberculosis, 67, 172-176. https://doi.org/10.1016/j.ijtb.2019.11.015 |
[45] |
Cort, A. and Ozben, T. (2015) Natural Product Modulators to Overcome Multidrug Resistance in Cancer. Nutrition and Cancer, 67, 411-423. https://doi.org/10.1080/01635581.2015.1002624 |
[46] |
Cabaud, O., Berger, L., Crompot, E., Adélaide, J., Finetti, P., Garnier, S., et al. (2022) Overcoming Resistance to Anti-Nectin-4 Antibody-Drug Conjugate. Molecular Cancer Therapeutics, 21, 1227-1235. https://doi.org/10.1158/1535-7163.MCT-22-0013 |
[47] |
Qin, S., Zhang, Z., Huang, Z., Luo, Y., Weng, N., Li, B., et al. (2023) CCT251545 Enhances Drug Delivery and Potentiates Chemotherapy in Multidrug-Resistant Cancers by Rac1-Mediated Macropinocytosis. Drug Resistance Updates, 66, Article ID: 100906. https://doi.org/10.1016/j.drup.2022.100906 |
[48] |
雷思羽, 何屹. P-糖蛋白与膀胱肿瘤耐药关系的研究进展[J]. 江苏医药, 2019, 45(10): 1065-1068. |
[49] |
乔婉晴, 涂巍. 乳腺癌实施化疗后癌干细胞同P-糖蛋白及耐药蛋白在残存癌组织中表达的相关性[J]. 中国医学前沿杂志, 2014, 6(5): 123-125. |
[50] |
Dinić, J., Podolski-Renić, A., Jovanović, M., et al. (2019) Novel Heat Shock Protein 90 Inhibitors Suppress P-Glycoprotein Activity and Overcome Multidrug Resistance in Cancer Cells. International Journal of Molecular Sciences, 20, Article No. 4575. https://doi.org/10.3390/ijms20184575 |
[51] |
Wang, Y., Li, Y., Shang, D., et al. (2019) Interactions between Artemisinin Derivatives and P-Glycoprotein. Phytomedicine, 60, Article ID: 152998. https://doi.org/10.1016/j.phymed.2019.152998 |
[52] |
Mellor, H.R. and Callaghan, R. (2011) Accumulation and Distribution of Doxorubicin in Tumour Spheroids: The Influence of Acidity and Expression of P-Glycoprotein. Cancer Chemotherapy & Pharmacology, 68, 1179-1190. https://doi.org/10.1007/s00280-011-1598-8 |
[53] |
Finch, A. and Pillans, P. (2014) P-Glycoprotein and Its Role in Drug-Drug Interactions. Australian Prescriber, 37, 137-139. https://doi.org/10.18773/austprescr.2014.050 |
[54] |
Harmsze, A.M., Robijns, K., van Werkum, J.W., et al. (2010) The Use of Amlodipine, but Not of P-Glycoprotein Inhibiting Calcium Channel Blockers Is Associated with Clopidogrel Poor-Response. Thrombosis and Haemostasis, 103, 920-925. https://doi.org/10.1160/TH09-08-0516 |
[55] |
Pusztai, L., Wagner, P., Ibrahim, N., et al. (2005) Phase II Study of Tariquidar, a Selective P-Glycoprotein Inhibitor, in Patients with Chemotherapy-Resistant, Advanced Breast Carcinoma. Cancer, 104, 682-691. https://doi.org/10.1002/cncr.21227 |
[56] |
Tamaki, A., Ierano, C., Szakacs, G., et al. (2011) The Controversial Role of ABC Transporters in Clinical Oncology. Essays in Biochemistry, 50, 209-232. https://doi.org/10.1042/bse0500209 |
[57] |
Cripe, L.D., Uno, H., Paietta, E.M., et al. (2010) Zosuquidar, a Novel Modulator of P-Glycoprotein, Does Not Improve the Outcome of Older Patients with Newly Diagnosed Acute Myeloid Leukemia: A Randomized, Placebo-Controlled Trial of the Eastern Cooperative Oncology Group 3999. Blood, 116, 4077-4085. https://doi.org/10.1182/blood-2010-04-277269 |
[58] |
Halder, J., Pradhan, D., Kar, B., Ghosh, G., et al. (2022) Nanotherapeutics Approaches to Overcome P-Glycoprotein- Mediated Multi-Drug Resistance in Cancer. Nanomedicine, 40, Article ID: 102494. https://doi.org/10.1016/j.nano.2021.102494 |
[59] |
Labbozzetta, M., Poma, P. and Notarbartolo, M. (2023) Natural Inhibitors of P-Glycoprotein in Acute Myeloid Leukemia. International Journal of Molecular Sciences, 24, Article No. 4140. https://doi.org/10.3390/ijms24044140 |