[1] |
王萍. 新兴汽车品牌营销策略研究[D]: [硕士学位论文]. 广州: 暨南大学, 2015. |
[2] |
崔吕萍. 轮胎生产第一大国, 能否在“废胎变宝”上动动脑筋? [J]. 中国轮胎资源综合利用, 2022(5): 27-28. |
[3] |
林火灿. 我国废旧轮胎产生量居全球首位-热裂解技术有望变废为宝[J]. 中国轮胎资源综合利用, 2018(9): 39-41. |
[4] |
聂永丰. 固体废物处理工程技术手册[M]. 北京: 化学工业出版社, 2013. |
[5] |
谢忠设. 资本发力了, 废橡胶利用能否迎来大发展? [J]. 中国石油和化工, 2018(7): 39-41. |
[6] |
中国物资再生协会. 中国再生资源回收行业发展报告(2022) [R]. 北京: 中国物资再生协会, 2022. |
[7] |
Thomas, B.S., Gupta, R.C. and Panicker, V.J. (2016) Recycling of Waste Tire Rubber as Aggregate in Concrete: Durability-Related Performance. Journal of Cleaner Production, 112, 504-513. https://doi.org/10.1016/j.jclepro.2015.08.046 |
[8] |
Xu, L., Jiang, Y. and Qiu, R. (2017) Parametric Study and Global Sensitivity Analysis for Co-Pyrolysis of Rape Straw and Waste Tire via Variance-Based Decomposition. Biore-source Technology, 247, 545-552. https://doi.org/10.1016/j.biortech.2017.09.141 |
[9] |
权家薇, 于佳雪, 许君清, 等. 废轮胎的资源化回收利用[J]. 上海节能, 2019(4): 262-270. |
[10] |
林景奋, 戴熠, 黄晓武, 等. 废旧轮胎处理及资源化现状研究[J]. 工业安全与环保, 2019, 45(9): 84-87. |
[11] |
Leung, D.Y.C. and Wang, C.L. (1998) Kinetic Study of Scrap Tyre Pyrolysis and Combustion. Journal of Analytical and Applied Pyrolysis, 45, 153-169. https://doi.org/10.1016/S0165-2370(98)00065-5 |
[12] |
邱敬贤, 何曦, 戴欣, 等. 废旧轮胎处理技术的研究进展[J]. 中国环保产业, 2020(12): 18-22. |
[13] |
王玉伟, 潘劲松, 苏俊杰, 等. 废旧轮胎高值化利用进展及建议[J]. 山东工业技术, 2020(4): 25-31. |
[14] |
李钊. 我国废旧轮胎资源化现状、问题与对策[J]. 中国轮胎资源综合利用, 2018(12): 41-43. |
[15] |
Bockstal, L., Berchem, T., Schmetz, Q., et al. (2019) Devulcanisation and Reclaiming of Tires and Rubber by Physical and Chemical Processes: A Review. Journal of Cleaner Production, 236, Article ID: 117574. https://doi.org/10.1016/j.jclepro.2019.07.049 |
[16] |
Oboirien, B.O. and North, B.C. (2017) A Review of Waste Tyre Gasification. Journal of Environmental Chemical Engineering, 5, 5169-5178. https://doi.org/10.1016/j.jece.2017.09.057 |
[17] |
杨超, 矫庆泽, 冯彩虹, 等. 废旧轮胎催化裂解研究进展[J]. 化工进展, 2022, 41(7): 3877-3889. |
[18] |
Jimoda, L.A., Sulaymon, I.D., Alade, A.O., et al. (2018) Assessment of Envi-ronmental Impact of Open Burning of Scrap Tyres on Ambient Air Quality. International Journal of Environmental Sci-ence and Technology, 15, 1323-1330. https://doi.org/10.1007/s13762-017-1498-5 |
[19] |
姚燕, 崔琪, 赵君, 等. 废旧橡胶应用的新领域[J]. 世界橡胶工业, 2009, 36(5): 40-46. |
[20] |
Bhadra, S., De, P.P., Mondal, N., et al. (2003) Regeneration of Carbon Black from Waste Automobile Tires. Journal of Applied Polymer Science, 89, 465-473. https://doi.org/10.1002/app.12019 |
[21] |
李子涵. 基于热重法的煤与轮胎的混燃研究[J]. 能源与环境, 2022(3): 52-55. |
[22] |
晁夫奎, 王玉. 我国废旧轮胎资源化技术应用现状及研究方向[J]. 再生资源与循环经济, 2021, 14(9): 27-29. |
[23] |
田晓龙, 郭磊, 王孔烁, 等. 废旧轮胎循环与资源化利用发展现状[J]. 中国材料进展, 2022, 41(1): 22-29+66-67. |
[24] |
李成, 张斌, 林红, 等. 废轮胎低温热解制油研究[J]. 石油炼制与化工, 2019, 50(2): 27-30. |
[25] |
Zhang, X.H., Wang, T.J., Ma, L.L., et al. (2008) Vacuum Pyrolysis of Waste Tires with Basic Additives. Waste Management, 28, 2301-2310. https://doi.org/10.1016/j.wasman.2007.10.009 |
[26] |
Czajczyńska, D., Krzyżyńska, R., Jouhara, H., et al. (2017) Use of Pyrolytic Gas from Waste Tire as a Fuel: A Review. Energy, 134, 1121-1131. https://doi.org/10.1016/j.energy.2017.05.042 |
[27] |
Yazdani, E., Hashemabadi, S.H. and Taghizadeh, A. (2019) Study of Waste Tire Pyrolysis in a Rotary Kiln Reactor in a Wide Range of Pyrolysis Temperature. Waste Management, 85, 195-201. https://doi.org/10.1016/j.wasman.2018.12.020 |
[28] |
王慧. 废轮胎热解油的资源化利用研究[D]: [博士学位论文]. 上海: 华东理工大学, 2011. |
[29] |
Hu, H.Y., Fang, Y., Liu, H., et al. (2014) The Fate of Sulfur during Rapid Py-rolysis of Scrap Tires. Chemosphere, 97, 102-107. https://doi.org/10.1016/j.chemosphere.2013.10.037 |
[30] |
Wang, C., Li, D., Zhai, T.Y., et al. (2019) Direct Conversion of Waste Tires into Three-Dimensional Graphene. Energy Storage Materials, 23, 499-507. https://doi.org/10.1016/j.ensm.2019.04.014 |
[31] |
Miguel, S.G., Fowler, G.D. and Sollars, C.J. (2003) A Study of the Characteristics of Activated Carbons Produced by Steam and Carbon Dioxide Activation of Waste Tyre Rubber. Carbon, 41, 1009-1016. https://doi.org/10.1016/S0008-6223(02)00449-9 |
[32] |
Wang, H., Hu, H.Y., Yang, Y.H., et al. (2020) Effect of High Heating Rates on Products Distribution and Sulfur Transformation during the Pyrolysis of Waste Tires. Waste Management, 118, 9-17. https://doi.org/10.1016/j.wasman.2020.08.015 |
[33] |
Chen, K.W. (2014) Manufacture of RDF (Refuse Derived Fuel) by Carbon Ash from the Waste Tire Pyrolysis Resource Chemical Plant. Advanced Materials Research, 852, 764-767. https://doi.org/10.4028/www.scientific.net/AMR.852.764 |
[34] |
Chen, K.W. (2014) The Key-Factor Modulation of Waste Tire Pyrolysis in Resource Chemical Plant for Recovered Fuel Production. Advanced Materials Research, 852, 772-775. https://doi.org/10.4028/www.scientific.net/AMR.852.772 |
[35] |
蒋智慧, 刘洋, 宋永猛, 等. 废旧轮胎热解及热解产物研究展望[J]. 化工进展, 2021, 40(1): 515-525. |
[36] |
Laresgoiti, M.F., Caballero, B.M., de Marco, I., et al. (2004) Characterization of the Liquid Products Obtained in Tyre Pyrolysis. Journal of Analytical and Applied Pyrolysis, 71, 917-934. https://doi.org/10.1016/j.jaap.2003.12.003 |
[37] |
张会亮, 范晓旭, 刘彦丰, 等. 块状废轮胎固定床热解特性实验研究[J]. 可再生能源, 2015, 33(1): 149-153. |
[38] |
季炫宇, 林伟坚, 周雄, 等. 废轮胎热裂解技术研究现状与进展[J]. 化工进展, 2022, 41(8): 4498-4512. |
[39] |
Labaki, M. and Jeguirim, M. (2017) Thermochemical Conversion of Waste Tyres—A Review. Environmental Science and Pollution Research International, 24, 9962-9992. https://doi.org/10.1007/s11356-016-7780-0 |
[40] |
Policella, M., Wang, Z.W., Burra, K.G., et al. (2019) Characteris-tics of Syngas from Pyrolysis and CO2-Assisted Gasification of Waste Tires. Applied Energy, 254, Article ID: 113678. https://doi.org/10.1016/j.apenergy.2019.113678 |
[41] |
董根全, 杨建丽, 刘振宇. 废轮胎热解油品的组成与硫含量研究[J]. 燃料化学学报, 2000, 28(6): 537-541. |
[42] |
Attar, A. (1978) Chemistry, Thermodynamics and Kinetics of Reactions of Sulphur in Coal-Gas Reactions: A Review. Fuel, 57, 201-212. https://doi.org/10.1016/0016-2361(78)90117-5 |
[43] |
金小华, 唐武. 废旧轮胎热裂解技术的研究进展[J]. 中国轮胎资源综合利用, 2022(8): 44-47. |
[44] |
Pindoria, R.V., Lim, J.Y., Hawkes, J.E., et al. (1997) Structural Characteri-zationof Biomass Pyrolysis Tars/Oils from Eucalyptus Wood Waste: Effect of H2 Pressure and Sample Configuration. Fuel, 76, 1013-1023. https://doi.org/10.1016/S0016-2361(97)00092-6 |
[45] |
Zhang, H., Xiao, R., Wang, D., et al. (2011) Biomass Fast Pyrolysis in a Fluidized Bed Reactor under N2, CO2, CO, CH4 and H2 Atmospheres. Bioresource Technology, 102, 4258-4264. https://doi.org/10.1016/j.biortech.2010.12.075 |
[46] |
Taleb, D.A., Hamid, H.A., Deris, R.R.R., et al. (2020) Insights into Pyrolysis of Waste Tire in Fixed Bed Reactor: Thermal Behavior. Materials Today: Proceedings, 31, 178-186. https://doi.org/10.1016/j.matpr.2020.01.569 |
[47] |
张兴华. 废轮胎固定床真空催化裂解与应用研究[D]: [硕士学位论文]. 广州: 中国科学院广州能源研究所, 2006. |
[48] |
张兴华, 常杰, 王铁军, 等. 碱性条件下废轮胎真空热裂解研究[J]. 燃料化学学报, 2005, 33(6): 713-716. |
[49] |
Lopez, G., Olazar, M., Aguado, R., et al. (2010) Vacuum Pyrolysis of Wastetires by Continuously Feeding into a Conical Spouted Bed Reactor. Industrial & Engineering Chemistry Research, 49, 8990-8997. https://doi.org/10.1021/ie1000604 |
[50] |
de Oliveira Neto, G.C., Chaves, L.E.C., Pinto, L.F.R., et al. (2019) Eco-nomic, Environmental and Social Benefits of Adoption of Pyrolysis Process of Tires: A Feasible and Ecofriendly Mode to Reduce the Impacts of Scrap Tires in Brazil. Sustainability, 11, Article 2076. https://doi.org/10.3390/su11072076 |
[51] |
Karagoz, M., Uysal, C., Agbulut, U. and Saridemir, S. (2020) Energy, Exergy, Economic and Sustainability Assessments of a Compression Ignition Diesel Engine Fueled with Tire Pyrolytic Oil-Diesel Blends. Journal of Cleaner Production, 264, Article ID: 121724. https://doi.org/10.1016/j.jclepro.2020.121724 |
[52] |
Shah, S.A.Y., Zeeshan, M., Farooq, M.Z., et al. (2019) Co-Pyrolysis of Cotton Stalk and Waste Tire with a Focus on Liquid Yield Quantity and Quality. Renewable Energy, 130, 238-244. https://doi.org/10.1016/j.renene.2018.06.045 |
[53] |
Jin, L.E., Wang, L.L., Su, L., et al. (2012) Characteris-tics of Gases from Co-Pyrolysis of Sawdust and Tires. International Journal of Green Energy, 9, 719-730. https://doi.org/10.1080/15435075.2011.625585 |
[54] |
吴凯, 朱锦娇, 朱跃钊, 等. 废轮胎与生物质共热解特性研究[J]. 林产化学与工业, 2018, 38(5): 53-60. |
[55] |
王俊芝. 废轮胎与机油共裂解实验研究[D]: [硕士学位论文]. 青岛: 青岛理工大学, 2018. |
[56] |
畅志兵, 王楚楚, 王依宁, 等. 桦甸油页岩和废轮胎的共热解反应行为及协同效应[J/OL]. 矿业科学学报: 1-9.https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=KYKX20221116007&uniplatform=NZKPT&v=6w1-QLbHRf3jLncp3b-7sOAFgPGX6i4Lorjt6lFR4trcYmw-Cu64X7AOh9s4v7qK, 2022-12-16. |
[57] |
楚雅杰, 仪垂杰, 陈贺, 等. 催化裂解废旧轮胎的试验研究[J]. 科学技术与工程, 2017, 17(15): 213-217. |
[58] |
张兴华, 常杰, 王铁军, 等. 真空条件下金属氧化物催化废轮胎热解研究[J]. 能源工程, 2006(1): 41-45. |
[59] |
Hijazi, A., Boyadjian, C., Ahmad, M.N. and Zeaiter, J. (2018) Solar Pyrolysis of Waste Rubber Tires Us-ing Photoactive Catalysts. Waste Management, 77, 10-21. https://doi.org/10.1016/j.wasman.2018.04.044 |
[60] |
Tian, X.L., Han, S., Wang, K.S., et al. (2022) Waste Resource Utilization: Spent FCC Catalyst-Based Composite Catalyst for Waste Tire Pyrolysis. Fuel, 328, Article ID: 125236. https://doi.org/10.1016/j.fuel.2022.125236 |
[61] |
Yang, C., Fu, R.R., Jiao, Q.Z., et al. (2022) Catalytic Cracking of Waste Tires Using Nano-ZSM-5/MgAl-LDO. Energy Technology, 10, Article ID: 2200186. https://doi.org/10.1002/ente.202200186 |
[62] |
Olazar, M., Arabiourrutia, M., López, G., et al. (2008) Effect of Acid Catalysts on Scrap Tyre Pyrolysis under Fast Heating Conditions. Journal of Analytical and Applied Pyrolysis, 82, 199-204. https://doi.org/10.1016/j.jaap.2008.03.006 |
[63] |
Kordoghli, S., Paraschiv, M., Kuncser, R., et al. (2017) Catalysts’ Influence on Thermochemical Decomposition of Waste Tires. Environmental Progress & Sustainable Energy, 36, 1560-1567. https://doi.org/10.1002/ep.12605 |
[64] |
王学通. 废轮胎盐浴热解制取燃料油的研究[D]: [硕士学位论文]. 天津: 河北工业大学, 2008. |
[65] |
唐华. 废轮胎热解炭熔盐热处理除杂提质机理研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2021. |
[66] |
Xu, S.H., Yang, F., Hu, H.Y., et al. (2021) Investigation and Improvement of the Desulfurization Performance of Molten Carbonates under the Influence of Typical Pyrolysis Gases. Waste Management, 124, 46-53. https://doi.org/10.1016/j.wasman.2021.01.029 |
[67] |
Undri, A., Meini, S., Rosi, L., et al. (2013) Microwave Pyroly-sis of Polymeric Materials: Waste Tires Treatment and Characterization of the Value-Added Products. Journal of Analyt-ical and Applied Pyrolysis, 103, 149-158. https://doi.org/10.1016/j.jaap.2012.11.011 |
[68] |
Wang, B., Zheng, H.B., Zeng, D.W., et al. (2021) Microwave Fast Pyrolysis of Waste Tires: Effect of Microwave Power on Product Composition and Quality. Journal of Analytical & Ap-plied Pyrolysis, 155, Article ID: 104979. https://doi.org/10.1016/j.jaap.2020.104979 |
[69] |
周龙. 轮胎胶粉微波热解特性试验研究[D]: [硕士学位论文]. 济南: 山东大学, 2014. |
[70] |
杨亚青. 废轮胎微波热解过程及产物分布特性试验研究[D]: [硕士学位论文]. 济南: 山东大学, 2017. |
[71] |
韩元凯. 溶胀改性强化废轮胎微波热解特性研究[D]: [硕士学位论文]. 济南: 山东大学, 2021. |
[72] |
唐兰, 黄海涛, 郝海青, 等. 废轮胎粉等离子体热解过程中硫的分布与转化初步研究[J]. 环境污染与防治, 2010, 32(3): 5-8+13. |
[73] |
唐兰, 黄海涛, 赵矿美, 等. 废轮胎等离子体热解固体产物性质研究[J]. 四川环境, 2014, 33(3): 24-29. |
[74] |
Chang, J.S., Gu, B.W., Looy, P.C., et al. (1997) Thermal Plasma Pyrolysis of Used Old Tires for Production of Syngas. Fuel and Energy Abstracts, 38, 41-42. https://doi.org/10.1016/S0140-6701(97)80326-8 |
[75] |
Huang, H. and Tang, L. (2008) Pyrolysis Treatment of Waste Tire Powder in a Capacitively Coupled RF Plasma Reactor. Energy Conversion and Management, 50, 611-617. https://doi.org/10.1016/j.enconman.2008.10.023 |
[76] |
王文亮, 时宇杰, 王少华, 等. 纤维素与废轮胎微波共热解规律及产物特性[J]. 高等学校化学学报, 2018, 39(5): 964-970. |
[77] |
彭伟超. 螺旋藻与废旧轮胎热解特性及催化共热解作用研究[D]: [硕士学位论文]. 湛江: 广东海洋大学, 2021. |
[78] |
Pan, Y.H., Du, X.D., Zhu, C.X., et al. (2022) Degradation of Rubber Waste into Hydrogen Enriched Syngas via Microwave-Induced Catalytic Pyrolysis. In-ternational Journal of Hydrogen Energy, 47, 33966-33978. https://doi.org/10.1016/j.ijhydene.2022.08.012 |
[79] |
Rodriguez, D.A.R., Trejos, O.Y.R. and Vargas, G.J.C. (2019) Evaluation of the Pyrolysis and Co-Pyrolysis Process of Palm Shell and Waste Tyres in a CO2 Atmosphere. Avances: Investigación en Ingeniería, 16, 83-92. https://doi.org/10.18041/1794-4953/avances.2.5501 |
[80] |
葛晓冬. 超临界水氧化法处理废旧轮胎的实验研究[D]: [硕士学位论文]. 大连: 大连理工大学, 2005. |
[81] |
Yan, S., Xia, D.H., Zhang, X.R., et al. (2019) A Complete Depolymerization of Scrap Tire with Supercritical Water Participation: A Molecular Dynamic Simulation Study. Waste Management, 93, 83-90. https://doi.org/10.1016/j.wasman.2019.05.030 |
[82] |
Nanda, S., Reddy, S.N., Hunter, H.N., et al. (2019) Catalytic Subcritical and Supercritical Water Gasification as a Resource Recovery Approach from Waste Tires for Hydrogen-Rich Syngas Production. The Journal of Supercritical Fluids, 154, Article ID: 104647. https://doi.org/10.1016/j.supflu.2019.104627 |
[83] |
Li, Q.H., Li, F.X., Meng, A.H., et al. (2018) Thermolysis of Scrap Tire and Rubber in Sub/Super-Critical Water. Waste Management, 71, 311-319. https://doi.org/10.1016/j.wasman.2017.10.017 |
[84] |
Yan, S., Xia, D.H. and Liu, X.J. (2021) Beneficial Migration of Sulfur Element during Scrap Tire Depolymerization with Supercritical Water: A Molecular Dynamics and DFT Study. Science of the Total Environment, 776, Article ID: 145835. https://doi.org/10.1016/j.scitotenv.2021.145835 |
[85] |
牛斌. 废轮胎热裂解行业技术难题、技术创新及产业化应用[J]. 中国轮胎资源综合利用, 2020(11): 36-39. |