Figure 1. Distribution of natural fiber applications [3]--图1. 天然纤维应用分布[3]--
<xref></xref>Table 1. Comparison of mechanical properties of different types of fibersTable 1. Comparison of mechanical properties of different types of fibers 表1. 不同类型纤维机械性能的对比
Figure 2. Morphological diagram of silk production in B. mori and oak silkworms; (a) Images of silkworm silks; (b) Images of B. mori silks; (c) Cross section of degummed B. mori silk fibers; (d) Cross section of degummed B. mori silk fibers--图2. 桑蚕和柞蚕产丝的形态图;(a) 桑蚕茧的图像;(b) 柞蚕茧的图像;(c) 桑蚕丝脱胶丝纤维的横截面;(d) 柞蚕丝脱胶丝纤维的横截面[19]--
<xref></xref>2.2. 桑蚕丝
References
冯小明, 张崇才. 复合材料[M]. 第3版. 重庆: 重庆大学出版社, 2021.
郭耀伟, 蔡明. 天然纤维增强复合材料的应用及发展前景[J]. 纺织导报, 2021(5): 86-90.
Azman, M.A., Asyraf, M.R.M., Khalina, A., Petrů, M., Ruzaidi, C.M., Sapuan, S.M., et al. (2021) Natural Fiber Reinforced Composite Material for Product Design: A Short Review. Polymers, 13, Article 1917. >https://doi.org/10.3390/polym13121917
Cheung, H., Ho, M.P., Lau, K., Cardona, F. and Hui, D. (2009) Natural Fiber-Reinforced Composites for Bioengineering and Environmental Engineering Applications. Composites Part B: Engineering, 40, 655-663.
Mamtaz, H., Fouladi, M.H., Al-Atabi, M. and Narayana Namasivayam, S. (2016) Acoustic Absorption of Natural Fiber Composites. Journal of Engineering, 2016, Article ID: 5836107. >https://doi.org/10.1155/2016/5836107
La Rosa, A.D., Recca, A., Gagliano, A., Summerscales, J., Latteri, A., Cozzo, G., et al. (2014) Environmental Impacts and Thermal Insulation Performance of Innovative Composite Solutions for Building Applications. Construction and Building Materials, 55, 406-414. >https://doi.org/10.1016/j.conbuildmat.2014.01.054
Reis, J.M.L. (2005) Fracture and Flexural Characterization of Natural Fiber-Reinforced Polymer Concrete. Construction and Building Materials, 20, 673-678.
Suresh Kumar, S.M., Duraibabu, D. and Subramanian, K. (2014) Studies on Mechanical, Thermal and Dynamic Mechanical Properties of Untreated (Raw) and Treated Coconut Sheath Fiber Reinforced Epoxy Composites. Materials&Design, 59, 63-69. >https://doi.org/10.1016/j.matdes.2014.02.013
Ramesh, M., Palanikumar, K. and Reddy, K.H. (2013) Comparative Evaluation on Properties of Hybrid Glass Fiber-Sisal/Jute Reinforced Epoxy Composites. Procedia Engineering, 51, 745-750. >https://doi.org/10.1016/j.proeng.2013.01.106
Wu, C., Yang, K., Gu, Y., Xu, J., Ritchie, R.O. and Guan, J. (2019) Mechanical Properties and Impact Performance of Silk-Epoxy Resin Composites Modulated by Flax Fibres. Composites Part A: Applied Science and Manufacturing, 117, 357-368. >https://doi.org/10.1016/j.compositesa.2018.12.003
Yusup, E., Mahzan, S. and Kamaruddin, M. (2019) Natural Fiber Reinforced Polymer for the Application of Sports Equipment Using Mold Casting Method. IOP Conference Series: Materials Science and Engineering, 494, Article ID: 012040. >https://doi.org/10.1088/1757-899x/494/1/012040
Prabhu, L., Krishnaraj, V., Sathish, S., Gokulkumar, S., Karthi, N., Rajeshkumar, L., et al. (2021) A Review on Natural Fiber Reinforced Hybrid Composites: Chemical Treatments, Manufacturing Methods and Potential Applications. Materials Today: Proceedings, 45, 8080-8085. >https://doi.org/10.1016/j.matpr.2021.01.280
Syduzzaman, M., Al Faruque, M.A., Bilisik, K. and Naebe, M. (2020) Plant-Based Natural Fibre Reinforced Composites: A Review on Fabrication, Properties and Applications. Coatings, 10, Article 973. >https://doi.org/10.3390/coatings10100973
Ku, H., Wang, H., Pattarachaiyakoop, N. and Trada, M. (2011) A Review on the Tensile Properties of Natural Fiber Reinforced Polymer Composites. Composites Part B: Engineering, 42, 856-873. >https://doi.org/10.1016/j.compositesb.2011.01.010
颜丹丹. 不同提取方式对棉秆皮纤维性能的影响[J]. 纤纺广角, 2017(4): 143-144.
Pérez-Rigueiro, J., Viney, C., Llorca, J. and Elices, M. (2000) Mechanical Properties of Single-Brin Silkworm Silk. Journal of Applied Polymer Science, 75, 1270-1277. >https://doi.org/10.1002/(sici)1097-4628(20000307)75:10<1270::aid-app8>3.0.co;2-c
Craven, J.P., Cripps, R. and Viney, C. (2000) Evaluating the Silk/epoxy Interface by Means of the Microbond Test. Composites Part A: Applied Science and Manufacturing, 31, 653-660. >https://doi.org/10.1016/s1359-835x(00)00042-7
Bledzki, A. (1999) Composites Reinforced with Cellulose Based Fibres. Progress in Polymer Science, 24, 221-274. >https://doi.org/10.1016/s0079-6700(98)00018-5
Gu, J., Li, Q., Chen, B., Xu, C., Zheng, H., Zhou, Y., et al. (2019) Species Identification of Bombyx Mori and Antheraea Pernyi Silk via Immunology and Proteomics. Scientific Reports, 9, Article No. 9381. >https://doi.org/10.1038/s41598-019-45698-8
朱进忠. 纺织材料[M]. 北京: 中国纺织出版社, 2009.
Kirimura, J. (1962) Studies on Amino Acid Composition and Chemical Structure of Silk Protein by Microbiological Determination. Nippon Ngei kagaku Kaishi, 17, 447-522.
Butler, D. (2003) Raiding the Medicine Cabinet. Nature, 424, 10-11. >https://doi.org/10.1038/424010a
Pérez-Rigueiro, J., Viney, C., Llorca, J. and Elices, M. (1998) Silkworm Silk as an Engineering Material. Journal of Applied Polymer Science, 70, 2439-2447. >https://doi.org/10.1002/(sici)1097-4628(19981219)70:12<2439::aid-app16>3.0.co;2-j
刘孝良, 黄静雅, 张禹, 等. 柞蚕综合利用研究进展[J]. 北方蚕业, 2023, 44(3): 7-11, 35.
Fu, C.J., Shao, Z.Z. and Fritz, V. (2009) Animal Silks: Their Structures, Properties and Artificial Production. Chemical Communications, 43, 6515-6529.
Katori, S. and Kimura, T. (2002) Injection Moulding of Silk Fiber Reinforced Biodegradable Composites. In: Brebbia, C.A. and de Wilde, W.P., Eds., High Performance Structures and Composites, WIT Press, 97-105.
Lee, S., Cho, D., Park, W., Lee, S., Han, S. and Drzal, L. (2005) Novel Silk/Poly(Butylene Succinate) Biocomposites: The Effect of Short Fibre Content on Their Mechanical and Thermal Properties. Composites Science and Technology, 65, 647-657. >https://doi.org/10.1016/j.compscitech.2004.09.023
Oshkovr, S.A., Eshkoor, R.A., Taher, S.T., Ariffin, A.K. and Azhari, C.H. (2012) Crashworthiness Characteristics Investigation of Silk/epoxy Composite Square Tubes. Composite Structures, 94, 2337-2342. >https://doi.org/10.1016/j.compstruct.2012.03.031
Ataollahi, S., Taher, S.T., Eshkoor, R.A., Ariffin, A.K. and Azhari, C.H. (2012) Energy Absorption and Failure Response of Silk/Epoxy Composite Square Tubes: Experimental. Composites Part B: Engineering, 43, 542-548. >https://doi.org/10.1016/j.compositesb.2011.08.019
Eshkoor, R.A., Oshkovr, S.A., Sulong, A.B., Zulkifli, R., Ariffin, A.K. and Azhari, C.H. (2013) Effect of Trigger Configuration on the Crashworthiness Characteristics of Natural Silk Epoxy Composite Tubes. Composites Part B: Engineering, 55, 5-10. >https://doi.org/10.1016/j.compositesb.2013.05.022
Koronis, G., Silva, A. and Fontul, M. (2013) Green Composites: A Review of Adequate Materials for Automotive Applications. Composites Part B: Engineering, 44, 120-127. >https://doi.org/10.1016/j.compositesb.2012.07.004
Li, Y., Mai, Y. and Ye, L. (2000) Sisal Fibre and Its Composites: A Review of Recent Developments. Composites Science and Technology, 60, 2037-2055. >https://doi.org/10.1016/s0266-3538(00)00101-9
Shao, Z. and Vollrath, F. (2002) Surprising Strength of Silkworm Silk. Nature, 418, 741. >https://doi.org/10.1038/418741a
Tsukada, M., Obo, M., Kato, H., Freddi, G. and Zanetti, F. (1996) Structure and Dyeability of Bombyx mori Silk Fibers with Different Filament Sizes. Journal of Applied Polymer Science, 60, 1619-1627. >https://doi.org/10.1002/(sici)1097-4628(19960606)60:10<1619::aid-app14>3.0.co;2-#
Kawahara, Y., Shioya, M. and Takaku, A. (1996) Mechanical Properties of Silk Fibers Treated with Methacrylamide. Journal of Applied Polymer Science, 61, 1359-1364. >https://doi.org/10.1002/(sici)1097-4628(19960822)61:8<1359::aid-app17>3.3.co;2-d
Rajkhowa, R., Gupta, V.B. and Kothari, V.K. (2000) Tensile Stress-Strain and Recovery Behavior of Indian Silk Fibers and Their Structural Dependence. Journal of Applied Polymer Science, 77, 2418-2429. >https://doi.org/10.1002/1097-4628(20000912)77:11<2418::aid-app10>3.0.co;2-q
Yang, K., Ritchie, R.O., Gu, Y., Wu, S.J. and Guan, J. (2016) High Volume-Fraction Silk Fabric Reinforcements Can Improve the Key Mechanical Properties of Epoxy Resin Composites. Materials&Design, 108, 470-478. >https://doi.org/10.1016/j.matdes.2016.06.128
Zainudin, Z., Mohd Yusoff, N.I.S., Wahit, M.U. and Che Man, S.H. (2020) Mechanical, Thermal, Void Fraction and Water Absorption of Silane Surface Modified Silk Fiber Reinforced Epoxy Composites. Polymer-Plastics Technology and Materials, 59, 1987-2002. >https://doi.org/10.1080/25740881.2020.1784215
Chen, X., Knight, D.P., Shao, Z. and Vollrath, F. (2001) Regenerated Bombyx Silk Solutions Studied with Rheometry and FTIR. Polymer, 42, 09969-09974. >https://doi.org/10.1016/s0032-3861(01)00541-9
Unger, R. (2004) Growth of Human Cells on a Non-Woven Silk Fibroin Net: A Potential for Use in Tissue Engineering. Biomaterials, 25, 1069-1075. >https://doi.org/10.1016/s0142-9612(03)00619-7
陈新, 周丽, 邵正中, 周平, Knight D P, Vollrath F. 时间分辨红外光谱对丝蛋白膜构象转变动力学的研究——再生蚕丝蛋白膜在高浓度醇溶液中的构象转变[J]. 化学学报, 2003, 61(4): 625-629.
周文, 黄郁芳, 邵正中, 陈新. 铁和锰对桑蚕丝蛋白构象转变的影响[J]. 化学学报, 2007, 65(19): 2197-2201.
李明忠, 卢神州. 用于机体缺损组织修复的材料及其制备方法[P]. 中国专利, CN02138127.5. 2004-12-15.