普朗克常数不具有唯一性
Planck’s Constant Is not of Uniqueness
摘要:在质量与其他物理量无关的前提下,可以证明量纲关系“能量 ≡ 质量 × 速度 × 速度”,以该关系为基础可以导出动量,动量对时间求导得到牛顿第二运动定律。基于牛顿第二定律定义的力的量纲,可以提出基本引力禀性常数的概念,导出一般形式的引力定律,其特例是万有引力定律。在引力定律的基础上,可以导出库仑定律。基于库仑定律可以导出普朗克常数的概念。在动量和普朗克常数的基础上,可以导出不确定性原理。指出了普朗克常数不具有唯一性。
Abstract:On the premise that the mass is independent of other physical quantities, the dimensional relation “energy ≡ mass × speed × speed” can be proved. Based on this dimensional relation, momentum can be derived, and Newton’s second law of motion can be obtained by deriving momentum from time. Based on the dimension of force defined by Newton’s second law, the fundamental gravitational intrinsic constant can be proposed. The general form of gravitational law is derived, and its special case is the law of universal gravitation. Based on the law of gravitation, Coulomb’s law can be derived. The concept of Planck’s constant can be derived based on Coulomb’s law. On the basis of momentum and Planck’s constant, the uncertainty principle can be derived. It is pointed out that Planck’s constant is not of uniqueness.
参考文献
[1] |
谈庆明. 量纲分析[M], 合肥: 中国科技大学出版社,2005. |
[2] |
王忆锋. 光速原理及其推论[J]. 现代物理, 2019, 9(4): 227-245. |
[3] |
艾萨克·牛顿著. 王克迪译.自然哲学的数学原理[M]. 西安: 陕西人民出版社,2001. |
[4] |
胡盘新. 大学物理手册[M]. 上海: 上海交通大学出版社, 2007. |
[5] |
王忆锋. 论基本引力禀性常数[J]. 科技风2020,(15):75-77. |
[6] |
王忆锋.论一般形式的引力定律[J].汉斯预印本,2020,5(1): 1-14. https://doi.org/10.12677/HANSPrePrints.2020.51031 |
[7] |
王忆锋. 试析不确定性原理与物质波概念之间的矛盾[J]. 现代物理, 2019,9(4):282-288. |
[8] |
沈乃澂. 基本物理常数1998年国际推荐值[M]. 北京:中国计量出版社,2004. |
[9] |
野村昭一郎著. 李彬, 黄东律, 康昌鹤, 等译.量子力学入门[M]. 北京:高等教育出版社,1985. |
[10] |
D. S. 萨克森著, 苏耀中, 叶安祚译. 初等量子力学 [M]. 北京:高等教育出版社,1985. |