[1] |
Wang, S., Qin, P., Fang, X., et al. (2014) A Novel Sebacic Acid/Expanded Graphite Composite Phase Change Material for Solar Thermal Medium-Temperature Applications. Solar Energy, 99, 283-290. https://doi.org/10.1016/j.solener.2013.11.018 |
[2] |
Fares, R. and Webber, M. (2017) The Impacts of Storing Solar Energy in the Home to Reduce Reliance on the Utility. Nature Energy, 2, Article No. 17001. https://doi.org/10.1038/nenergy.2017.1 |
[3] |
Li, B., Nie, S., Hao, Y., et al. (2015) Stearic-Acid/Carbon-Nanotube Composites with Tailored Shape-Stabilized Phase Transitions and Light-Heat Conversion for Thermal Energy Storage. Energy Conversion and Management, 98, 314-321. https://doi.org/10.1016/j.enconman.2015.04.002 |
[4] |
Zhang, Y., Umair, M., Zhang, S., et al. (2019) Phase Change Materials for Electron-Triggered Energy Conversion and Storage: A Review. Journal of Materials Chemistry A, 7, 22218-22228. https://doi.org/10.1039/C9TA06678K |
[5] |
Zhang, Y., Li, X., Li, J., et al. (2018) Solar-Driven Phase Change Microencapsulation with Efficient Ti4O7 Nanoconverter for Latent Heat Storage. Nano Energy, 53, 579-586. https://doi.org/10.1016/j.nanoen.2018.09.018 |
[6] |
Wang, X., Li, G., Hong, G., et al. (2017) Graphene Aerogel Templated Fabrication of Phase Change Microspheres as Thermal Buffers in Microelectronic Devices. ACS Applied Ma-terials & Interfaces, 9, 41323-41331. https://doi.org/10.1021/acsami.7b13969 |
[7] |
Wang, Z., Tao, P., Liu, Y., et al. (2015) Rapid Charging of Thermal Energy Storage Materials through Plasmonic Heating. Scientific Reports, 4, Article No. 6246. https://doi.org/10.1038/srep06246 |
[8] |
Wang, Y., Tang, B. and Zhang, S. (2012) Novel Organic Solar Thermal Energy Storage Materials: Efficient Visible Light-Driven Reversible Solid-Liquid Phase Transition. Journal of Materials Chemistry, 22, 18145-18150. https://doi.org/10.1039/c2jm33289b |
[9] |
Zheng, Z., Chang, Z., Xu, G.K., et al. (2017) Microencapsulated Phase Change Materials in Solar-Thermal Conversion Systems: Understanding Geometry-Dependent Heating Efficiency and System Reliability. ACS Nano, 11, 721-729. https://doi.org/10.1021/acsnano.6b07126 |
[10] |
Chen, L., Zou, R., Xia, W., et al. (2012) Electro- and Photodriven Phase Change Composites Based on Wax-Infiltrated Carbon Nanotube Sponges. ACS Nano, 6, 10884-10892. https://doi.org/10.1021/nn304310n |
[11] |
Huang, X., Liu, Z., Xia, W., et al. (2015) Alkylated Phase Change Com-posites for Thermal Energy Storage Based on Surface-Modified Silica Aerogels. Journal of Materials Chemistry A, 3, 1935-1940. https://doi.org/10.1039/C4TA06735E |
[12] |
Huang, X., Xia, W. and Zou, R. (2014) Nanoconfinement of Phase Change Materials within Carbon Aerogels: Phase Transition Behaviours and Photo-to-Thermal Energy Storage. Journal of Materials Chemistry A, 2, 19963-19968. https://doi.org/10.1039/C4TA04605F |
[13] |
Chen, R., Yao, R., Xia, W., et al. (2015) Electro/Photo to Heat Conver-sion System Based on Polyurethane Embedded Graphite Foam. Applied Energy, 152, 183-188. https://doi.org/10.1016/j.apenergy.2015.01.022 |
[14] |
Zhang, L., Li, R., Tang, B., et al. (2016) Solar-Thermal Con-version and Thermal Energy Storage of Graphene Foam-Based Composites. Nanoscale, 8, 14600-14607. https://doi.org/10.1039/C6NR03921A |
[15] |
Li, G., Zhang, X., Wang, J. and Fang, J. (2016) From Anisotropic Graphene Aerogels to Electron- and Photo-Driven Phase Change Composites. Journal of Materials Chemistry A, 4, 17042-17049. https://doi.org/10.1039/C6TA07587H |
[16] |
Wang, Z., Tong, Z., Ye, Q., et al. (2017) Dynamic Tun-ing of Optical Absorbers for Accelerated Solar-Thermal Energy Storage. Nature Communications, 8, Article No. 1478. https://doi.org/10.1038/s41467-017-01618-w |
[17] |
Wang, W., Cai, Y., Du, M., et al. (2019) Ultralight and Flexible Carbon Foam-Based Phase Change Composites with High Latent-Heat Capacity and Photothermal Conversion Capability. ACS Applied Materials & Interfaces, 11, 31997-32007. https://doi.org/10.1021/acsami.9b10330 |
[18] |
Li, M. and Wang, C. (2019) Preparation and Characterization of GO/PEG Photo-Thermal Conversion Form-Stable Composite Phase Change Materials. Renewable Energy, 141, 1005-1012. https://doi.org/10.1016/j.renene.2019.03.141 |
[19] |
Hou, S., Wang, M., Guo, S., et al. (2017) Photo-thermally Driven Refreshable Microactuators Based on Graphene Oxide Doped Paraffin. ACS Applied Materials & In-terfaces, 9, 26476-26482. https://doi.org/10.1021/acsami.7b08728 |
[20] |
Yuan, K., Shi, J., Aftab, W., et al. (2019) Engineering the Thermal Conductivity of Functional Phase-Change Materials for Heat Energy Conversion, Storage, and Utilization. Advanced Functional Materials, 8, Article ID: 1904228. https://doi.org/10.1002/adfm.201904228 |
[21] |
Gao, M., Zhu, L., Peh, C.K., et al. (2019) Solar Absorber Material and System Designs for Photothermal Water Vaporization towards Clean Water and Energy Production. Energy & Envi-ronmental Science, 12, 841-864. https://doi.org/10.1039/C8EE01146J |
[22] |
Vélez-Cordero, J. and Hernández-Corderob, J. (2015) Heat Generation and Conduction in PDMS-Carbon Nanoparticle Membranes Irradiated with Optical Fibers. International Journal of Thermal Sciences, 96, 12-22. https://doi.org/10.1016/j.ijthermalsci.2015.04.009 |
[23] |
Cao, Y., Fan, D., Lin, S., et al. (2021) Branched Alkylated Polynorbornene and 3D Flower-Like MoS2 Nanospheres Reinforced Phase Change Composites with High Thermal En-ergy Storage Capacity and Photothermal Conversion Efficiency. Renewable Energy, 179, 687-695. https://doi.org/10.1016/j.renene.2021.07.028 |
[24] |
Wang, W., Umair, M., Qiu, J., et al. (2019) Electromagnetic and Solar Energy Conversion and Storage Based on Fe3O4-Functionalised Graphene/Phase Change Material Nanocomposites. Energy Conversion and Management, 196, 1299-1305. https://doi.org/10.1016/j.enconman.2019.06.084 |
[25] |
Tao, Z., Yang, M., Wu, L., et al. (2021) Phase Change Material Based on Polypyrrole/Fe3O4-Functionalized Hollow Kapok Fiber Aerogel Matrix for Solar/Magnetic-Thermal Energy Conversion and Storage. Chemical Engineering Journal, 423, Article ID: 130180. https://doi.org/10.1016/j.cej.2021.130180 |
[26] |
Yang, S., Du, X., Deng, S., et al. (2020) Recy-clable and Self-Healing Polyurethane Composites Based on Diels-Alder Reaction for Efficient Solar-to-Thermal Energy Storage. Chemical Engineering Journal, 398, Article ID: 125654. https://doi.org/10.1016/j.cej.2020.125654 |
[27] |
Wu, H., Chen, R., Shao, Y., et al. (2019) Novel Flexible Phase Change Materials with Mussel-Inspired Modification of Melamine Foam for Simultaneous Light-Actuated Shape Memory and Light-to-Thermal Energy Storage Capability. ACS Sustainable Chemistry & Engineering, 7, 13532-13542. https://doi.org/10.1021/acssuschemeng.9b03169 |
[28] |
Xie, Y., Li, W., Huang, H., et al. (2020) Bio-Based Rad-ish@PDA/PEG Sandwich Composite with High Efficiency Solar Thermal Energy Storage. ACS Sustainable Chemistry & Engineering, 8, 8448-8457. https://doi.org/10.1021/acssuschemeng.0c02959 |
[29] |
Wang, C., Dong, W., Li, A., et al. (2022) The Reinforced Photothermal Effect of Conjugated Dye/Graphene Oxide-Based Phase Change Materials: Fluorescence Resonance Ener-gy Transfer and Applications in Solar-Thermal Energy Storage. Chemical Engineering Journal, 428, Article ID: 130605. https://doi.org/10.1016/j.cej.2021.130605 |
[30] |
Mishra, A.K., Lahiri, B. and Philip, J. (2020) Carbon Black Nano Particle Loaded Lauric Acid Based Form-Stable Phase Change Material with Enhanced Thermal Conductivity and Pho-to-Thermal Conversion for Thermal Energy Storage. Energy, 191, Article ID: 116572. https://doi.org/10.1016/j.energy.2019.116572 |
[31] |
Tao, P., Chang, C., Tong, Z., et al. (2019) Magnetical-ly-Accelerated Large-Capacity Solar-Thermal Energy Storage within High-Temperature Phase-Change Materials. Energy & Environmental Science, 12, 1613-1621. https://doi.org/10.1039/C9EE00542K |
[32] |
Du, X., Xu, J., Deng, S., et al. (2019) Amino-Functionalized Sin-gle-Walled Carbon Nanotubes-Integrated Polyurethane Phase Change Composites with Superior Photothermal Conver-sion Efficiency and Thermal Conductivity. ACS Sustainable Chemistry & Engineering, 7, 17682-17690. https://doi.org/10.1021/acssuschemeng.9b03853 |
[33] |
Cao, R., Chen, S., Wang, Y., et al. (2019) Functionalized Carbon Nanotubes as Phase Change Materials with Enhanced Thermal, Electrical Conductivity, Light-to-Thermal, and Electro-to-Thermal Performances. Carbon, 149, 263-272. https://doi.org/10.1016/j.carbon.2019.04.005 |
[34] |
Zhang, Q. and Liu, J. (2019) Anisotropic Thermal Conductivity and Photodriven Phase Change Composite Based on RT100 Infiltrated Carbon Nanotube Array. Solar Energy Materials and Solar Cells, 190, 1-5. https://doi.org/10.1016/j.solmat.2018.10.010 |
[35] |
Du, X., Qiu, J., Deng, S., et al. (2020) Alkylated Nanofibrillated Cellulose/Carbon Nanotubes Aerogels Supported Form-Stable Phase Change Composites with Improved n-alkanes Loading Capacity and Thermal Conductivity. ACS Applied Materials & Interfaces, 12, 5695-5703. https://doi.org/10.1021/acsami.9b17771 |
[36] |
Qian, Y., Han, N., Zhang, Z., et al. (2019) Enhanced Thermal-To Flexible Phase Change Materials Based on Cellulose/Modified Graphene Composites for Thermal Management of Solar Energy.ACS Applied Materials & Interfaces, 11, 45832-45843. https://doi.org/10.1021/acsami.9b18543 |
[37] |
Li, Y., Samad, Y., Polychronopoulou, K., et al. (2014) From Biomass to High Performance Solar-Thermal and Electric-Thermal Energy Conversion and Storage Materials. Journal of Materials Chemistry A, 2, 7759. https://doi.org/10.1039/C4TA00839A |
[38] |
Wang, C., Liang, W., Yang, Y., et al. (2020) Biomass Carbon Aerogels Based Shape-Stable Phase Change Composites with High Light-to-Thermal Efficiency for Energy Storage. Renewable Energy, 153, 182-192. https://doi.org/10.1016/j.renene.2020.02.008 |
[39] |
Zhou, H., Lin, B., Qi, J., et al. (2018) Analysis of Correlation between Actual Heating Energy Consumption and Building Physics, Heating System, and Room Position Using Data Mining Approach. Energy and Buildings, 166, 73-82. https://doi.org/10.1016/j.enbuild.2018.01.042 |
[40] |
Zhou, D., Zhao, C.Y. and Tian, Y. (2012) Review on Thermal Energy Storage with Phase Change Materials (PCMs) in Building Applications. Applied Energy, 92, 593-605. https://doi.org/10.1016/j.apenergy.2011.08.025 |
[41] |
Roman, K., O’Brien, T., Alvey, J. and Woo, O. (2016) Simu-lating the Effects of Cool Roof and PCM (Phase Change Materials) Based Roof to Mitigate UHI (Urban Heat Island) in Prominent US Cities. Energy, 96, 103-117. https://doi.org/10.1016/j.energy.2015.11.082 |
[42] |
Zhang, Q., He, Z., Fang, X., et al. (2017) Experimental and Nu-merical Investigations on a Flexible Paraffin/Fiber Composite Phase Change Material for Thermal Therapy Mask. Energy Storage Materials, 6, 36-45. https://doi.org/10.1016/j.ensm.2016.09.006 |
[43] |
Lu, Y., Xiao, X., Zhan, Y., et al. (2018) Core-Sheath Paraf-fin-Wax-Loaded Nanofibers by Electrospinning for Heat Storage. ACS Applied Materials & Interfaces, 10, 12759-12767. https://doi.org/10.1021/acsami.8b02057 |
[44] |
Lu, Y., Xiao, X., Fu, J., et al. (2019) Novel Smart Textile with Phase Change Materials Encapsulated Core-Sheath Structure Fabricated by Coaxial Electrospinning. Chemical Engineering Journal, 355, 532-539. https://doi.org/10.1016/j.cej.2018.08.189 |
[45] |
Li, G., Hong, G., Dong, D., et al. (2018) Multiresponsive Gra-phene-Aerogel-Directed Phase-Change Smart Fibers. Advanced Materials, 30, Article ID: 1801754. https://doi.org/10.1002/adma.201801754 |
[46] |
Aftab, W., Khurram, M., Jinming, S., et al. (2020) Highly Efficient Solar-Thermal Storage Coating Based on Phosphorene Encapsulated Phase Change Materials. Energy Storage Materials, 32, 199-207. https://doi.org/10.1016/j.ensm.2020.07.032 |
[47] |
Wang, B., Li, G., Xu, L., et al. (2020) Nanoporous Boron Nitride Aerogel Film and Its Smart Composite with Phase Change Materials. ACS Nano, 14, 16590-16599. https://doi.org/10.1021/acsnano.0c05931 |
[48] |
Zhao, S., Chen, L., Zhang, C., et al. (2020) Functional Oil-Repellent Photothermal Materials Based on Nickel Foam for Efficient Solar Steam Generation. Solar Energy Materials and Solar Cells, 214, Article ID: 110574. https://doi.org/10.1016/j.solmat.2020.110574 |
[49] |
Cao, Y., Fan, D., Lin, S., et al. (2020) Phase Change Materials Based on Comb-Like Polynorbornenes and Octadecylamine-Functionalized Graphene Nanosheets for Thermal Energy Storage. Chemical Engineering Journal, 389, Article ID: 124318. https://doi.org/10.1016/j.cej.2020.124318 |