Figure 2. From left to right, the denoising images of adaptive median filtering, BM3D, S2S-WTV and the method in this paper--图2. 从左往右依次为自适应中值滤波、BM3D、S2S-WTV以及本文方法去噪图--
Figure 3. The first row from left to right shows the denoising images of adaptive median filtering, BM3D, S2S-WTV and the method proposed in this paper; the second row from left to right shows the residual images of adaptive median filtering, BM3D, S2S-WTV and the method proposed in this paper.--图3. 第一行从左往右依次为自适应中值滤波、BM3D、S2S-WTV以及本文方法去噪图;第二行从左往右依次为自适应中值滤波、BM3D、S2S-WTV以及本文方法的残差图。--
References
Hwang, H. and Haddad, R.A. (1995) Adaptive Median Filters: New Algorithms and Results. IEEE Transactions on Image Processing, 4, 499-502. >https://doi.org/10.1109/83.370679
张永飞, 邓辉. 一种基于自适应中值滤波的各向异性扩散滤波的图像去噪算法[J]. 装备制造技术, 2023(11): 18-22.
文鸿雁, 郭锴, 陈伟清. 基于遥感图像频率域滤波的灰色线性中值去噪算法[J]. 桂林理工大学学报, 2014, 34(4): 697-703.
Liu, G. and Chen, X. (2013) Noncausal f-x-y Regularized Nonstationary Prediction Filtering for Random Noise Attenuation on 3D Seismic Data. Journal of Applied Geophysics, 93, 60-66. >https://doi.org/10.1016/j.jappgeo.2013.03.007
陈振娅, 刘增力. 基于小波变换的水下图像去噪方法[J]. 现代电子技术, 2023, 46(23): 43-47.
郑晓雯. 一种基于Curvelet变换的地震数据去噪方法和应用[J]. 城市道桥与防洪, 2024(3): 251-254.
崔永福, 吴国忱, 郭念民, 等. LIFT去噪方法在低信噪比资料处理中的应用[J]. 物探化探计算技术, 2014, 36(2): 215-221.
Feng, J., Liu, X., Li, X., Xu, W. and Liu, B. (2022) Low-Rank Tensor Minimization Method for Seismic Denoising Based on Variational Mode Decomposition. IEEE Geoscience and Remote Sensing Letters, 19, 1-5. >https://doi.org/10.1109/lgrs.2021.3100262
Dabov, K., Foi, A., Katkovnik, V. and Egiazarian, K. (2006) Image Denoising with Block-Matching and 3D Filtering. SPIE Proceedings, 6064, Article ID: 606414. >https://doi.org/10.1117/12.643267
Gu, S., Zhang, L., Zuo, W. and Feng, X. (2014) Weighted Nuclear Norm Minimization with Application to Image Denoising. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 23-28 June 2014, 2862-2869. >https://doi.org/10.1109/cvpr.2014.366
Wang, Y., Peng, J., Zhao, Q., Leung, Y., Zhao, X. and Meng, D. (2018) Hyperspectral Image Restoration via Total Variation Regularized Low-Rank Tensor Decomposition. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11, 1227-1243. >https://doi.org/10.1109/jstars.2017.2779539
刘迪, 贾金露, 赵玉卿, 钱育蓉. 基于深度学习的图像去噪方法研究综述[J]. 计算机工程与应用, 2021, 57(7): 1-13.
Zhang, K., Zuo, W., Chen, Y., Meng, D. and Zhang, L. (2017) Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE Transactions on Image Processing, 26, 3142-3155. >https://doi.org/10.1109/tip.2017.2662206
He, K., Zhang, X., Ren, S. and Sun, J. (2016) Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016, 770-778. >https://doi.org/10.1109/cvpr.2016.90
金焱, 杨敏. 去噪正则化与FFDNet结合的相位恢复算法[J]. 计算机技术与发展, 2022, 32(10): 137-142.
黄银, 陈波, 钱俊磊, 等. 基于改进ADNet网络模型的低剂量CT图像降噪方法[J]. 国外电子测量技术, 2023, 42(3): 175-181.
Krull, A., Vičar, T., Prakash, M., Lalit, M. and Jug, F. (2020) Probabilistic Noise2void: Unsupervised Content-Aware Denoising. Frontiers in Computer Science, 2, Article No. 5. >https://doi.org/10.3389/fcomp.2020.00005
Quan, Y., Chen, M., Pang, T. and Ji, H. (2020) Self2Self with Dropout: Learning Self-Supervised Denoising from Single Image. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, 13-19 June 2020, 1887-1895. >https://doi.org/10.1109/cvpr42600.2020.00196
Xu, Z., Luo, Y., Wu, B. and Meng, D. (2023) S2S-WTV: Seismic Data Noise Attenuation Using Weighted Total Variation Regularized Self-Supervised Learning. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-15. >https://doi.org/10.1109/tgrs.2023.3268554