[1] |
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669. https://doi.org/10.1126/science.1102896 |
[2] |
Autere, A., Jussila, H., Dai, Y., Wang, Y., Lipsanen, H. and Sun, Z. (2018) Nonlinear Optics with 2D Layered Materials. Advanced Materials, 30, Article ID: 1705963. https://doi.org/10.1002/adma.201705963 |
[3] |
Sun, Z., Martinez, A. and Wang, F. (2016) Optical Modulators with 2D Layered Materials. Nature Photonics, 10, 227-238. https://doi.org/10.1038/nphoton.2016.15 |
[4] |
Liu, X., Guo, Q. and Qiu, J. (2017) Emerging Low-Dimensional Materials for Nonlinear Optics and Ultrafast Photonics. Advanced Materials, 29, Article ID: 1605886. https://doi.org/10.1002/adma.201605886 |
[5] |
Morozov, S.V., Novoselov, K.S., Katsnelson, M.I., Schedin, F., Elias, D.C., Jaszczak, J.A. and Geim, A.K. (2008) Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Physical Review Letters, 100, Article ID: 016602. https://doi.org/10.1103/PhysRevLett.100.016602 |
[6] |
Zhang, Y., Tan, Y.W. and Stormer, H.L. (2005) Experi-mental Observation of the Quantum Hall Effect and Berry’s Phase in Graphene. Nature, 438, 201-204. https://doi.org/10.1038/nature04235 |
[7] |
Li, X., Liu, Y., Zheng, Q., et al. (2017) Anomalous Thermal Anisotropy of Two-Dimensional Nanoplates of Vertically Grown MoS2. Applied Physics Letters, 111, Article ID: 163102. https://doi.org/10.1063/1.4999248 |
[8] |
Liu, X., Galfsky, T., Sun, Z., Xia, F., et al. (2015) Strong Light-Matter Coupling in Two-Dimensional Atomic Crystals. Nature Photonics, 9, 30-34. https://doi.org/10.1038/nphoton.2014.304 |
[9] |
Nair, R.R., Blake, P., Grigorenko, A.N., et al. (2008) Fine Structure Constant Defines Visual Transparency of Graphene. Science, 320, 1308-1308. https://doi.org/10.1126/science.1156965 |
[10] |
Yotter, R.A. and Wilson, D.M. (2003) A Review of Photodetectors for Sensing Light-Emitting Reporters in Biological Systems. IEEE Sensors Journal, 3, 288-303. https://doi.org/10.1109/JSEN.2003.814651 |
[11] |
Li, J., Niu, L., Zheng, Z. and Yan, F. (2014) Photosensitive Gra-phene Transistors. Advanced Materials, 26, 5239-5273. https://doi.org/10.1002/adma.201400349 |
[12] |
Zhang, K., Zhang, L., Han, L., et al. (2021) Recent Progress and Challenges Based on Two-Dimensional Material Photodetectors. Nano Express, 2, Article ID: 012001. https://doi.org/10.1088/2632-959X/abd45b |
[13] |
Xia, F., Yan, H. and Avouris, P. (2013) The Interaction of Light and Graphene: Basics, Devices and Applications. Proceedings of the IEEE, 101, 1717-1731. https://doi.org/10.1109/JPROC.2013.2250892 |
[14] |
Rogalski, A., Kopytko, M. and Martyniuk, P. (2020) 2D Mate-rial Infrared and Terahertz Detectors: Status and Outlook. Opto-Electronics Review, 28, 107-154. |
[15] |
Yang, G., Li, L., Lee, W.B. and Ng, M.C. (2018) Structure of Graphene and Its Disorders: A Review. Science and Technology of Ad-vanced Materials, 19, 613-648. https://doi.org/10.1080/14686996.2018.1494493 |
[16] |
Xia, F., Wang, H., Xiao, D., Dubey, M. and Ramasubramaniam, A. (2014) Two-Dimensional Material Nanophotonics. Nature Photonics, 8, 899-907. https://doi.org/10.1038/nphoton.2014.271 |
[17] |
Shiraishi, Y., Okazaki, R., Taniguchi, H., et al. (2015) Pho-to-Seebeck Effect in ZnS. Japanese Journal of Applied Physics, 54, Article ID: 031203. https://doi.org/10.7567/JJAP.54.031203 |
[18] |
Konstantatos, G., Badioli, M., Gaudreau, L., et al. (2012) Hybrid Graphene-Quantum Dot Phototransistors with Ultrahigh gain. Nature Nanotechnology, 7, 363-368. https://doi.org/10.1038/nnano.2012.60 |
[19] |
Koppens, F.H.L., Mueller, T., Avouris, P., Ferrari, A.C., Vitiello, M.S. and Polini, M. (2014) Photodetectors Based on Graphene, Other Two-Dimensional Materials and Hybrid Systems. Na-ture Nanotechnology, 9, 780-793. https://doi.org/10.1038/nnano.2014.215 |
[20] |
Buscema, M., Island, J.O., Groenendijk, D.J., et al. (2015) Photocur-rent Generation with Two-Dimensional van der Waals Semiconductors. Chemical Society Reviews, 44, 3691-3718. https://doi.org/10.1039/C5CS00106D |
[21] |
Rogalski, A. (2019) Graphene-Based Materials in the Infrared and Te-rahertz Detector Families: A Tutorial. Advances in Optics and Photonics, 11, 314-379. https://doi.org/10.1364/AOP.11.000314 |
[22] |
Rogalski, A. and Sizov, F. (2011) Terahertz Detectors and Focal Plane Arrays. Opto-Electronics Review, 19, 346-404. https://doi.org/10.2478/s11772-011-0033-3 |
[23] |
Guo, Q., Yu, R., Li, C., et al. (2018) Efficient Electrical Detection of Mid-Infrared Graphene Plasmons at Room Temperature. Nature Materials, 17, 986-992. https://doi.org/10.1038/s41563-018-0157-7 |
[24] |
Rogalski, A., Kopytko, M. and Martyniuk, P. (2019) Two-Dimensional Infrared and Terahertz Detectors: Outlook and Status. Applied Physics Reviews, 6, Article ID: 021316. https://doi.org/10.1063/1.5088578 |
[25] |
Qin, H., Sun, J., Liang, S., et al. (2017) Room-Temperature, Low-Impedance and High-Sensitivityterahertz Direct Detector Based on Bilayer Graphene Field-Effect Transistor. Car-bon, 116, 760-765. https://doi.org/10.1016/j.carbon.2017.02.037 |
[26] |
Auton, G., But, D.B., Zhang, J., et al. (2017) Terahertz Detection and Imaging Using Graphene Ballistic Rectifiers. Nano Letters, 17, 7015-7020. https://doi.org/10.1021/acs.nanolett.7b03625 |
[27] |
Lu, L. (2018) A Fiber Optoacoustic Guide with Augmented Re-ality for Precision Breast-Conserving Surgery. Light: Science & Applications, 7, Article No. 2. https://doi.org/10.1038/s41377-018-0006-0 |
[28] |
Xiong, Y.F., Chen, J.H., Lu, Y.Q., et al. (2019) Heterostructures: Broadband Optical-Fiber-Compatible Photodetector Based on a Graphene-MoS2-WS2 Heterostructure with a Synergetic Photogenerating Mechanism. Advanced Electronic Materials, 5, Article ID: 1970005. https://doi.org/10.1002/aelm.201970005 |
[29] |
Yu, X., Li, Y., H, X., et al. (2018) Narrow Bandgap Oxide Nanopar-ticles Coupled with Graphene for High Performance Mid-Infrared Photodetection. Nature Communications, 9, Article No. 4299. https://doi.org/10.1038/s41467-018-06776-z |
[30] |
Islam, S., Mishra, J.K., Kumar, A., et al. (2019) Ultra-Sensitive Graphene-Bismuth Telluride Nano-Wire Hybrids for Infrared Detection. Nanoscale, 11, 1579-1586. https://doi.org/10.1039/C8NR08433E |
[31] |
Ni, Z., Ma, L., D, S., et al. (2017) Plasmonic Silicon Quantum Dots Enabled High-Sensitivity Ultrabroadband Photodetection of Graphene-Based Hybrid Phototransistors. ACS Nano, 11, 9854-9862. https://doi.org/10.1021/acsnano.7b03569 |
[32] |
Castilla, S., Terrés, B., Autore, M., et al. (2019) Fast and Sensitive Terahertz Detection Using an Antenna-Integrated Graphene pn Junction. Nano Letters, 19, 2765-2773. https://doi.org/10.1021/acs.nanolett.8b04171 |
[33] |
Liu, C., Du, L., Tang, W., Wei, D., Li, J., Wang, L., Chen, G., Chen, X. and Lu, W. (2018) Towards Sensitive Terahertz Detection via Thermoelectric Manipulation Using Graphene Transistors. NPG Asia Materials, 10, 318-327. https://doi.org/10.1038/s41427-018-0032-7 |