[1] |
Zinman, B., Wanner, C., Lachin, J.M., et al. (2015) Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. The New England Journal of Medicine, 373, 2117-2128. https://doi.org/10.1056/NEJMoa1504720 |
[2] |
Bhatt, D.L., Verma, S. and Braunwald, E. (2019) The DAPA-HF Trial: A Momentous Victory in the War against Heart Failure. Cell Metabolism, 30, 847-849. https://doi.org/10.1016/j.cmet.2019.10.008 |
[3] |
Neal, B., Perkovic, V., Mahaffey, K.W., et al. (2017) Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. The New England Journal of Medicine, 377, 644-657. https://doi.org/10.1056/NEJMoa1611925 |
[4] |
Wiviott, S.D., Raz, I., Bonaca, M.P., et al. (2019) Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. The New England Journal of Medicine, 380, 347-357. https://doi.org/10.1056/NEJMoa1812389 |
[5] |
中华医学会心血管病学分会心力衰竭学组, 中国医师协会心力衰竭专业委员会, 中华心血管病杂志编辑委员会. 中国心力衰竭诊断和治疗指南2018 [J]. 中华心血管病杂志, 2018, 46(10): 760-789. |
[6] |
中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2017年版) [J]. 中华糖尿病杂志, 2018, 10(1): 4-67. |
[7] |
中华医学会超声医学分会超声心电图学组. 中国成年人超声心动图检查测量指南[J]. 中华超声影像学杂志, 2016, 25(8): 645-666. |
[8] |
Heerspink, H.J., Perkins, B.A., Fitchett, D.H., et al. (2016) Sodium Glucose Cotransporter 2 Inhibitors in the Treatment of Diabetes Mellitus: Cardiovascular and Kidney Effects, Potential Mechanisms, and Clinical Applications. Circulation, 134, 752-772. https://doi.org/10.1161/CIRCULATIONAHA.116.021887 |
[9] |
Uthman, L., Baartscheer, A., Bleijlevens, B., et al. (2018) Class Effects of SGLT2 Inhibitors in Mouse Cardiomyocytes and Hearts: Inhibition of Na+/H+ Exchanger, Lowering of Cytosolic Na+ and Vasodilation. Diabetologia, 61, 722-726. https://doi.org/10.1007/s00125-017-4509-7 |
[10] |
McMurray, J.J.V., DeMets, D.L., Inzucchi, S.E., et al. (2019) A Trial to Evaluate the Effect of the Sodium Glucose Cotransporter 2 Inhibitor Dapagliflozin on Morbidity and Mortality in Patients with Heart Failure and Reduced Left Ventricular Ejection Fraction (DAPA-HF). European Journal of Heart Failure, 21, 665-675. https://doi.org/10.1002/ejhf.1432 |
[11] |
Lan, N.S.R., Fegan, P.G., Yeap, B.B., et al. (2019) The Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Left Ventricular Function: Current Evidence and Future Directions. ESC Heart Failure, 6, 927-935. https://doi.org/10.1002/ehf2.12505 |
[12] |
Packer, M., Greene, S.J., Fiuzat, M., et al. (2019) Heart Failure Endpoints in Cardiovascular Outcome Trials of SGLT2 Inhibitors in Patients with Type 2 Diabetes: A Critical Evaluation of Clinical and Regulatory Issues. Circulation, 140, 2108-2118. https://doi.org/10.1161/CIRCULATIONAHA.119.042155 |
[13] |
Mazurek, T., Zhang, L., Zalewski, A., et al. (2003) Human Epicardial Adipose Tissue Is a Source of Inflammatory Mediators. Circulation, 108, 2460-2466. https://doi.org/10.1161/01.CIR.0000099542.57313.C5 |
[14] |
Blumensatt, M., Fahlbusch, P., Hilgers, R., et al. (2017) Secretory Products from Epicardial Adipose Tissue from Patients with Type 2 Diabetes Impair Mitochondrial β-Oxidation in Cardiomyocytes via Activation of the Cardiac Renin-Angiotensin System and Induction of miR-208a. Basic Research in Cardiology, 112, 2. https://doi.org/10.1007/s00395-016-0591-0 |
[15] |
Chechi, K., Voisine, P., Mathieu, P., et al. (2017) Functional Characterization of the Ucp1-Associated Oxidative Phenotype of Human Epicardial Adipose Tissue. Scientific Reports, 7, Article No. 5566. https://doi.org/10.1038/s41598-017-15501-7 |
[16] |
Sugita, Y., Ito, K., Sakurai, S., et al. (2020) Epicardial Adipose Tissue Is Tightly Associated with Exercise Intolerance in Patients with Type 2 Diabetes Mellitus with Asymptomatic Left Ventricular Structural and Functional Abnormalities. Journal of Diabetic Complications, 34, Article ID: 107552. https://doi.org/10.1016/j.jdiacomp.2020.107552 |
[17] |
Christensen, R.H., Hansen, C.S., von Scholten, B.J., et al. (2019) Epicardial and Pericardial Adipose Tissues Are Associated with Reduced Diastolic and Systolic Function in Type 2 Diabetes. Diabetes, Obesity and Metabolism, 21, 2006-2011. https://doi.org/10.1111/dom.13758 |
[18] |
Shah, R.V. anderson, A., Ding, J., et al. (2017) Pericardial, But Not Hepatic, Fat by Computed Tomography Is Associated with Cardiovascular Outcomes and Structure: The Multi-Ethnic Study of Atherosclerosis (MESA). JACC: Cardiovascular Imaging, 10, 1016-1027. https://doi.org/10.1016/j.jcmg.2016.10.024 |
[19] |
Levelt, E., Pavlides, M., Banerjee, R., et al. (2016) Ectopic and Visceral Fat Deposition in Lean and Obese Patients with Type 2 Diabetes. Journal of the American College of Cardiology, 68, 53-63. https://doi.org/10.1016/j.jacc.2016.03.597 |
[20] |
Drapkina, O.M. and Zyatenkova, E.V. (2016) Evaluation of Cardiovascular Remodeling and Epicardial Fat Thickness in Patients with Chronic Heart Failure and Metabolic Syndrome. Terapevticheskii Arkhiv, 88, 64-70. https://doi.org/10.17116/terarkh201688264-70 |
[21] |
蒋凌云, 颜晓东, 韦洁明. 初诊2型糖尿病患者内脏脂肪含量与心功能的相关性研究[J]. 中华糖尿病杂志, 2020, 12(4): 236-240. |
[22] |
刘福成, 单光华, 边宁, 等. 稳定性冠心病患者心外膜脂肪组织与N端脑利钠肽前体水平的相关性研究[J]. 中国病理生理杂志, 2015, 17(9): 1617-1620. |
[23] |
Sato, T., Aizawa, Y., Yuasa, S., et al. (2018) The Effect of Dapagliflozin Treatment on Epicardial Adipose Tissue Volume. Cardiovascular Diabetology, 17, 6. https://doi.org/10.1186/s12933-017-0658-8 |
[24] |
Yagi, S., Hirata, Y., Ise, T., et al. (2017) Canagliflozin Reduces Epicardial Fat in Patients with Type 2 Diabetes Mellitus. Diabetology & Metabolic Syndrome, 9, 78. https://doi.org/10.1186/s13098-017-0275-4 |