pi Pharmacy Information 2160-441X 2160-4452 beplay体育官网网页版等您来挑战! 10.12677/pi.2024.135052 pi-96794 Articles 医药卫生 毛蕊花糖苷药理活性和作用机制研究进展
Advancements in the Pharmacological Activity and Mechanisms of Action of Verbascoside
李慧娟 张兴江 吴建新 中国药科大学中药学院,江苏 南京 02 09 2024 13 05 438 450 10 8 :2024 11 8 :2024 11 9 :2024 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 毛蕊花糖苷(Verbascoside, VB),作为苯乙醇苷类多酚化合物中的代表性成分,广泛存在于肉苁蓉等多种药用植物中,具备丰富的生物活性。现代药理研究表明,VB不仅在抗炎、抗氧化、神经保护、抗癌上效果显著,还能抗菌,调节免疫系统,保护肝脏、肾脏和肺,缓解疲劳,促进伤口愈合,对多种疾病具有潜在的治疗价值。本文综述了近年来关于VB的药理活性和作用机制的研究,旨在为VB的深入研究与应用提供参考。
Verbascoside (VB), a representative phenylethanoid glycoside polyphenolic compound, is abundantly found in various medicinal plants such as Cistanches Herba. Extensive biological activities have been documented. Modern pharmacological studies reveal that VB not only significantly benefits anti-inflammatory, antioxidant, neuroprotective, and anticancer activities, but also possesses antimicrobial properties, and protects the livers, kidneys and lungs. It alleviates fatigue and promotes wound healing, offering potential therapeutic value for multiple diseases. This paper reviews recent research on the pharmacological activities and mechanisms of action of VB, aiming to provide references for further research and application of VB.
毛蕊花糖苷,药理作用,研究进展
Verbascoside
Pharmacological Effects Research Advancements
1. 引言

毛蕊花糖苷(Verbascoside, VB),是著名药用植物肉苁蓉、地黄、女贞子、马鞭草等(见 表1 )的主要活性成分 [1] ,其结构如 图1 所示。毛蕊花糖苷作为代表性的苯乙醇苷类多酚化合物,不仅在抗炎、抗氧化、神经保护、抗癌上效果显著,还能抗菌,调节免疫系统,保护肝脏、肾脏和肺,缓解疲劳,促进伤口愈合等,对多种疾病具有潜在的治疗价值 [1] [2] 。因此,本文将总结近年来有关VB药理活性和作用机制的研究进展。

<xref></xref>Table 1. Partial natural sources of verbascoside and their contentsTable 1. Partial natural sources of verbascoside and their contents 表1. 毛蕊花糖苷的部分天然来源及其含量
来源

含量mg/g

提取方式

参考文献

管花肉苁蓉(Cistanche tubulosa)

16.10~85.90

50%甲醇提取

Yan, 2017 [3]

荒漠肉苁蓉(Cistanche deserticola)

1.17~29.03

70%甲醇提取

Lu, 2013 [4]

地黄(Rehmannia glutinosa)

0.63~4.78

甲醇提取

石海霞,2018 [5]

女贞子(Ligustri Lucidi Fructus)

1.04~2.99

超声波辅助固相萃取(萃取剂:低共熔溶剂、吸附剂:ZnO)

Qian, 2024 [6]

车前草(Plantaginis lanceolatae folium)

66.2 ± 5.0

60% 乙醇提取

Laanet, 2024 [7]

老鼠簕(Acanthus ebracteatus Vahl)

1652.37 ± 129.11

水提取

Pongkitwitoon, 2024 [8]

马鞭草(Verbena oficinalis)

3.51 ± 0.12

95%乙醇提取

Zhang, 2024 [9]

裸花紫珠(Callicarpa nudiflora Hook.)

7.27

75%乙醇提取

Yang, 2024 [10]

桂花(Osmanthus fragrans)

119.1

60%乙醇提取

Lee, 2020 [11]

白连翘(Abeliophyllum distichum)茎

162.11

乙醇提取

Li, 2020 [12]

Figure 1. Chemical structure of verbascoside. The central glucose unit is linked at the C1 position to the α-hydroxyl of hydroxytyrosol via a glycosidic bond, connected to rhamnose at the C3 position, and bound to caffeic acid at the C4 position via an ester bond--图1. 毛蕊花糖苷的化学结构式。中心葡萄糖单元C1位以糖苷键与羟基酪醇的α-羟基相连,C3位连接鼠李糖,C4位以酯键与咖啡酸结合--
2. 基础活性

氧化应激与炎症的相互作用是多种慢性疾病的关键致病因素 [13] 。氧化应激过程中产生的ROS将激活TLR等先天免疫受体,进而触发NF-κB、AP-1等多种转录因子的激活,促进炎症细胞因子的表达,从而引发慢性炎症。这种慢性炎症可进一步增强氧化应激,形成恶性循环,加速神经退行性疾病、癌症、糖尿病相关疾病的进展 [14] 。因此,VB的显著抗炎及抗氧化效果对缓解上述疾病具有重要意义。如VB通过缓解氧化应激和抑制NF-κB/MAPK通路来减轻哮喘气道炎症 [15]

2.1. 抗炎

VB的主要活性之一是抗炎,研究亦最为广泛。其通过有效抑制炎症的核心调节因子NF-κB,减少如TNF-α、IL-1、IL-6等促炎性细胞因子及趋化因子的表达,从而在脑、肾脏、皮肤等多个部位显著抑制炎症 [1] [2] 。VB也可通过抑制PLA2阻断炎症前体花生四烯酸的释放 [16] ;抑制促炎转录因子AP-1、增强酪氨酸磷酸酶SHP-1的活性 [17] 从而阻断iNOS的表达 [18] 并选择性抑制COX-2以减少前列腺素E2的生成 [19] ,靶向MAPK通路有效减轻炎症因子的释放。

VB可影响Breg细胞、肥大细胞等免疫细胞功能,调节细胞因子水平,从而在哮喘、过敏反应和炎症性皮肤疾病中发挥出保护作用 [2] [20] 。如VB可缓解小鼠特异性皮炎症状的抓挠行为和皮肤病变严重程度 [21] 。VB可以激活树突状细胞的芳香烃受体,降低IL-12和TNF-α的产生并增加IL-10的水平,并且诱导Foxp3+调节性T细胞,改善过敏性哮喘小鼠的肺部炎症 [20] 。它可以通过调节TLR4/PI3K轴来促进人类和小鼠Breg细胞产生IL-10,同时促进TLR4+CXCR4+浆细胞产生IL-10,降低T效应细胞数量,缓解小鼠的实验性干燥综合征 [22] 。VB可下调MDM2抑制肥大细胞增殖 [23] ,抑制肥大细胞中的花生四烯酸和组胺释放和前列腺素E2产生 [24] 。在人类单核细胞THP-1模型中,VB可以剂量依赖性地抑制DNCB诱导的细胞表面CD86和CD54上调、促炎性细胞因子TNF-α和IL-6的分泌以及NF-κB信号的激活 [21]

2.2. 抗氧化应激

氧化应激指体内氧化和抗氧化机制失衡,该状态促使大量氧化中间体的形成,进而引起分子损伤和氧化还原信号的中断。这种失衡可在不同程度上导致多种疾病,如神经退行性疾病、癌症的发生与进展 [25] 。研究表明,VB能有效地直接清除氧、氮、铁等自由基 [26] ,效果与抗坏血酸相当。更关键的是,VB通过激活抗氧化通路Nrf2/ARE及其HO-1、SOD和GSH-Px等下游抗氧化酶的活性和水平,从而抑制如H2O2诱导的PC12细胞 [27] 、6-OHDA诱导的斑马鱼多巴胺神经元 [28] 、UVB照射后的HaCaT细胞 [29] 等产生的ROS和脂质过氧化,缓解氧化应激。VB结构上的咖啡酸和羟基酪醇,尤其后者的酚羟基,是发挥体内外抗氧化功效的主要活性部位 [30] [31]

3. 适应症 3.1. 神经保护

VB已展现出显著的神经保护活性。该化合物通过降低氧化应激、靶向NF-κB和NLRP3炎症小体等抑制神经炎症、抑制凋亡和上调自噬等,对阿尔兹海默症、帕金森、认知障碍、抑郁等有一定治疗潜力 [2] [32]

VB可缓解氧化应激引发的神经元损伤与凋亡 [33] 。VB通过增强Nrf2-线粒体自噬途径来抑制铁死亡,从而改善线粒体功能、减少氧化应激,保持体内外帕金森模型中多巴胺神经元健康 [34] 。Li等 [28] 发现毛蕊花糖苷可穿过血脑屏障并通过激活Nrf2/ARE信号通路来缓解氧化应激,预防6-OHDA诱导的斑马鱼多巴胺神经元损伤。

持续性神经炎症将导致神经元的损伤与丢失 [35] 。NLRP3炎症小体的组装触发caspase-1激活,进而促进IL-1β与IL-18的释放,引发进一步炎症。VB对NLRP3的抑制作用,已成为继NF-κB之后,神经保护研究的新焦点 [36] 。VB通过抑制NLRP3,降低了ASC活性、caspase-1、IL-1β和IL-18减轻体外和体内帕金森模型中SAL诱导的细胞焦亡依赖性神经毒性 [37] ,并抑制脑出血后的神经炎症和神经元凋亡 [38] 。VB通过抑制HMGB1/TLR4/NLRP3信号传导,减少小胶质细胞炎症活动和细胞焦亡,降低大鼠大脑中动脉闭塞模型脑梗塞面积并保持血脑屏障完整性,展现对缺血性中风的治疗潜力 [39] 。此外,VB通过阻断NF-κB-p65信号传导,抑制APP/PS1小鼠脑组织中小胶质细胞和星形胶质细胞活化,减轻神经炎症,从而对阿尔茨海默病发挥神经保护作用 [40]

通过调节肠道微生物群结构和代谢产物,VB在神经退行性疾病和精神障碍的治疗中具有显著潜力。口服VB可以显著降低氧化应激,减轻肠道炎症,恢复肠粘膜屏障,并重建肠道微生物群的结构。这种调节作用进一步上调了肠道微生物群代谢物如短链脂肪酸和氨基酸的水平,从而有效缓解了d-半乳糖诱导的认知障碍 [41] 。VB通过肠道菌群–脑轴抑制神经炎症并改善肠道通透性,在慢性应激诱发的抑郁模型中,调节肠道微生物组成并减少神经炎症反应,改善了抑郁样行为和突触损伤 [42] 。在糖尿病小鼠模型中,VB能够通过调节肠道微生物群(增加有益菌的种类和数量)、改善血清代谢物水平(如γ-氨基丁酸、L-谷氨酸、L-赖氨酸和牛磺酸)以及增强认知表现,显著抑制胰岛素抵抗,降低血糖和血脂,并改善糖尿病相关的认知缺陷 [43]

VB可以上调自噬和下调细胞凋亡,增加清除神经元中的Aβ等毒性蛋白聚集体和受损细胞器的能力,减少神经元丢失,从而保护神经。VB可以诱发果蝇的神经元细胞系和脂肪体中的自噬,降低了鱼藤酮诱导的细胞凋亡和活性氧生成,增加神经元中的线粒体膜电位,并通过自噬–溶酶体途径促进了α-突触核蛋白过表达细胞模型中蛋白聚集体的清除 [44] 。VB通过促进自噬(MAP1LC3A上调)、抗凋亡(caspase-3、Bax下调和Bcl-2上调)、抗炎(iNOS、TNF-α和IL-1β下调)和抗氧化(Nrf2、Keap-1上调)调节自噬和凋亡途径促进脊髓损伤后的运动恢复 [45] 。VB与熊果酸的联合应用能通过AKT/mTOR信号通路协同预防神经毒性。Qu等 [46] 指出,该组合可能为阿尔茨海默病提供潜在的治疗策略,通过增强细胞活力、抗凋亡、恢复线粒体膜电位、降低caspase-3活化、减少AKT和mTOR磷酸化,以及增加ATG5和Beclin-1的表达,从而发挥保护作用。WANG等 [47] 的研究表明,VB通过减轻内质网应激,在减少Aβ蛋白刺激的U251细胞和APP/PS1小鼠凋亡方面具有显著效果,展现了对阿尔茨海默病的神经保护作用。

VB可以缓解Aβ等毒性蛋白聚集体对神经元细胞的影响。如通过抑制GSK3β的活性,VB有效修复因Aβ40和Aβ42异常聚集和tau过度磷酸化引起的改善阿尔茨海默病的病理现象和认知障碍 [48]

此外,VB具有神经营养作用。VB可促进P12细胞神经突增长和细胞增殖 [49] ,通过促进海马中神经生长因子和原霉素受体激酶A的表达来增强衰老小鼠的记忆力 [50]

3.2. 抗癌

VB通过抑制细胞增殖促进凋亡,抗侵袭和转移等实现对黑色素瘤、胶质母细胞瘤、肝癌、食管鳞状细胞癌、胰腺癌、结直肠癌等癌症的抑制,减少肿瘤大小并减少耐药性 [51]

抑制增殖,促进凋亡:VB有选择性细胞毒性 [52] ,可以加剧癌细胞的氧化应激触发凋亡 [25] ,并保护正常细胞免受氧化损伤,从而减少副作用 [53] 。VB是参与增殖、抗肿瘤药物耐药性和细胞凋亡的蛋白激酶C及其亚型、ATP、磷酸受体的抑制剂 [53] [54] 。通过调节HIPK2-p53信号,VB可促进人类结直肠癌中的细胞凋亡 [55] 。VB也可下调CCN1并抑制AKT/NF-κB通路,促进M1巨噬细胞极化,抑制卵巢癌细胞增殖和迁移,并促进细胞凋亡,在体内实验中抑制卵巢癌生长 [56]

抗侵袭和转移:在肝癌研究中,VB与五味子木脂素联合治疗可以通过ERK1/2信号通路抑制EMT,并降低CCL20的表达,进而抑制肝癌细胞的增殖和迁移,同时增强细胞凋亡 [57] 。此外,VB还通过HMGB1/RAGE和TGF-β途径抑制前列腺癌细胞的EMT,从而减少细胞的增殖和侵袭性 [58] 。在胰腺癌中,VB通过下调V0/V1表达抑制癌相关成纤维细胞的增殖和迁移 [59] 。同时,VB还通过抑制由METTL3调控的miR-31-5p/HIPK2轴,抑制口腔鳞状细胞癌细胞的增殖、迁移和侵袭 [60] ,此外,VB通过上调蛋白酪氨酸磷酸酶SHP-1的活性并抑制STAT3的磷酸化,抑制胶质母细胞瘤的增殖、迁移和侵袭,同时促进细胞凋亡 [61]

改善对抗肿瘤药物的耐药性:VB通过抑制PI3K/AKT通路,显著增强了癌细胞对5-氟尿嘧啶的敏感性,促进G1细胞周期停滞,减少细胞增殖并诱导结直肠癌细胞凋亡 [62] 。VB与酪氨酸激酶抑制剂(如伊马替尼和达沙替尼)联合使用时,有效降低Abl磷酸化并改变下游p38-MAPK/JNK通路,增强慢性粒细胞白血病细胞凋亡和氧化应激的诱导 [63]

3.3. 抗菌

VB或含VB的植物提取物已被证明能抑制金黄色葡萄球菌、耐药性隐球菌等,并可改善多重耐药 [64] 。中高剂量的VB处理能够显着减少肉类样品中的细菌数量,延缓腐败速度,延长保质期 [65] 。此外,每日用乳铁素/VB外用乳剂可有效减少特应性皮炎犬的细菌过度生长和临床症状 [66]

通过竞争性抑制SrtA,VB减少耐甲氧西林金黄色葡萄球菌粘附到宿主组织并形成生物膜的能力,其最低抑菌浓度为512 μg/mL [67] 。此外,VB可以通过竞争性结合金黄色葡萄球菌的Stp1催化活性位点,或通过结合“瓣区”诱导Stp1活性位点的构象变化,从而强力抑制其活性,降低金黄色葡萄球菌中毒力蛋白的表达 [68]

VB对耐药性菌株有更好抑菌效果,并改善其耐药性。通过改变细菌细胞膜通透性、破坏细菌膜的完整性,诱导细菌细胞形态变化,从而根除生物膜等,VB增强了万古霉素对金黄色葡萄球菌和铜绿假单胞菌的抑菌活性 [65] ,以及增强庆大霉素对金黄色葡萄球菌和大肠杆菌的效果,改善多重耐药 [69]

3.4. 内器官保护

VB能够缓解糖尿病肾病、慢性肾小球肾炎、急性肾炎及阻塞性肾病的病程,其机制主要涉及保护足细胞免受凋亡、抑制炎症因子、抗氧化作用以及抗肾纤维化。

糖尿病肾病是糖尿病主要并发症之一,改善肾功能、降低尿蛋白、减轻病理改变是治疗糖尿病肾病的重要策略。db/db糖尿病小鼠和HK-2细胞模型表明,VB可以降低血糖 [70] 、保护足细胞免于凋亡 [71] ,降低尿白蛋白,延缓肾纤维化,改善肾脏病理病变,延缓糖尿病肾病病程 [72] [73] 。VB通过靶向特定的生化和信号通路有效缓解糖尿病肾病的肾脏纤维化和异常代谢。VB可调节AKT/GSK-3β信号通路抑制足细胞凋亡 [71] ,调控PI3K/AKT/NF-κB信号通路减轻细胞焦亡 [70] ,降低炎症因子MCP-1、IL-1β、TNF-α、IL-6的表达 [72] ,抑制TGF-β/Smad [72] 和抗氧化和调节自噬溶酶体途径缓解肾脏纤维化 [73] 。Wang等 [72] 采用代谢组学分析db/db小鼠血清,发现VB可能通过调节脂质代谢、乙醛酸和二羧酸代谢以及花生四烯酸代谢紊乱的代谢途径保护对糖尿病肾病有治疗作用。Gao等 [74] 进一步用非靶向和靶向代谢组学分析研究db/db小鼠尿液、血清和肾脏样本中的代谢特征,发现VB通过调节氨基酸代谢,使色氨酸、谷氨酰胺等代谢物的水平正常化。结合网络药理学发现VB作用途径与糖、脂类、氨基酸代谢有关,主要影响内分泌和免疫系统。

肾脏组织炎症反应的反复进展和持续存在是慢性肾炎发生和发展的主要机制。VB在PHN大鼠模型中展现出良好的治疗效果,包括减少尿蛋白和血清肌酐浓度,抑制炎症细胞标志物的表达,并调节血小板聚集和免疫细胞功能,从而抑制肾脏中的TGF-β和纤连蛋白表达,减轻纤维化病变。同时,代谢组学和网络药理学揭示了VB对炎症和免疫有广泛调节的作用 [75]

在急性肾炎中,VB通过抑制NF-κB信号通路(TLR4, MyD88, Iκ-Bɑ, NF-Κb, p65)有效缓解LSP诱导的肾功能障碍和炎症 [76] ,并通过其抗氧化、抗炎、抗凋亡作用减少横纹肌溶解症引起的急性肾损伤 [77]

在阻塞性肾病中,VB可通过抑制HMGN1/TLR4/TREM-1信号通路减少炎症和纤维化,降低血肌酐、血尿素氮及尿蛋白水平,改善了单侧输尿管梗阻大鼠的肾功能。这包括降低炎症和肾脏损伤相关蛋白如F4/80、Mcp-1、KIM-1的表达,以及纤维化相关蛋白α-SMA和β-catenin的表达 [78]

VB对肝脏缺血再灌注损伤、非酒精性脂肪性肝炎、酒精性肝炎、肝脏氧化性损伤的保护性作用主要与抗炎和抗氧化相关。

在肝脏缺血再灌注损伤模型中,VB通过抑制HMGB1-TLR3/4-IRF1信号传导,逆转肝窦状内皮细胞衰老,并恢复受损的窦状网络从而显著改善肝缺血再灌注伤害。这种机制的关键在于ACT破坏了HMGB1与LSEC上的受体TLR和TLR4的结合,从而阻止了炎症细胞因子和趋化因子的转录 [79] 。在非酒精性脂肪性肝炎中,以VB为主成分的Lippia citriodora提取物,降低了TNF-α和ROS的产生,以及减弱了人类肝细胞和肝星状细胞共培养模型中游离脂肪酸过量引起的胶原沉积 [80] 。酒精性肝炎研究中,VB调节NF-kB的激活减少HEPG2和Wistar大鼠模型中炎症因子的产生,抑制caspase-3的活性,减少了酒精诱导的肝细胞凋亡,显著降低血清ALT、AST和TG水平,恢复白蛋白和GSH水平,从而减轻肝损伤 [81] 。此外,VB通过增加抗氧化酶GSH、SOD、CAT活性抑制ROS的产生,抑制caspase-3的活化并防止细胞凋亡保护肝细胞免受t-BHP诱导的氧化损伤 [82]

VB能够缓解肺纤维化、急性肺损伤和病毒导致的肺损伤,其机制主要与激活Smad/TGF-β1通路,抑制NF-κB激活、抗氧化作用。

肺纤维化:VB通过抑制氧化应激和下调Smad/非Smad通路,减少TGF-β1诱导的Smad2/3、ERK/p38、MAPK磷酸化及胶原蛋白I表达,有效减缓肺纤维化的进程 [83]

急性肺损伤中,VB通过降低粘附分子和促炎细胞因子的表达,并抑制NF-κB活化,显著减轻眼镜蛇毒因子诱导的小鼠急性肺损伤模型中病理学损伤 [84] 。此外,在LPS诱导的急性肺损伤中,VB也通过抑制NF-κB激活,减弱了炎症细胞浸润和肺上皮细胞中的炎症细胞因子TNF-α、IL-1β和IL-6的产生,改善肺功能 [85]

VB对呼吸道合胞病毒 (RSV) 诱导的肺损伤有保护作用,有效减轻RSV感染引起的肺病理损伤及病毒复制,并降低促炎因子水平。通过下调HMGB1、p-Iκbα/Iκbα、p-p65/p65、RIP1、RIP3、MLKL、PGAM5和DRP1,VB抑制了RSV诱导的坏死性凋亡和线粒体功能障碍。代谢组学分析表明,VB治疗后代谢物的变化与氨基酸和能量代谢密切相关 [86]

3.5. 抗疲劳

VB可从线粒体自噬、氧化应激、能量代谢等多个方面缓解疲劳。

VB可以通过抑制PHD2,激活HIF-1α/BNIP3信号通路,并进一步促进PINK1/Parkin介导的线粒体自噬,改善肌肉质量和线粒体功能,以缓解癌症相关疲劳 [87] 。Sciandra等 [88] 的研究表明,VB能通过增强小鼠成肌细胞和肌管的最大耗氧率及线粒体备用呼吸能力,改善线粒体功能障碍。其作用机制包括激活Nrf2/HO-1通路,增加HO-1的转录水平,并在成肌细胞中上调PGC-1α,以对抗氧化应激,从而缓解肌肉疲劳。VB还通过抑制5-HT的合成和TPH2蛋白的表达,并增加运动大鼠尾壳核中5-HT1B的表达,显著减轻运动引起的疲劳,其效果与咖啡因相当 [89] 。此外,VB能通过增强能量代谢和减少氧化应激,减轻肝脏和骨骼肌水肿及炎症浸润,表现出在缺氧条件下抗疲劳的潜力 [90]

3.6. 促进伤口愈合

伤口愈合需要伤口部位角质形成细胞和真皮成纤维细胞的迁移和增殖,随后发生ECM的重塑。过度炎症会促进组织损伤并延迟愈合 [91] 。VB可抑制UVB照射后的MMP-9分泌 [92] ,在划痕实验中增强成纤维细胞和角质形成细胞的迁移,抑制LPS诱导的促炎细胞因子的产生并上调抗氧化酶活性 [92] ,在皮肤伤口修复过程中促进ECM的重塑 [93] [94]

高血糖水平会诱发氧化应激和炎症,影响牙龈伤口愈合 [95] 。VB可通过抑制PKC/HMGB1/RAGE/NFκB 信号通路,增加抗氧化酶SOD的活性,降低氧化应激指标8-OHdG以及细胞凋亡,上调了PGC1-α和NRF1的表达并促进了线粒体的生物合成减少氧化应激,下调促炎细胞因子(如IL-6和IL-1β)减轻炎症,改善糖尿病患者口腔伤口愈合障碍 [96]

3.7. 其他

缓解神经性痛觉:VB无法提高假手术动物的痛阈值,但能通抑制小胶质细胞活化、抗凋亡和抗氧化活性,有效减轻大鼠慢性压迫性损伤后的神经性疼痛 [97] 。鞘内注射VB可通过激活大鼠慢性压迫性损伤模型中的μ阿片受体来减轻脊髓神经性疼痛,如减轻机械和冷痛觉过敏,并改善运动表现。同结构化合物咖啡酸或羟基酪醇单独都不能介导该活性 [98]

调节脂肪代谢:VB通过抑制CDK6和mTORC1,减轻TFEB的磷酸化并增加其核转位,诱导PGC-1α转录辅激活因子,从而驱动UCP1依赖的褐变程序,促进白色脂肪组织向米色脂肪细胞产热转化。该过程独立于自噬,通过增强线粒体呼吸强度、上调脂肪酶(如ATGL和HSL)的表达和活性增强脂肪细胞的脂肪分解。且VB诱导的米色细胞仍然具有恢复为白色脂肪细胞的能力 [99]

4. 总结与展望

VB展现了丰富的药理作用,主要与其抗炎、抗氧化应激、促进自噬、抑制/促进凋亡活性相关。此外,VB能通过作用于多个靶点来影响同一疾病的进程,是极具开发价值的天然活性成分。最新的研究进展,如VB可通过Nrf2-线粒体自噬途径来抑制多巴胺神经元铁死亡,对NLRP3炎症小体的抑制,以及对脂肪代谢的调节作用等,进一步揭示了VB的药理作用机制。

近期对VB的药理机制探讨中,多项研究运用生物信息学技术,例如代谢组学、网络药理学及分子对接,筛选出了VB的潜在靶点和信号通路,包括PHD2 [70] 和PKC及其同工型 [53] 抑制剂。这些技术预期将进一步帮助深化理解并拓展VB的作用机制和适应症。

尽管VB的生物利用度低至0.12%,口服后仍对神经损伤类疾病、结肠炎等展示出显著疗效 [2] 。这一现象可能归因于其活性代谢产物,如羟基酪醇、咖啡酸和3,4-二羟基苯乙酸的作用,或VB对肠道菌群的调节功能。更详细的机制仍需进一步探索。

NOTES

*通讯作者。

References Alipieva, K., Korkina, L., Orhan, I.E. and Georgiev, M.I. (2014) Verbascoside—A Review of Its Occurrence, (Bio)Synthesis and Pharmacological Significance. Biotechnology Advances, 32, 1065-1076. >https://doi.org/10.1016/j.biotechadv.2014.07.001 Xiao, Y., Ren, Q. and Wu, L. (2022) The Pharmacokinetic Property and Pharmacological Activity of Acteoside: A Review. Biomedicine&Pharmacotherapy, 153, Article ID: 113296. >https://doi.org/10.1016/j.biopha.2022.113296 Yan, Y., Song, Q., Chen, X., Li, J., Li, P., Wang, Y., et al. (2017) Simultaneous Determination of Components with Wide Polarity and Content Ranges in Cistanche Tubulosa Using Serially Coupled Reverse Phase-Hydrophilic Interaction Chromatography-Tandem Mass Spectrometry. Journal of Chromatography A, 1501, 39-50. >https://doi.org/10.1016/j.chroma.2017.04.034 Lu, D., Zhang, J., Yang, Z., Liu, H., Li, S., Wu, B., et al. (2013) Quantitative Analysis of Cistanches Herba Using High‐performance Liquid Chromatography Coupled with Diode Array Detection and High‐Resolution Mass Spectrometry Combined with Chemometric Methods. Journal of Separation Science, 36, 1945-1952. >https://doi.org/10.1002/jssc.201300135 石海霞, 肖承鸿, 周涛, 等. 地黄不同种质的遗传多样性和质量分析[J]. 中国中药杂志, 2018, 43(21): 4210-4216. Qian, C., Wang, S., Chen, H. and Li, J. (2024) Ultrasound‐assisted Matrix Solid‐Phase Extraction Based on Deep Eutectic Solvents and Zinc Oxide: Extraction and Determination of Six Active Ingredients in Ligustri Lucidi Fructus. Journal of Separation Science, 47, e2400275. >https://doi.org/10.1002/jssc.202400275 Laanet, P., Bragina, O., Jõul, P. and Vaher, M. (2024) Plantago Major and Plantago Lanceolata Exhibit Antioxidant and Borrelia Burgdorferi Inhibiting Activities. International Journal of Molecular Sciences, 25, Article 7112. >https://doi.org/10.3390/ijms25137112 Pongkitwitoon, B., Putalun, W., Triwitayakorn, K., Kitisripanya, T., Kanchanapoom, T. and Boonsnongcheep, P. (2024) Anti-inflammatory Activity of Verbascoside-And Isoverbascoside-Rich Lamiales Medicinal Plants. Heliyon, 10, e23644. >https://doi.org/10.1016/j.heliyon.2023.e23644 Zhang, W., Zhang, P., Xu, L., Gao, K., Zhang, J., Yao, M., et al. (2024) Ethanol Extract of Verbena Officinalis Alleviates Mcao-Induced Ischaemic Stroke by Inhibiting IL17A Pathway-Regulated Neuroinflammation. Phytomedicine, 123, Article ID: 155237. >https://doi.org/10.1016/j.phymed.2023.155237 Yang, Y., Shao, J., Zhou, Q., Chen, Y., Tian, J. and Hou, L. (2024) Exploration of the Mechanisms of Callicarpa nudiflora Hook. et Arn against Influenza A Virus (H1N1) Infection. Phytomedicine, 123, Article ID: 155240. >https://doi.org/10.1016/j.phymed.2023.155240 Lee, S., Seo, S., Song, S., Oh, D., Shim, J., Yoon, G., et al. (2020) HPLC Analysis and Antioxidant Evaluation of Acteoside-Rich Osmanthus fragrans Extracts. Journal of Food Quality, 2020, Article ID: 8851285. >https://doi.org/10.1155/2020/8851285 Lee, H., Kim, J.H., Pang, Q.Q., Jung, P., Cho, E.J. and Lee, S. (2020) Antioxidant Activity and Acteoside Analysis of Abeliophyllum Distichum. Antioxidants, 9, Article 1148. >https://doi.org/10.3390/antiox9111148 Biswas, S.K. (2016) Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? Oxidative Medicine and Cellular Longevity, 2016, Article ID: 5698931. >https://doi.org/10.1155/2016/5698931 Lugrin, J., Rosenblatt-Velin, N., Parapanov, R. and Liaudet, L. (2013) The Role of Oxidative Stress during Inflammatory Processes. Biological Chemistry, 395, 203-230. >https://doi.org/10.1515/hsz-2013-0241 Cui, J., Tang, W., Wang, W., Yi, L., Teng, F., Xu, F., et al. (2023) Acteoside Alleviates Asthma by Modulating Ros-Responsive NF-κB/MAPK Signaling Pathway. International Immunopharmacology, 116, Article ID: 109806. >https://doi.org/10.1016/j.intimp.2023.109806 Song, H.S., Choi, M.Y., Ko, M.S., Jeong, J.M., Kim, Y.H., Jang, B.H., et al. (2012) Competitive Inhibition of Cytosolic Ca 2+-Dependent Phospholipase A 2by Acteoside in RBL-2H3 Cells. Archives of Pharmacal Research, 35, 905-910. >https://doi.org/10.1007/s12272-012-0516-x Pesce, M., Franceschelli, S., Ferrone, A., De Lutiis, M.A., Patruno, A., Grilli, A., et al. (2015) Verbascoside Down‐regulates Some Pro‐Inflammatory Signal Transduction Pathways by Increasing the Activity of Tyrosine Phosphatase SHP‐1 in the U937 Cell Line. Journal of Cellular and Molecular Medicine, 19, 1548-1556. >https://doi.org/10.1111/jcmm.12524 Lee, J.Y., Woo, E. and Kang, K.W. (2005) Inhibition of Lipopolysaccharide-Inducible Nitric Oxide Synthase Expression by Acteoside through Blocking of AP-1 Activation. Journal of Ethnopharmacology, 97, 561-566. >https://doi.org/10.1016/j.jep.2005.01.005 Sahpaz, S., Garbacki, N., Tits, M. and Bailleul, F. (2002) Isolation and Pharmacological Activity of Phenylpropanoid Esters from Marrubium Vulgare. Journal of Ethnopharmacology, 79, 389-392. >https://doi.org/10.1016/s0378-8741(01)00415-9 Chang, J., Chuang, H., Hsiao, G., Hou, T., Wang, C., Huang, S., et al. (2022) Acteoside Exerts Immunomodulatory Effects on Dendritic Cells via Aryl Hydrocarbon Receptor Activation and Ameliorates Th2-Mediated Allergic Asthma by Inducing Foxp3 +Regulatory T Cells. International Immunopharmacology, 106, Article ID: 108603. >https://doi.org/10.1016/j.intimp.2022.108603 Li, Y., Yu, H., Jin, Y., Li, M. and Qu, C. (2018) Verbascoside Alleviates Atopic Dermatitis-Like Symptoms in Mice via Its Potent Anti-Inflammatory Effect. International Archives of Allergy and Immunology, 175, 220-230. >https://doi.org/10.1159/000486958 Wu, M., Yu, S., Chen, Y., Meng, W., Chen, H., He, J., et al. (2022) Acteoside Promotes B Cell-Derived IL-10 Production and Ameliorates Autoimmunity. Journal of Leukocyte Biology, 112, 875-885. >https://doi.org/10.1002/jlb.3ma0422-510r Yoou, M., Kim, H. and Jeong, H. (2015) Acteoside Attenuates TSLP-Induced Mast Cell Proliferation via Down-Regulating MDM2. International Immunopharmacology, 26, 23-29. >https://doi.org/10.1016/j.intimp.2015.03.003 Lee, J.H., Lee, J.Y., Kang, H.S., Jeong, C.H., Moon, H., Whang, W.K., et al. (2006) The Effect of Acteoside on Histamine Release and Arachidonic Acid Release in RBL-2H3 Mast Cells. Archives of Pharmacal Research, 29, 508-513. >https://doi.org/10.1007/bf02969425 Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., et al. (2017) Oxidative Stress: Harms and Benefits for Human Health. Oxidative Medicine and Cellular Longevity, 2017, Article ID: 8416763. >https://doi.org/10.1155/2017/8416763 Wang, X., Chang, X., Luo, X., Su, M., Xu, R., Chen, J., et al. (2019) An Integrated Approach to Characterize Intestinal Metabolites of Four Phenylethanoid Glycosides and Intestinal Microbe-Mediated Antioxidant Activity Evaluation in Vitro Using UHPLC-Q-Exactive High-Resolution Mass Spectrometry and a 1, 1-Diphenyl-2-Picrylhydrazyl-Based Assay. Frontiers in Pharmacology, 10, Article 826. >https://doi.org/10.3389/fphar.2019.00826 Li, M., Xu, T., Zhou, F., Wang, M., Song, H., Xiao, X., et al. (2018) Neuroprotective Effects of Four Phenylethanoid Glycosides on H 2O 2-Induced Apoptosis on PC12 Cells via the Nrf2/ARE Pathway. International Journal of Molecular Sciences, 19, Article 1135. >https://doi.org/10.3390/ijms19041135 Li, M., Zhou, F., Xu, T., Song, H. and Lu, B. (2018) Acteoside Protects against 6-OHDA-Induced Dopaminergic Neuron Damage via Nrf2-Are Signaling Pathway. Food and Chemical Toxicology, 119, 6-13. >https://doi.org/10.1016/j.fct.2018.06.018 Gao, W., Zheng, S., Hwang, E., Yi, T. and Wang, Y. (2021) Effects of Phenylethanol Glycosides from Orobanche cernua Loefling on UVB-Induced Skin Photodamage: A Comparative Study. Photochemical&Photobiological Sciences, 20, 599-614. >https://doi.org/10.1007/s43630-021-00038-6 Sgarbossa, A., Dal Bosco, M., Pressi, G., Cuzzocrea, S., Dal Toso, R. and Menegazzi, M. (2012) Phenylpropanoid Glycosides from Plant Cell Cultures Induce Heme Oxygenase 1 Gene Expression in a Human Keratinocyte Cell Line by Affecting the Balance of NRF2 and BACH1 Transcription Factors. Chemico-Biological Interactions, 199, 87-95. >https://doi.org/10.1016/j.cbi.2012.06.006 Cui, Q., Pan, Y., Zhang, W., Zhang, Y., Ren, S., Wang, D., et al. (2018) Metabolites of Dietary Acteoside: Profiles, Isolation, Identification, and Hepatoprotective Capacities. Journal of Agricultural and Food Chemistry, 66, 2660-2668. >https://doi.org/10.1021/acs.jafc.7b04650 Zhao, Y., Wang, S., Pan, J. and Ma, K. (2023) Verbascoside: A Neuroprotective Phenylethanoid Glycosides with Anti-Depressive Properties. Phytomedicine, 120, Article ID: 155027. >https://doi.org/10.1016/j.phymed.2023.155027 Teleanu, D.M., Niculescu, A., Lungu, I.I., Radu, C.I., Vladâcenco, O., Roza, E., et al. (2022) An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. International Journal of Molecular Sciences, 23, Article 5938. >https://doi.org/10.3390/ijms23115938 Han, Z., Wang, B., Wen, Y., Li, Y., Feng, C., Ding, X., et al. (2024) Acteoside Alleviates Lipid Peroxidation by Enhancing Nrf2-Mediated Mitophagy to Inhibit Ferroptosis for Neuroprotection in Parkinson’s Disease. Free Radical Biology and Medicine, 223, 493-505. >https://doi.org/10.1016/j.freeradbiomed.2024.07.018 Lyman, M., Lloyd, D.G., Ji, X., Vizcaychipi, M.P. and Ma, D. (2014) Neuroinflammation: The Role and Consequences. Neuroscience Research, 79, 1-12. >https://doi.org/10.1016/j.neures.2013.10.004 Xia, C., Guo, Y., Lian, W., Yan, Y., Ma, B., Cheng, Y., et al. (2023) The NLRP3 Inflammasome in Depression: Potential Mechanisms and Therapies. Pharmacological Research, 187, Article ID: 106625. >https://doi.org/10.1016/j.phrs.2022.106625 Wang, Y., Wu, S., Li, Q., Lang, W., Li, W., Jiang, X., et al. (2022) Salsolinol Induces Parkinson’s Disease through Activating NLRP3-Dependent Pyroptosis and the Neuroprotective Effect of Acteoside. Neurotoxicity Research, 40, 1948-1962. >https://doi.org/10.1007/s12640-022-00608-1 Zhou, H., Zhang, C. and Huang, C. (2021) Verbascoside Attenuates Acute Inflammatory Injury Caused by an Intracerebral Hemorrhage through the Suppression of NLRP3. Neurochemical Research, 46, 770-777. >https://doi.org/10.1007/s11064-020-03206-9 Liao, Y., Hu, J., Guo, C., Wen, A., Wen, L., Hou, Q., et al. (2024) Acteoside Alleviates Blood-Brain Barrier Damage Induced by Ischemic Stroke through Inhibiting Microglia HMGB1/TLR4/NLRP3 Signaling. Biochemical Pharmacology, 220, Article ID: 115968. >https://doi.org/10.1016/j.bcp.2023.115968 Chen, S., Liu, H., Wang, S., Jiang, H., Gao, L., Wang, L., et al. (2022) The Neuroprotection of Verbascoside in Alzheimer’s Disease Mediated through Mitigation of Neuroinflammation via Blocking NF-κB-p65 Signaling. Nutrients, 14, Article 1417. >https://doi.org/10.3390/nu14071417 Li, M., Zhu, M., Quan, W., Huang, W., Liu, X., Zhang, C., et al. (2023) Acteoside Palliates D-Galactose Induced Cognitive Impairment by Regulating Intestinal Homeostasis. Food Chemistry, 421, Article ID: 135978. >https://doi.org/10.1016/j.foodchem.2023.135978 Mao, Q., Zhang, H., Zhang, Z., Lu, Y., Pan, J., Guo, D., et al. (2024) Co-Decoction of Lilii Bulbus and Radix Rehmannia Recens and Its Key Bioactive Ingredient Verbascoside Inhibit Neuroinflammation and Intestinal Permeability Associated with Chronic Stress-Induced Depression via the Gut Microbiota-Brain Axis. Phytomedicine, 129, Article ID: 155510. >https://doi.org/10.1016/j.phymed.2024.155510 Ran, Z., Ju, B., Cao, L., Hou, Q., Wen, L., Geng, R., et al. (2023) Microbiome-Metabolomics Analysis Reveals the Potential Effect of Verbascoside in Alleviating Cognitive Impairment in db/db Mice. Food&Function, 14, 3488-3508. >https://doi.org/10.1039/d2fo03110h Aimaiti, M., Wumaier, A., Aisa, Y., Zhang, Y., Xirepu, X., Aibaidula, Y., et al. (2021) Acteoside Exerts Neuroprotection Effects in the Model of Parkinson’s Disease via Inducing Autophagy: Network Pharmacology and Experimental Study. European Journal of Pharmacology, 903, Article ID: 174136. >https://doi.org/10.1016/j.ejphar.2021.174136 Ning, S., Chen, Y., Shao, J., Zhu, H., Zhang, Z. and Miao, J. (2024) The Effects of Acteoside on Locomotor Recovery after Spinal Cord Injury—The Role of Autophagy and Apoptosis Signaling Pathway. Biomedicine&Pharmacotherapy, 175, Article ID: 116607. >https://doi.org/10.1016/j.biopha.2024.116607 Qu, Y., Ding, M., Gu, C., Zhang, L., Zhen, R., Chen, J., et al. (2022) Acteoside and Ursolic Acid Synergistically Protects H 2O 2-Induced Neurotrosis by Regulation of AKT/mTOR Signalling: From Network Pharmacology to Experimental Validation. Pharmaceutical Biology, 60, 1751-1761. >https://doi.org/10.1080/13880209.2022.2098344 Wang, C., Cai, X., Wang, R., Zhai, S., Zhang, Y., Hu, W., et al. (2020) Neuroprotective Effects of Verbascoside against Alzheimer’s Disease via the Relief of Endoplasmic Reticulum Stress in Aβ-Exposed U251 Cells and APP/PS1 Mice. Journal of Neuroinflammation, 17, Article No. 309. >https://doi.org/10.1186/s12974-020-01976-1 Gao, L., Wang, D., Ren, J., Tan, X., Chen, J., Kong, Z., et al. (2023) Acteoside Ameliorates Learning and Memory Impairment in APP/PS1 Transgenic Mice by Increasing Aβ Degradation and Inhibiting Tau Hyperphosphorylation. Phytotherapy Research, 38, 1735-1744. >https://doi.org/10.1002/ptr.8006 Luhata, L.P., Yoshida, Y. and Usuki, T. (2024) Natural Products from Odontonema Strictum Promote Neurite Outgrowth in Neuronal PC12 Cells. Bioorganic Chemistry, 147, Article ID: 107389. >https://doi.org/10.1016/j.bioorg.2024.107389 Gao, L., Peng, X., Huo, S., Liu, X. and Yan, M. (2015) Memory Enhancement of Acteoside (Verbascoside) in a Senescent Mice Model Induced by a Combination of D-Gal and ALCL 3. Phytotherapy Research, 29, 1131-1136. >https://doi.org/10.1002/ptr.5357 Khan, R.A., Hossain, R., Roy, P., Jain, D., Mohammad Saikat, A.S., Roy Shuvo, A.P., et al. (2022) Anticancer Effects of Acteoside: Mechanistic Insights and Therapeutic Status. European Journal of Pharmacology, 916, Article ID: 174699. >https://doi.org/10.1016/j.ejphar.2021.174699 Budzianowska, A., Totoń, E., Romaniuk-Drapała, A., Kikowska, M. and Budzianowski, J. (2023) Cytotoxic Effect of Phenylethanoid Glycosides Isolated from Plantago Lanceolata L. Life, 13, Article 556. >https://doi.org/10.3390/life13020556 Cheimonidi, C., Samara, P., Polychronopoulos, P., Tsakiri, E.N., Nikou, T., Myrianthopoulos, V., et al. (2018) Selective Cytotoxicity of the Herbal Substance Acteoside against Tumor Cells and Its Mechanistic Insights. Redox Biology, 16, 169-178. >https://doi.org/10.1016/j.redox.2018.02.015 Herbert, J.M., Maffrand, J.P., Taoubi, K., Augereau, J.M., Fouraste, I. and Gleye, J. (1991) Verbascoside Isolated from Lantana Camara, an Inhibitor of Protein Kinase C. Journal of Natural Products, 54, 1595-1600. >https://doi.org/10.1021/np50078a016 Zhou, L., Feng, Y., Jin, Y., Liu, X., Sui, H., Chai, N., et al. (2014) Verbascoside Promotes Apoptosis by Regulating HIPK2-P53 Signaling in Human Colorectal Cancer. BMC Cancer, 14, Article No. 747. >https://doi.org/10.1186/1471-2407-14-747 Ren, Y., He, J., Zhao, W. and Ma, Y. (2022) The Anti-Tumor Efficacy of Verbascoside on Ovarian Cancer via Facilitating CCN1-AKT/NF-κB Pathway-Mediated M1 Macrophage Polarization. Frontiers in Oncology, 12, Article 901922. >https://doi.org/10.3389/fonc.2022.901922 Jiang, J., Cheng, R., Song, A., Lou, Y. and Fan, G. (2024) Multi-Omics Analysis Reveals Mechanism of Schisandra Chinensis Lignans and Acteoside on EMT in Hepatoma Cells via ERK1/2 Pathway. Functional&Integrative Genomics, 24, Article No. 112. >https://doi.org/10.1007/s10142-024-01351-w Wu, C., Chen, C., Hsieh, P., Lee, Y., Kuo, W.W., Wu, R.C., et al. (2021) Verbascoside Inhibits the Epithelial‐Mesenchymal Transition of Prostate Cancer Cells through High‐Mobility Group Box 1/Receptor for Advanced Glycation End‐products/TGF‐β Pathway. Environmental Toxicology, 36, 1080-1089. >https://doi.org/10.1002/tox.23107 Elhashani, S., Glenn, M., Raymant, M., Schmid, M.C. and Mielgo, A. (2024) Expression of Versican Isoforms V0/V1 by Pancreatic Cancer Associated Fibroblasts Increases Fibroblast Proliferation. Pancreatology, 24, 719-731. >https://doi.org/10.1016/j.pan.2024.04.008 Ji, M., Sun, J. and Zhao, J. (2022) Verbascoside Represses Malignant Phenotypes of Esophageal Squamous Cell Carcinoma Cells by Inhibiting CDC42 via the HMGB1/RAGE Axis. Human&Experimental Toxicology, 41, 1-9. >https://doi.org/10.1177/09603271221127429 Jia, W., Wang, Z., Zou, M., Lin, J., Li, Y., Zhang, L., et al. (2018) Verbascoside Inhibits Glioblastoma Cell Proliferation, Migration and Invasion While Promoting Apoptosis through Upregulation of Protein Tyrosine Phosphatase SHP-1 and Inhibition of STAT3 Phosphorylation. Cellular Physiology and Biochemistry, 47, 1871-1882. >https://doi.org/10.1159/000491067 Attia, Y.M., El-Kersh, D.M., Wagdy, H.A. and Elmazar, M.M. (2018) Verbascoside: Identification, Quantification, and Potential Sensitization of Colorectal Cancer Cells to 5-FU by Targeting PI3K/AKT Pathway. Scientific Reports, 8, Article No. 16939. >https://doi.org/10.1038/s41598-018-35083-2 AkgunCagliyan, G., CortDonmez, A., KilicToprak, E. and Altintas, F. (2022) Verbascoside Potentiates the Effect of Tyrosine Kinase Inhibitors on the Induction of Apoptosis and Oxidative Stress via the Abl-Mediated MAPK Signalling Pathway in Chronic Myeloid Leukaemia. Experimental and Therapeutic Medicine, 24, Article No. 514. >https://doi.org/10.3892/etm.2022.11441 Martins, G.R., da Fonseca, T.S., Martínez-Fructuoso, L., Simas, R.C., Silva, F.T., Salimena, F.R.G., et al. (2019) Antifungal Phenylpropanoid Glycosides from Lippia rubella. Journal of Natural Products, 82, 566-572. >https://doi.org/10.1021/acs.jnatprod.8b00975 Shi, C., Ma, Y., Tian, L., Li, J., Qiao, G., Liu, C., et al. (2022) Verbascoside: An Efficient and Safe Natural Antibacterial Adjuvant for Preventing Bacterial Contamination of Fresh Meat. Molecules, 27, Article 4943. >https://doi.org/10.3390/molecules27154943 Biasibetti, E., Bruni, N., Bigliati, M. and Capucchio, M.T. (2017) Lactoferricin/Verbascoside Topical Emulsion: A Possible Alternative Treatment for Atopic Dermatitis in Dogs. Natural Product Research, 32, 2107-2110. >https://doi.org/10.1080/14786419.2017.1365066 Li, X., Hou, Y., Zou, H., Wang, Y., Xu, Y., Wang, L., et al. (2024) Unraveling the Efficacy of Verbascoside in Thwarting MRSA Pathogenicity by Targeting Sortase A. Applied Microbiology and Biotechnology, 108, Article No. 360. >https://doi.org/10.1007/s00253-024-13202-6 Yang, Y., Wang, X., Gao, Y., Wang, H. and Niu, X. (2021) Insight into the Dual Inhibitory Mechanism of Verbascoside Targeting Serine/Threonine Phosphatase Stp1 against Staphylococcus Aureus. European Journal of Pharmaceutical Sciences, 157, Article ID: 105628. >https://doi.org/10.1016/j.ejps.2020.105628 Fazly Bazzaz, B.S., Khameneh, B., Zahedian Ostad, M.R., et al. (2018) In Vitro Evaluation of Antibacterial Activity of Verbascoside, Lemon Verbena Extract and Caffeine in Combination with Gentamicin against Drug-Resistant Staphylo-coccus aureus and Escherichia coli Clinical Isolates. Avicenna Journal of Phytomedicine, 8, 246-253. Zhang, S.J., Zhang, Y.F., Bai, X.H., Zhou, M.Q., Zhang, Z.Y., Zhang, S.X., et al. (2024) Integrated Network Pharmacology Analysis and Experimental Validation to Elucidate the Mechanism of Acteoside in Treating Diabetic Kidney Disease. Drug Design, Development and Therapy, 18, 1439-1457. >https://doi.org/10.2147/dddt.s445254 Li, X., Liu, Z., He, Z., Wang, X., Li, R., Wang, J., et al. (2023) Acteoside Protects Podocyte against Apoptosis through Regulating AKT/GSK-3β Signaling Pathway in db/db Mice. BMC Endocrine Disorders, 23, Article No. 230. >https://doi.org/10.1186/s12902-023-01483-3 Wang, Q., Dai, X., Xiang, X., Xu, Z., Su, S., Wei, D., et al. (2021) A Natural Product of Acteoside Ameliorate Kidney Injury in Diabetes db/db Mice and HK-2 Cells via Regulating NADPH/Oxidase‐TGF‐β/Smad Signaling Pathway. Phytotherapy Research, 35, 5227-5240. >https://doi.org/10.1002/ptr.7196 Zhou, M., Zhang, S., Bai, X., Cai, Y., Zhang, Z., Zhang, P., et al. (2024) Acteoside Delays the Fibrosis Process of Diabetic Nephropathy by Anti-Oxidation and Regulating the Autophagy-Lysosome Pathway. European Journal of Pharmacology, 978, Article ID: 176715. >https://doi.org/10.1016/j.ejphar.2024.176715 Gao, W., Gao, S., Zhang, Y., Wang, M., Liu, Y., Li, T., et al. (2024) Altered Metabolic Profiles and Targets Relevant to the Protective Effect of Acteoside on Diabetic Nephropathy in db/db Mice Based on Metabolomics and Network Pharmacology Studies. Journal of Ethnopharmacology, 318, Article ID: 117073. >https://doi.org/10.1016/j.jep.2023.117073 Gao, W., Zhou, Y., Li, C., Liu, T., Zhao, H., Wang, M., et al. (2023) Studies on the Metabolism and Mechanism of Acteoside in Treating Chronic Glomerulonephritis. Journal of Ethnopharmacology, 302, Article ID: 115866. >https://doi.org/10.1016/j.jep.2022.115866 Lian, J., Xu, Y., Shi, J., Liu, P., Hua, Y., Zhang, C., et al. (2024) Acteoside and Isoacteoside Alleviate Renal Dysfunction and Inflammation in Lipopolysaccharide-Induced Acute Kidney Injuries through Inhibition of NF-κB Signaling Pathway. PLOS ONE, 19, e0303740. >https://doi.org/10.1371/journal.pone.0303740 Safari Samangani, M., Mehri, S., Aminifard, T., Jafarian, A., Yazdani, P.F. and Hosseinzadeh, H. (2024) Effect of Verbascoside against Acute Kidney Injury Induced by Rhabdomyolysis in Rats. Naunyn-Schmiedeberg’s Archives of Pharmacology. >https://doi.org/10.1007/s00210-024-03144-1 Mao, Y., Yu, J., Da, J., Yu, F. and Zha, Y. (2023) Acteoside Alleviates UUO-Induced Inflammation and Fibrosis by Regulating the HMGN1/TLR4/TREM1 Signaling Pathway. PeerJ, 11, e14765. >https://doi.org/10.7717/peerj.14765 Jia, K., Zhang, Y., Luo, R., Liu, R., Li, Y., Wu, J., et al. (2023) Acteoside Ameliorates Hepatic Ischemia-Reperfusion Injury via Reversing the Senescent Fate of Liver Sinusoidal Endothelial Cells and Restoring Compromised Sinusoidal Networks. International Journal of Biological Sciences, 19, 4967-4988. >https://doi.org/10.7150/ijbs.87332 Salvoza, N., Bedin, C., Saccani, A., Tiribelli, C. and Rosso, N. (2022) The Beneficial Effects of Triterpenic Acid and Acteoside in an in Vitro Model of Nonalcoholic Steatohepatitis (NASH). International Journal of Molecular Sciences, 23, Article 3562. >https://doi.org/10.3390/ijms23073562 Khullar, M., Sharma, A., Wani, A., Sharma, N., Sharma, N., Chandan, B.K., et al. (2019) Acteoside Ameliorates Inflammatory Responses through NFkB Pathway in Alcohol Induced Hepatic Damage. International Immunopharmacology, 69, 109-117. >https://doi.org/10.1016/j.intimp.2019.01.020 Zhu, J., Li, G., Zhou, J., Xu, Z. and Xu, J. (2022) Cytoprotective Effects and Antioxidant Activities of Acteoside and Various Extracts of Clerodendrum cyrtophyllum Turcz Leaves against T-Bhp Induced Oxidative Damage. Scientific Reports, 12, Article No. 12630. >https://doi.org/10.1038/s41598-022-17038-w Chen, C., Tung, H., Tseng, Y., Huang, J., Shi, L. and Ye, Y. (2022) Verbascoside and Isoverbascoside Ameliorate Transforming Growth Factor β1-Induced Collagen Expression by Lung Fibroblasts through Smad/non-Smad Signaling Pathways. Life Sciences, 308, Article ID: 120950. >https://doi.org/10.1016/j.lfs.2022.120950 Guo, J., Liu, Q., Zhu, F., Li, M., Li, J., Guo, L., et al. (2022) Acteoside Attenuates Acute Lung Injury Following Administration of Cobra Venom Factor to Mice. Heliyon, 8, e11622. >https://doi.org/10.1016/j.heliyon.2022.e11622 Jing, W., Chunhua, M. and Shumin, W. (2015) Effects of Acteoside on Lipopolysaccharide-Induced Inflammation in Acute Lung Injury via Regulation of NF-κB Pathway in Vivo and in Vitro. Toxicology and Applied Pharmacology, 285, 128-135. >https://doi.org/10.1016/j.taap.2015.04.004 Ling, X., Zhou, J., Jin, T., Xu, W., Sun, X., Li, W., et al. (2022) Acteoside Attenuates RSV-Induced Lung Injury by Suppressing Necroptosis and Regulating Metabolism. Frontiers in Pharmacology, 13, Article 870928. >https://doi.org/10.3389/fphar.2022.870928 Zhang, S., Gong, F., Liu, J., Liu, T., Yang, J. and Hu, J. (2022) A Novel PHD2 Inhibitor Acteoside from Cistanche Tubulosa Induces Skeletal Muscle Mitophagy to Improve Cancer-Related Fatigue. Biomedicine&Pharmacotherapy, 150, Article ID: 113004. >https://doi.org/10.1016/j.biopha.2022.113004 Sciandra, F., Bottoni, P., De Leo, M., Braca, A., Brancaccio, A. and Bozzi, M. (2023) Verbascoside Elicits Its Beneficial Effects by Enhancing Mitochondrial Spare Respiratory Capacity and the Nrf2/HO-1 Mediated Antioxidant System in a Murine Skeletal Muscle Cell Line. International Journal of Molecular Sciences, 24, Article 15276. >https://doi.org/10.3390/ijms242015276 Zhu, M., Zhu, H., Tan, N., Wang, H., Chu, H. and Zhang, C. (2016) Central Anti-Fatigue Activity of Verbascoside. Neuroscience Letters, 616, 75-79. >https://doi.org/10.1016/j.neulet.2016.01.042 Guo, Z.L., Qian, Q.Y., Li, X.L., et al. (2023) Efficacy of Verbascoside, Echinacoside, Crenatoside on Alti-tude-Induced Fatigue in Rats and Possible Mechanism. Journal of Traditional Chinese Medicine, 43, 934-943. Wilkinson, H.N. and Hardman, M.J. (2020) Wound Healing: Cellular Mechanisms and Pathological Outcomes. Open Biology, 10, Article ID: 200223. >https://doi.org/10.1098/rsob.200223 de Moura Sperotto, N.D., Steffens, L., Veríssimo, R.M., Henn, J.G., Péres, V.F., Vianna, P., et al. (2018) Wound Healing and Anti-Inflammatory Activities Induced by a Plantago Australis Hydroethanolic Extract Standardized in Verbascoside. Journal of Ethnopharmacology, 225, 178-188. >https://doi.org/10.1016/j.jep.2018.07.012 Kanlayavattanakul, M., Khongkow, M. and Lourith, N. (2024) Wound Healing and Photoprotection Properties of Acanthus ebracteatus Vahl. Extracts Standardized in Verbascoside. Scientific Reports, 14, Article No. 1904. >https://doi.org/10.1038/s41598-024-52511-8 Si, N., Kanazawa, H., Okuyama, K., Imada, K., Wang, H., Yang, J., et al. (2018) Involvement of Catechols in Acteoside in the Activation of Promatrix Metalloproteinase-2 and Membrane Type-1-Matrix Metalloproteinase Expression via a Phosphatidylinositol-3-Kinase Pathway in Human Dermal Fibroblasts. Biological and Pharmaceutical Bulletin, 41, 1530-1536. >https://doi.org/10.1248/bpb.b18-00107 Kido, D., Mizutani, K., Takeda, K., Mikami, R., Matsuura, T., Iwasaki, K., et al. (2017) Impact of Diabetes on Gingival Wound Healing via Oxidative Stress. PLOS ONE, 12, e0189601. >https://doi.org/10.1371/journal.pone.0189601 Hsieh, P., Yu, C., Chu, P. and Hsieh, P. (2021) Verbascoside Protects Gingival Cells against High Glucose-Induced Oxidative Stress via PKC/HMGB1/RAGE/NFκB Pathway. Antioxidants, 10, Article 1445. >https://doi.org/10.3390/antiox10091445 Amin, B., Poureshagh, E. and Hosseinzadeh, H. (2015) The Effect of Verbascoside in Neuropathic Pain Induced by Chronic Constriction Injury in Rats. Phytotherapy Research, 30, 128-135. >https://doi.org/10.1002/ptr.5512 Hara, K., Haranishi, Y. and Terada, T. (2022) Verbascoside Administered Intrathecally Attenuates Hyperalgesia via Activating Mu‐Opioid Receptors in a Rat Chronic Constriction Injury Model. European Journal of Pain, 26, 1322-1332. >https://doi.org/10.1002/ejp.1952 Sun, Y., Ni, X., Cheng, S., Yu, X., Jin, X., Chen, L., et al. (2023) Acteoside Improves Adipocyte Browning by CDK6-Mediated mTORC1-TFEB Pathway. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1868, Article ID: 159364. >https://doi.org/10.1016/j.bbalip.2023.159364
Baidu
map